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In this paper we construct a new type of finite-dimensional pair coherent states |ξ, q〉 as realizations of SU(2) Lie
algebra. Using the technique of integration within an ordered product of operator, the nonorthogonality and
completeness properties of the state |ξ, q〉 are investigated. Based on theWigner operator in the entangled state
|τ〉 representation, the Wigner function of |ξ, q〉 is obtained. The properties of |ξ, q〉 are discussed in terms of the
negativity of itsWigner function. The tomogramof |ξ,q〉 is calculatedwith theaidof theRadon transformbetween
theWigner operator and the projection operator of the entangled state |η, κ1, κ2〉. In addition, using the entangled
state |τ〉 representation of |ξ, q〉 to show that the states |ξ, q〉 are just a set of energy eigenstates of time-
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1. Introduction

In recent years there has been considerable attention in con-
structing some new multimode quantum states based on the
fundamental principles in quantum mechanics. The motivation to
construct the kind of states is considering some important applica-
tions, for instance, as necessary resources in multiuser quantum
communication network, of the multimode entangled properties in
quantum communications. Among multimode quantum states, pair
coherent state (PCS) [1,2] is seen as an important two-mode
correlated state because it shows strong entanglement and remark-
able nonclassical properties. Moreover, some schemes for generation
of the PCS have been introduced [2–4]. For example, it can be
generated in competition between nondegenerate two-photon
absorption and nondegenerate parametric amplification [2]. Also it
can be generated in two-mode photon matching process using weak
cross-Kerrmedia [3]. Wu et al. [5] have investigated the entanglement
of the PCS in the phase damping channel and proposed a protocol of
teleportation via the PCS. Arvind [6] has analyzed the squeezing
properties of the PCS using the U(2) invariant methodology. Agarwal
[1,2] has discussed the violations of the Cauchy–Schwarz, Bell
inequalities and many-photon anti-bunching.

As an important generalization of PCS, Refs. [7–9] have introduced
the superposition of the PCS and present its some nonclassical
properties, such as phase distribution and single-mode Wigner and
Weyl functions. Ref. [10] has constructed a finite-dimensional pair
coherent state (FDPCS) and investigated some of its nonclassical
properties such as sub-Poissonian distribution and phase properties.
Moreover, they have also proposed a concrete scheme generating the
FDPCS in the vibrational motion of a trapped ion in two dimensional
harmonic potential. In this paper a new type of finite-dimensional pair
coherent states |ξ, q〉 is constructed, where the states are the two-
mode bosonic realizations of the SU(2) Lie groups. The physical
meaning of the two states is: creating one quantum of the mode a and
meanwhile annihilating one quantum in mode b will not change the
finite quantum sum q between themodes a and b in thewhole system.

Representation theory in quantum mechanics was invented by
Dirac [11]. Dirac emphasized that "when one has a particular problem
to work out in quantum mechanics, one can minimize the labour by
using a representation in which the representatives of the more
important abstract quantities occurring in that problem are as simple
as possible”. We believe that it will be very convenient for us to treat
many problems in quantum optics based on some newly constructing
entangled state representations. In history it is Einstein–Podolsky–
Rosen (EPR) who first used the commutative property of two
particles' relative position and total momentum to initiate the concept
of quantum entanglement. Following EPR's idea of quantum entan-
glement [12] Fan et al. [13–16] have constructed the bipartite
entangled state representations and discussed many applications in
quantum optics and quantum information. In this work we shall
sufficiently use these newly introduced entangled state representa-
tions to simplify the study of the state |ξ, q〉. For details, wewant to use
the Wigner operator in the entangled state representation |τ〉 and the
Radon transform between the Wigner operator and the projection
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operator of the entangled state |η, κ1, κ2〉 to derive Wigner function
and tomogram of the states |ξ, q〉, and then use the entangled state |τ〉
representation of |ξ, q〉 to show that the Hamiltonian of two coupled
oscillators possesses the states |ξ, q〉 as its energy eigenstates.

Our main work is arranged as follows: in Section 2 the
nonorthogonality and completeness relation of the FDPCS is investi-
gated using the technique of integration within an ordered product
(IWOP) of operator [13,14]. In Section 3 Wigner function of the state
|ξ, q〉 is obtained based on the Wigner operator in the entangled state
|τ〉 representation, then nonclasscial properties of the state |ξ, q〉 are
discussed in terms of the negativity of itsWigner function. In Section 4
we derive marginal distribution of Wigner function of |ξ, q〉. In
Section 5 the tomogram of |ξ, q〉 is calculatedwith the aid of the Radon
transform between the Wigner operator and the projection operator
of the entangled state |η, κ1, κ2〉 [16]. In final section using the
entangled state |τ〉 representation of |ξ, q〉 to show that the
Hamiltonian of two coupled oscillators possesses the states |ξ, q〉 as
its energy eigenstates.

2. The nonorthogonality and completeness relation of the FDPCS

To obtain the FDPCS, we define the generators of SU(2) in this case
as follows:

Kþ = a†b; K− = ab†; K0 =
1
2
ða†a−b†bÞ; ð1Þ

which yields the following SU(2) Lie algebra

½Kþ;K−� = 2K0; ½K0;KF� = FKF; ð2Þ

where a, b are the annihilation operators of the optical field, then the
vacuum state |0, 0〉 is annihilated by either a or b. So we define a
unitary evolution operator D(ξ)=exp[ξK+−ξ⁎K−], its standard
factorization is

DðξÞ = expðςKþÞexp K0lnð1 + jς j2Þ
h i

expð−ς�K−Þ; ð3Þ

where ς = e−iϕtgθ
2
, ξ = θ

2
e−iϕ. Using Eq. (3) we derive

expðξKþ−ξ*K−Þa† expðξ*K−−ξKþÞ = a† cos
θ
2
−b†eiϕ sin

θ
2
; ð4Þ

expðξKþ−ξ*K−Þb† expðξ*K−−ξKþÞ = b† cos
θ
2

+ a†e−iϕ sin
θ
2
; ð5Þ

if operating this unitary operator D(ξ) on two-mode Fock state |q, 0〉
we find that the explicit form of the FDPCS in two-mode Fock space is

jξ; q〉 = 1 + jς j2
� �−q=2

eςKþ jq;0〉

=
1ffiffiffiffiffi
q!

p a† cos
θ
2
−b†eiϕ sin

θ
2

� �q

j0;0〉

= ∑
q

n=0

q

n

 !1=2

cos
θ
2

� �q−n

−eiϕ sin
θ
2

� �n

jq−n;n〉

= 1 + jς j2
� �−q=2 ∑

q

n=0

q

n

 !1=2

ςn jq−n;n〉;

ð6Þ

which has the same form of the binomial state in the light field. In
addition, we also find that the state |ξ, q〉 is completely different from
the FDPCS constructed in Ref. [10], so it can be named as a new type of
FDPCS. Using the relation (6) and the normal ordering form of the
two-mode vacuum state projector [13,14]

j00〉〈00 j = : e−a†a−b†b:; ð7Þ
where the symbol : : denotes normal ordering, we obtain the
completeness relation of the FDPCS in the whole two-mode Fock
space,

∑
∞

q=0
q + 1ð Þ∫ dΩ

4π
jξ; q〉〈ξ; q j

= ∑
∞

q=0

q + 1
q!

∫π
0dθ sinθ∫2π

0 dϕ : a† cos
θ
2
−b†eiϕ sin

θ
2

� �q

× a cos
θ
2
−be−iϕ sin

θ
2

� �q

expð−a†a−b†bÞ :

= ∑
∞

q=0
:
ða†a + b†bÞq

q!
expð−a†a−b†bÞ : = 1:

ð8Þ

Thus |ξ, q〉 is capable of making up a quantum mechanical
representation. The inner product 〈ξ′, q.|ξ, q〉 is

〈ξ′; q jξ; q〉 = 1 + ςς′
� �q

= 1 + jς j2
� �q=2

1 + jς′ j2
� �q=2

: ð9Þ

From Eq. (9) one can see that 〈ξ′, q.|ξ, q〉 is nonorthogonal, only
when ς=ς′, Eq. (9) reduces to 〈q, ξ.|ξ, q〉=1.

3. Wigner function of the state |ξ, q〉

Wigner function is a very important quasiprobability distribution
function in studying quantum optics and quantum statistics. It gives
the most analogous description of quantum mechanics in the phase
space to classical statistical mechanics of Hamilton systems and is also
a useful measure for studying the nonclassical features of quantum
states. In order to obtain theWigner function of the state |ξ, q〉we first
recall the features of the entangled state |τ〉. In Ref. [13] we have
shown that the entangled state |τ〉 simultaneously obeys the
eigenvector equations

a−b†
� �

jτ〉 = τ jτ〉; a†−b
� �

jτ〉 = τ* jτ〉; ð10Þ

where |τ〉 is the entangled state defined as in two-mode Fock space

jτ〉 = exp −1
2
jτj2 + τa†−τ*b† + a†b†

� �
j00〉;τ = τ1 + iτ2; ð11Þ

The state |τ〉 is the common eigenstate of the operators (Qa−Qb)
and (Pa+Pb), i.e.,

ðQa−QbÞ jτ〉 =
ffiffiffi
2

p
τ1 jτ〉; Pa + Pbð Þ jτ〉 =

ffiffiffi
2

p
τ2 jτ〉; ð12Þ

where

Qa =
a + a†ffiffiffi

2
p ; Pa =

a−a†ffiffiffi
2

p
i
; Qb =

b + b†ffiffiffi
2

p ; Pb =
b−b†ffiffiffi

2
p

i
: ð13Þ

Using Eq. (7) and the IWOP technique we can immediately prove
the completeness relation of the state |τ〉

∫ d2τ
π

jτ〉〈τ j = ∫ d2τ
π

: e− jτ j 2 + a†−bð Þτ + a−b†ð Þτ*−ða†−bÞða−b†Þ : = 1:

ð14Þ

From Eq. (10) we can see the orthonormalized property of the
state |τ〉

hτ jτ′i = πδðτ−τ′Þδðτ*−τ′*Þ≡ πδð2Þðτ−τ′Þ: ð15Þ
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Recalling the generating function formula of the two-variable
Hermite polynomials Hm,n(�, �⁎)

∑
∞

m;n=0

tmt′n

m!n!
Hm;n �; �*ð Þ = exp −tt′ + t� + t′�*

� �
; ð16Þ

where

Hm;n �; �*ð Þ = ∑
minðn;mÞ

l=0

−ð Þln!m!
l! m−lð Þ! n−lð Þ! �

m−l
�*n−l

=
∂m + n

∂tm∂t′n
exp −tt′ + t� + t′�*

� � j
t= t′ =0

;

ð17Þ

which yields

H*m;n �; �*ð Þ = Hn;m �; �*ð Þ: ð18Þ

The entangled state |τ〉 can be expanded as

jτ〉 = e− jτ j 2 =2 ∑
∞

m;n=0

−ð ÞnHm;n τ; τ*ð Þffiffiffiffiffiffiffiffiffiffiffiffi
m!n!

p jm;n〉; ð19Þ

where jm;n〉 = a†mb†nffiffiffiffiffiffiffiffiffiffiffiffi
m!n!

p j0;0〉 is the two-mode number state. Using

Eqs. (6), (18) and (19), we derive the inner product,

hτ jξ; qi = 1 + jς j2
� �−q=2

e− jτ j 2 =2 ∑
q

n=0
Hn;q−n τ; τ*ð Þ ð−ςÞn

ffiffiffiffiffi
q!

p
n!ðq−nÞ! : ð20Þ

In the entangled state |τ〉 representation, the two-mode Wigner
operator is neatly expressed as [17]

Δ σ;γ
� �

= ∫ d2τ
π3 jσ−τ〉〈σ + τ j exp τγ*−τ*γð Þ; ð21Þ

where σ, γ are complex parameters. Using Eq. (21) and the IWOP
technique, we derive

Δ σ;γ
� �

= π−2 : exp −2 a†−α*
� �

a−αð Þ−2 b†−β*
� �

b−βð Þ
h i

:

= Δ α;α*ð Þ⊗Δ β;β*ð Þ;

ð22Þ

where

α = σ + γð Þ= 2; β* = γ−σð Þ= 2; ð23Þ

Using Eqs. (6), (20) and (21), we have the Wigner function of the
state |ξ, q〉

W σ;γ
� �

= 〈ξ; q jΔ σ;γ
� �

jξ; q〉

= ð1 + jς j2Þ−q∫d2τ
π3 〈ξ; q jσ−τ〉〈σ + τ jξ; q〉exp τγ� −τ� γ

� �

= ð1 + jς j2Þ−q ∑
q

m;n=0

ð−1Þm + nς� mςnq!
m!n!ðq−nÞ!ðq−mÞ!∫

d2τ
π3 Hq−m;m σ−τ;σ*−τ*ð Þ

× Hn;q−n σ + τ;σ* + τ*ð Þexpð−jσj2−jτj2 + τγ*−τ*γÞ

= ð1 + jς j2Þ−q ∑
q

m;n=0

ð−1Þm + nς*mςnq!
m!n!ðq−nÞ!ðq−mÞ!

∂q

∂tq−m∂t′m
∂q

∂rn∂r′q−n

×∫ d2τ
π3 exp½−jσj2−jτj2 + τγ� −τ� γ−tt′ + t σ−τð Þ

+ t′ σ−τð Þ*−rr′ + r σ + τð Þ + r′ σ + τð Þ*� j t= t′ = r= r′ =0:

ð24Þ
Further, using the following integration formula

∫ d2z
π

exp ðζjzj2 + ξz + ηz* + fz2 + gz*2Þ

=
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ζ2−4fg
p exp

−ζξη + ξ2g + η2f
ζ2−4fg

" #
;

ð25Þ

with the convergence condition

Re ζF f F gð Þ b 0; Re
ζ2 − 4fg
ζF f F g

 !
b 0; ð26Þ

we have

W σ;γ
� �

=
expð−jγj2−jσj2Þ
π2ð1 + jς j2Þq ∑

q

m;n=0

ð−1Þm + nς*mςnq!
m!n!ðq−nÞ!ðq−mÞ!

∂q

∂tq−m∂t′m
∂q

∂rn∂r′q−n

× exp½−tr′ + σ + γð Þt + σ + γð Þ*r′−rt′ + σ−γð Þr + σ−γð Þ*t′� j t= t′ = r= r′ =0⋅

=
expð−jγj2−jσj2Þ
π2ð1 + jς j2Þq ∑

q

m;n=0

ð−1Þm + nς*mςnq!
m!n!ðq−nÞ!ðq−mÞ!

×Hq−m;q−n γ + σ;γ* + σ*ð ÞHn;m σ−γ;σ*−γ*ð Þ: ð27Þ

which show the function W(σ,γ) is related to the two-mode Hermite
polynomials. Bymeans of simple calculations, we find that theWigner
function W(σ,γ) can also be written as a sum of the mixture part
WM(σ,γ) and the quantum interference part WI(σ,γ), where WM(σ,γ)
and WI(σ,γ) are given as, respectively

WM σ;γ
� �

=
expð−jγj2−jσj2Þ
π2ð1 + jς j2Þq

× ∑
q

m=0
∑
m

k=0
∑
q−m

l=0

−1ð Þl + kq!jςj2mjσ−γj2 m−kð Þjσ + γj2 q−m−lð Þ

l!k!½ðm−kÞ! q−m−lð Þ!�2 ;

ð28Þ

and

WI σ;γ
� �

=
exp −jγj2−jσj2
� �

π2ð1 + jς j2Þq ∑
n N m

∑
m

k=0
∑
q−m

l=0
+ ∑

m N n
∑
n

k=0
∑
q−n

l=0

� �

×
−1ð Þl + kq!ς*mςn

k!l!ðm−kÞ!ðn−kÞ! q−n−lð Þ!ðq−m−lÞ!
× σ−γð Þn−k σ−γð Þ*m−k σ + γð Þq−m−l σ + γð Þ*q−n−l

:

ð29Þ

Now we would like to discuss changes in the Wigner function of
|ξ, q〉 as we vary the parameters q and ς. When q=0 and ς is taken any
value, the shape of the Wigner function W(σ,γ) is a round hill
centered at the origin of phase space, which is the same as that of the
vacuum state. In fact, this result is also obtained from Eq. (6). Since the
function W(σ,γ) is positive and has a Gaussian form, nonclassical
effects cannot be established.When ς=0 and q is taken any value, the
variation of the functionW(σ,γ) is very inerratic. This result causes by
the superposition of two-mode number states in Eq. (6). With
increasing ς the negativity of W(σ,γ) begin to reduce. This feature
indicates that nonclassical effects of the state |ξ, q〉 begin to be
weakened.

In Fig. 1(a)–(c) we plot the Wigner function W(σ,γ) of the state
|ξ, q〉 while for taking ς=0.1 and different values of q(q=2,3 and 4)
for the three three-dimensional figures. From Fig. 1(a)–(c) it is clearly
that, at the center position, there exists a downward main peak when
q is an odd number, however there exists an upward main peak when
q is an even number. With varying q, the number of the downward
minor peaks is equivalent to q–1, however the number of the upward
minor peaks is q. So the quantum interference property is connected
with the two-mode number sum q. The larger the number sum q of
two modes is, the more remarkable the interference property is.



Fig. 1. The Wigner function of the state |ξ, q〉 for ς=0.1 and (a) q=2, (b) q=3, and
(c) q=4.
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Moreover, from the three figures we can also see that the negativity of
W(σ,γ) relies on two-mode number sum q. This means the state |ξ, q〉
exhibits different nonclassical statistical properties when q is taken
different values. The nonclassicality is more pronounced when q is an
odd number for |ξ, q〉. Furthermore, from Fig. 1(a)–(c) it is obviously
that the function W(σ,γ) has downward peaks when q=3 and the
function W(σ,γ) has upward peaks when q=2 or q=4 at the same
position. The results are in general valid for all values of q for the state
|ξ, q〉. The feature indicates that the states |ξ, q〉 for q being odd and the
states |ξ, q〉 for q being even are orthogonal. For fixed value of q, the
peak values of the functionW(σ,γ) are decreased as ς is increased, but
the shape of W(σ,γ) becomes very irregular. This result causes by the
quantum interference partWI(σ, γ) for |ξ, q〉. When ς is large enough,
the multi-peak structure ofW(σ,γ) is the same as the shape ofW(σ,γ)
for ς=0.1, but the peak values become small. In conclusion, the
behavior of the function W(σ,γ) is in a good agreement with the
quantum features of the states |ξ, q〉.

4. Marginal distributions of Wigner function of |ξ, q〉

Now we want to obtain the marginal distributions of Wigner
function W(σ, γ) in Eq. (27). However, we find that it will be very
difficult to evaluate the integration directly using theWigner function
W(σ, γ) owing to the existence of two-variable Hermite polynomial
H2j,2j in Eq. (18). Fortunately, we can use the relationship between the
Wigner operator Δ(σ,γ) and two entangled states. From Eq. (21)
carrying out the integral over d2γ for Δ(σ,γ) yields [17]

∫d2γΔðσ;γÞ = 1
π
jτ〉〈τ jτ=σ ; ð30Þ

using Eq. (20) we have a marginal distribution of the Wigner function
of the state |ξ, q〉 in the σ variable,

∫d2γW σ;γ
� �

=
1
π
j〈τ jξ; q〉j2τ = σ

=
q!e− jσ j 2

π 1 + jς j2	 
q j∑q
n=0

Hn;q−n σ;σ�� � −ςð Þn
n!ðq−nÞ! j2 :

ð31Þ

Performing the integration of Δ(σ,γ) over d2σ leads to another
projection operator, i.e.,

∫d2σΔðσ;γÞ = 1
π
jχ〉〈χ jχ=γ: ð32Þ

where |χ〉 also has complete orthonormalized relation and is the
canonical conjugate state to |τ〉. The concrete expression of |χ〉 is [17]

jχ〉 = exp −1
2
jχj2 + χa† + χ� b†−a†b†

� �
j00〉; χ = χ1 + iχ2; ð33Þ

which is the common eigenstate of (Qa+Qb) and Pa−Pb in two-mode
Fock space, i.e.,

Qa + Qbð Þ jχ〉 =
ffiffiffi
2

p
χ1 jχ〉; Pa−Pbð Þ jχ〉 =

ffiffiffi
2

p
χ2 jχ〉: ð34Þ

Thus we obtain

∫d2σW σ;γð Þ = 1
π
j〈χ jξ; q〉j2χ = γ

=
q!e− jγ j 2

πð1 + jς j2Þq j∑qn=0
Hn;q−n γ;γ�	 
 ςn

n!ðq−nÞ! j2;
ð35Þ
which is another marginal distribution of the Wigner function of |ξ, q〉
in the γ variable. Herewe have used the expansion of |χ〉 in two-mode
Fock space

jχ〉 = e− jχ j 2 =2 ∑
∞

m;n=0

Hm;n χ;χ�ð Þffiffiffiffiffiffiffiffiffiffiffiffi
m!n!

p jm;n〉: ð36Þ

Eq. (31) (or Eq. (35)) is proportional to theprobability forfinding the
two particles, which have total momentum

ffiffiffi
2

p
σ2(or relative momen-

tum
ffiffiffi
2

p
γ2) and simultaneously relative position

ffiffiffi
2

p
σ1(or center-

of-mass position
ffiffiffi
2

p
γ1), in the state |ξ, q〉. Therefore, for an entangled

particle system, the physical meaning of the Wigner function W(σ,γ)
should lie in that itsmarginaldistributionsgive theprobabilityoffinding
the particles in an entangled way in the σ−γ phase space.

5. Tomogram of |ξ, q〉

The use of tomogram in quantum mechanics and quantum optics
provides the possibility of describing a quantum state with a positive
probability distribution. A direct description of quantum states by
means of quantum tomogram for the system observable is interesting
from both the theoretical and experimental points of view. Therefore,

image of Fig.�1


4029X.-G. Meng et al. / Optics Communications 283 (2010) 4025–4031
in recent years the tomogram approach has brought much interest to
physicists. In this section we continue to derive the tomogram of the
state |ξ, q〉, which is defined as [16]

T η;κ1;κ2ð Þ = π ∫
∞

−∞
∫ d2σd2γδ η1−μ1γ1−ν1σ2ð Þδ η2−ν2γ2−μ2σ1ð ÞWðσ;γÞ; ð37Þ

where κ1, κ2, σ and γ are complex numbers, κj=|κj|eiθ=μj+ iνj,
(j=1,2), σ=σ1+ iσ2 and γ=γ1+ iγ2. However, it will be very
difficult to evaluate the integration if we directly substitute Eq. (27)
into Eq. (37). But we can use the following relation between the
Wigner operator and the projection operator of the state |η, κ1, κ2〉

jη; κ1; κ2〉〈η; κ1; κ2 j = π ∫
∞

−∞
∫d2σd2γδ η1−μ1γ1−ν1σ2ð Þδ η2−ν2γ2−μ2σ1ð ÞΔðσ;γÞ: ð38Þ

Thus the tomogram of the state |ξ, q> is

T η; κ1; κ2ð Þ = π ∫
∞

−∞
∫ d2σd2γδ η1−μ1γ1−ν1σ2ð Þδ η2−ν2γ2−μ2σ1ð Þ〈ξ; q jΔ σ;γ

� �
jξ; q〉

= j〈η; κ1; κ2 jξ; q〉j2; ð39Þ

which shows that for tomographic approach there exists the
entangled state |η, κ1, κ2〉, and the Radon transforms of the Wigner
operator are just the entangled state density matrices |η, κ1, κ2〉〈η, κ1,
κ2|. As a result, the tomogram of quantum states can be considered as
the module-square of the states' wave function in this entangled state
representation. This is a new way to derive tomogram of quantum
states. Here the entangled state |η, κ1, κ2〉 is expressed as

jη; κ1;κ2〉 = A exp½B+ Caþ1 +Daþ2 + Eaþ1 a
þ
2−Fa+2

1 − Fa+2
2 j00〉; ð40Þ

where

A =
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijκ1κ2 j

p ; B = − η2
1

2 jκ1 j2
− η2

2

2 jκ2 j2
; C =

η1

κ�1
+

η2

κ�2
; ð41Þ

D = −η1

κ�1
+

η2

κ�2
; E =

1
2

ei2θ1−ei2θ2
� �

; F =
1
4

ei2θ1 + ei2θ2
� �

; ð42Þ

then using Eq. (6) the tomogram amplitude of the state |ξ, q〉 is

hξ; q jη; κ1;κ2i = 1 + jς j2
� �−q=2 ∑

q

n=0

ffiffiffiffiffi
q!

p
ς�n

n!ðq−nÞ! 〈00 ja
q−nbn jη;κ1;κ2〉:

ð43Þ

In order to obtain the tomogram amplitude, we first obtain

〈00 j〈aq−nbn jη; κ1; κ2〉 = A〈00 jaq−nbn∫ d2z1d
2z2

π2 jz1z2〉〈z1z2 j

× exp½B+ Caþ1 +Daþ2 + Eaþ1 a
þ
2 −Fa+2

1 −Fa+2
2 � j00〉

= A∫d2z1d
2z2

π2 zq−n
1 zn2 exp½−jz1j2−jz2j2 + B + Cz�1 + Dz�2

+ Ez�1z
�
2−Fz�21 −Fz�22 �

= A
∂q

∂λq−n∂μn ∫
d2z1d

2z2
π2 expð−jz1j2−jz2j2 + B + λz1 + μz2 + Cz�1

+ Dz�2 + Ez�1z
�
2−Fz�21 −Fz�22 Þ jλ=μ=0;

ð44Þ

using Eq. (25) the right-hand side (r.h.s) of Eq. (44) is converted into

r:h:s of Eq: ð44Þ = A
∂q

∂λq−n∂μn exp ½−Fλ2 + ðC + μEÞλ−Fμ2 + Dμ + B� jλ=μ=0

= AFðq−nÞ=2eBFðq−nÞ=2 ∂n

∂μn Hq−n
C + μE
2
ffiffiffi
F

p
� �

expð−Fμ2 + DμÞ jμ=0

= AeBFðq−nÞ=2∑
n

l=0

n

l

 !
∂l

∂μ l
Hq−n

C + μE
2
ffiffiffi
F

p
� �" #

∂n−l

∂μn−l
expð−Fμ2 + DμÞ

" #
jμ=0

= AeB∑
n

l=0

n

l

 !
q−n

l

 !
l!ElFðq−2lÞ=2Hq−n−l

C

2
ffiffiffi
F

p
� �

Hn−l
D

2
ffiffiffi
F

p
� �

;

ð45Þ
where we have used the generating function formula of Hn(x)

Hn xð Þ = ∂n

∂tn e
2xt−t2 j

t=0;
ð46Þ

and the recurrence relations of Hn(x)

dl

dxl
Hn xð Þ = 2ln!

n−lð Þ!Hn−l xð Þ: ð47Þ

So the tomogram amplitude of the state |ξ, q〉 is

〈ξ; q jη;κ1;κ2〉 =
AeB

ffiffiffiffiffi
q!

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + jς j2	 
qq ∑

q

n=0
∑
n

l=0

ς�nl!ElFðq−2lÞ=2

l!ðn−lÞ!ðq−n−lÞ!

Hq−n−l
C

2
ffiffiffi
F

p
� �

Hn−l
D

2
ffiffiffi
F

p
� �

:

ð48Þ

Using Eq. (39) we can obtain the tomogram of the state |ξ, q〉

T η; κ1;κ2ð Þ = A2e2Bq!
1 + jς j2	 
q j∑qn=0

∑
n

l=0

ς�nl!ElFðq−2lÞ=2

l!ðn−lÞ!ðq−n−lÞ!

Hq−n−l
C

2
ffiffiffi
F

p
� �

Hn−l
D

2
ffiffiffi
F

p
� �j2:

ð49Þ

Therefore, experimentally one can measure the modole-square of
the wave function |ξ, q〉 in the entangled state |η, κ1, κ2〉 represen-
tation, then the tomogram of the state |ξ, q〉 is obtained. Since
quantum state tomogram provides a means of fully reconstructing the
density matrix for the state, the state |ξ, q〉 can be measured based on
the results in Eq. (49).

6. Eigenstate of time-independent two coupled oscillators

In order to simplify the process of proving that the states |ξ, q〉 are
just the eigenstates of the time-independent Hamiltonian of two
coupled oscillators, we first give the wave function of the state |ξ, q〉 in
the un-normalized entangled state 〈τ|| related to 〈τ| by a normalization
factor exp(−|τ|2/2). The inner product of the states 〈τ|| and |ξ, q〉 is,

hτ‖ξ; qi =
ffiffiffiffiffi
q!

p
1 + jς j2	 
q=2 ∑

q

n=0
Hn;q−n τ;τ�

	 
 ð−ςÞn
n!ðq−nÞ! ; ð50Þ

using the integral expression of Hm,n(ζ, ξ) [18],

Hm;n ζ; ξð Þ = −1ð Þneζξ∫ d2z
π

znz�m exp −jzj2 + ζz−ξz�
n o

; ð51Þ

Eq. (50) is rewritten as

hτ‖ξ; qi = −1ð Þq ffiffiffiffiffi
q!

p
e jτ j 2

1 + jς j2	 
q=2 ∑
q

n=0
∫ d2z

π
zq−n ςz�ð Þn
n!ðq−nÞ! exp −z2 + τz−τ�z�

n o

=
−1ð Þqe jτ j 2ffiffiffiffiffi

q!
p

1 + jς j2	 
q=2 ∫ d2z
π

z + ςz�
	 
q exp −z2 + τz−τ�z�

n o
:

ð52Þ

For convenience, making the integration variable transform

z = z′−ςz′�; z + ςz� = 1−jςj2
� �

z′; d2z = 1−jςj2
� �

d2z′ ð53Þ

and setting

κ = τ + ς�τ�; ð54Þ
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then Eq. (52) becomes

hτ‖ξ; qi =
e jτ j 2 1−ς2

� �q + 1

ffiffiffiffiffi
q!

p
1 + jς j2	 
q=2 − ∂

∂κ

� �q

∫ d2z′

π

× expf− 1 + jςj2
� �

jz′j· + ς�z′2 + ςz′�2 + κz′−κ�z′�g:
ð55Þ

Further, using the mathematical integral formula (25) and the
single-variable Hermite polynomial Hm(x)

Hm xð Þ = ex
2

− d
dx

� �m

e−x2
; ð56Þ

we derive wave function of the state |ξ, q〉 in 〈τ||

hτ‖ξ; qi = −1ð Þq=2ςq=2ffiffiffiffiffi
q!

p
1 + jς j2	 
q=2 Hq i

τ�−ςτ
2
ffiffiffi
ς

p
� �

; ð57Þ

which is just proportional to a single-variable ordinary Hermite
polynomial of order q.

Let us consider the Hamiltonian of two coupled oscillators

H = ω1a
†a + ω2b

†b + � a†b + ab†
� �

; ð58Þ

where � is the coupling constant. By virtue of Eq. (10) and the
differential relations

∂
∂τ� 〈τ‖ = 〈τ‖a; − ∂

∂τ 〈τ‖ = 〈τ‖b; ð59Þ

in the 〈τ|| basis we have the corresponding relations

a→
∂
∂τ� ; b→− ∂

∂τ ; a†→− ∂
∂τ + τ�; b†→

∂
∂τ� −τ: ð60Þ

Supposing the state |ξ, q〉 is an eigenstate of H with energy
eigenvalue E,

〈τ‖H jξ; q〉 = E〈τ‖ξ; q〉; ð61Þ

then according to Eq. (60) we derive

〈τ‖H jξ; q〉 = ½ω1 − ∂
∂τ + τ�

� � ∂
∂τ� −ω2

∂
∂τ� −τ
� � ∂

∂τ

+ �
∂2

∂τ2
+

∂2

∂τ�2
−τ�

∂
∂τ−τ

∂
∂τ�

 !�〈τ‖ξ; q〉:
ð62Þ

Substituting Eq. (57) into r.h.s of the Eq. (62) leads to

〈τ‖H jξ; q〉 = Dðς; qÞ½ðiω1
τ�

2
ffiffiffi
ς

p −iω2
τ
ffiffiffi
ς

p
2

+ i�GÞH′
qðλÞ−

K
4
H

′′

qðλÞ�; ð63Þ

where

G =
τ�

ffiffiffi
ς

p
2

− τ
2
ffiffiffi
ς

p ; K = ðω1 + ω2Þ + �
1
ς

+ ς
� �

; ð64Þ

Dðς; qÞ = −1ð Þq=2ςq=2ffiffiffiffiffi
q!

p
1 + jς j2	 
q=2 ; λ = i

τ�−ςτ
2
ffiffiffi
ς

p : ð65Þ

Further, using Eq. (61) and the property of Hermite polynomials,

2λH′
mðλÞ−2mHmðλÞ = H ′′

mðλÞ; ð66Þ
we obtain

EHqðλÞ = iω1
τ�

2
ffiffiffi
ς

p −iω2
τ
ffiffiffi
ς

p
2

+ i�G−Kλ
2

� �
H′

qðλÞ +
Kq
2

HqðλÞ: ð67Þ

Since

H′
qðλÞ = 2qHq−1ðλÞ ð68Þ

and the Hermite polynomials of different orders are mutual
orthogonal, so the coefficient of Hq′(λ) is taken as zero, i.e.,

iω1
τ�

2
ffiffiffi
ς

p −iω2
τ
ffiffiffi
ς

p
2

+ i�G−Kλ
2

= 0: ð69Þ

Eq. (69) is satisfied for any value of τ and τ⁎, so we have

�ς2 + ðω1−ω2Þς−� = 0; ð70Þ

its solutions are

ςF =
ðω2−ω1ÞF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω1−ω2Þ2 + 4�2

q
2�

: ð71Þ

then the states |ς±〉, expressed by Eq. (6), are the energy eigenstates
of H with the eigenvalues

EF =
q
2

ðω1 + ω2Þ + �
1
ςF

+ ςF

� �� �
: ð72Þ

Therefore, we find that a set of energy eigenstates of time-
independent two coupled oscillators are classified as the states |ξ, q〉 in
terms of the values of q in the SU(2) Lie algebra realization, where is
determined by the dynamics parameter in the Hamiltonian. In
particular, when ω1=ω2=ω, thus the Hamiltonian H describes two
coupled isotropic harmonic oscillators, from Eqs. (71) and (72) we
know ς±=±1, E±=(ω± �)q. Further, taking q=1, from Eq. (6) we
know the eigenstate of H is

jξ; q〉F =
1ffiffiffi
2

p ðj1;0〉F j0;1〉Þ: ð73Þ

From Eq. (8) we see that all values of are allowed because the
states |ξ, q〉 shall form an over complete set. However, from Eqs. (71)
and (72) we find that, for the definite Hamiltonian, only two very
specific eigenstates corresponding to two specific values of are
selected.

In summary, we have introduced a new type of FDPCS as the two-
mode bosonic realizations of the SU(2) Lie groups [19,20]. Using the
IWOP technique and the entangled state |τ〉 representation of Wigner
operator, we have obtained the Wigner function W(σ,γ) of the state
|ξ, q〉 and discussed its nonclasscial properties based on the negativity
of W(σ,γ). By virtue of the Radon transform between the Wigner
operator and the projection operator of the entangled state |η, κ1, κ2〉
the tomogram of |ξ, q〉 is computed. Through our discussions we have
noticed that the entangled state representations provide us with a
convenient and direct approach for the calculation of Wigner function
and tomogram of the two-mode correlated quantum state. Finally,
using wave function of |ξ, q〉 in 〈τ| representation, it also proved that
the states |ξ, q〉 are just a set of energy eigenstates of two coupled
oscillators. In doing so, we wish that these results in this work may
enrich PCS theory in quantum optics and be further used in the future
works.
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