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Exact solutions for the multidimensional Schrödinger map equation (SM for short) on
hyperbolic 2-space H2 cone are obtained. Consequently, we show the non-traveling wave
solution on H2 is a finite energy solution on the finite spacial domain. The question of
whether a solution of SM can develop a finite time singularity on H2 with smooth initial
data is not clear. Our result show that blowup can really happen on this initial data. In
addition, some exact global smooth solutions are constructed.
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1. Introduction

The Landau–Lifshitz (LL) equation is a well-known equation, which is one of the

most important nonlinear equations in physics. LL bears a fundamental role in the

understanding of non-equilibrium magnetism, just as the Navier–Stokes equation

does in that of fluid dynamics. The fundamental form of LL is described with the

help of the spin vector s = (s1, s2, s3) restricted to live on the unit sphere S2:

s21 + s22 + s23 = 1

while obeying the motion equation

st = s×∆Rns , (1)

where × denotes the cross-product in the Euclidean 3-space R3. From the differ-

ential geometry point of view, this equation can be regarded as a special case of

1350043-1

M
od

. P
hy

s.
 L

et
t. 

A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 R

U
T

G
E

R
S 

U
N

IV
E

R
SI

T
Y

 o
n 

01
/2

3/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S0217732313500430
mailto:zhonghong737@163.com


March 26, 2013 14:12 WSPC/146-MPLA S0217732313500430 2–13

P. Zhong, S. Wang & M. Zeng

Schrödinger map equation (SM) from spacetime into a Kähler manifold M with

metric h and complex structure J satisfying:

ut = J
∑

l

Dl∂
lu , (2)

where D denotes the covariant derivative on u−1T M. Equations (1) and (2) are

equivalent when M = S2.

If the target manifold is chosen to be the hyperbolic space, H2 = {(s1, s2, s3) ∈
R2+1 : |s|2 = s21 + s22 − s23 = −1, s3 > 0}. Equation (2) turns into the following

equation which can be regarded as the dual Landau–Lifshitz (DLL) equation1,10,11

because it is similar with (1) in the form:

st = s ×̇∆Rns , (3)

where ×̇ denotes the pseudo-cross product in R2+1, a ×̇b = (a× b) diag{1, 1,−1}.
Usually, the formal equivalence of Eq. (3), to a nonlinear Schrödinger equation

can be seen by applying the stereographic projection from H2 to C∞, the extended

complex plane:

u =
s1 + is2

1− s3
, iut = −∆u− 2ū

1− |u|2
n
∑

j=1

(∂ju)
2 . (4)

In this paper, we mainly discuss constructing the exact solution of (3) (or (4))

which we briefly note it as SM. SMs are the natural Schrödinger equation when the

target space is a complex manifold (such as the sphere or hyperbolic space). So, we

can regard SM as a general version of Schrödinger equations. We mention that a

geometric derivative nonlinear Schrödinger equation that has been intensively stud-

ied is SM. On the target S2, it is also known that (1) is equivalent to integrable

cubic Schrödinger equation in space dimension n = 1 (see, e.g., Ref. 2). However,

Eq. (1) is not equivalent to a standard Schrödinger equation without first-order

derivative in higher dimensions (n ≥ 2). As the SM is nonintegrable3 in multidi-

mensional case, we can only find out some particular exact solutions7,9 by various

direct methods such as Hirota bilinear method and auxiliary function method.4–6

It is natural to expect that these similar situations will arise for the H2 case. In

fact, the bad derivatives and the fraction part of (4) are hard to deal with. These

two reasons make it hard to search for the exact solution of (3) or (4).

An open question, one can ask regarding (1) (or (3)) is the following. Given

smooth initial data as in (1) (or (3)), does a smooth solution exist for all time? This

question has been extensively studied in the past years. Local existence for smooth

initial data that can be found, goes back to Refs. 16 and 17. The global existence

and scattering was proved for general H1, small initial data case was obtained by

Bejenaru, Kenig and Tataru.18 The global existence for H2 data was established

by Gustafson and Koo19 in the radial case. While it is known that weak solutions

are non-unique (global or not) in general20 for LL, exactly speaking, a solution for

PDE may blow up in finite time with respect to one norm, yet be continuable as
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a solution in an appropriately weakened sense. An inquiry into the property of the

solution is a natural start to the problem of non-uniqueness as well as the broader

issues regarding the validity of the model and selection criteria for correct solutions.

As we know, a standard existence and continuation theorem asserts that finite time

blowup is equivalent to global nonexistence. So, we can study the singularity topic

about the solution for a better understanding about the non-uniqueness of the weak

solution. Furthermore, the interpretation of blowup theorems in physical problems

often poses difficulties; blowup may indicate either a real phenomenon or a failure

of the physical model. In fact, in magnetically ordered materials, non-equilibrium

magnetism shows a large variety of localized nonlinear excitations. The study of

blowup phenomena of LL will be useful for better understanding about the self-

focusing of magnetization evolution.

Recently, Merle, Raphael and Rodnianski12 proved the existence of 1-equivariant

blowup solutions and presented the blowup rate. For higher-dimensional cases,

i.e. n ≥ 2, SM is a critical (n = 2) (or supper-critical (n > 2)) equation. So,

we expect that the solution of SM may develop finite-time singularities for some

special setting of the initial data about the solution. For the S2 case, we recommend

Refs. 12 and 13 for some results about the blowup topic about SM or LL. Although

the blowup properties are confirmed under some special norm of the solutions, we

have to mention that whether smooth solutions always exist is still unknown. How-

ever, the blowup property of the solution on H2 is also not clear. In fact, we have

never seen any blowup results about this case as far as we know. In this paper, we

provide some results about the blowup properties of the SM (or DLL).

Since, now the motion takes place on pseudo-sphere H2, it is convenient to

introduce the pseudo-spherical coordinates by analogy with spherical, e.g.

s1 = sinh θ(t, x) cosϕ(t, x) , s2 = sinh θ(t, x) sinϕ(t, x) , s3 = cosh θ(t, x) .

Furthermore, if we endowed with the metric 4
1−|u|2 |du|2 about the complex plane

C in which u ∈ C, we can build the connection between (3) and (4). Also, by analogy

with spherical case we can use the stereographic projection: from pseudo-sphere to

hyperbolic plane. Exactly, we have

(s1, s2, s3) =

(

±2Re(u)

1− |u|2 ,
±2 Im(u)

1− |u|2 ,
1 + |u|2
1− |u|2

)

. (5)

So according to (4) and (5), one can do the exact equivalent transform between

the exact solutions of (3) and (4). In fact, this fact can be seen in Sec. 3.

The paper is organized as follows. In Sec. 2, the exact blowup solution on the

cone about DLL is obtained under the radially symmetrical coordinates. In Sec. 3,

some exact solutions which cover traveling wave and non-traveling wave solutions

about the SM on H2 manifold will be presented. If the coefficients of the solutions

are suitably chosen, these exact solutions can be a finite time blowup solution.
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2. Blowup Solution on the Cone

In this section, we provide an exact blowup solution of (3) under the condition that

|V | is not a constant. We construct the exact solution of the following LL

st = s ×̇
(

srr +
n− 1

r
sr

)

. (6)

Inspired by Refs. 8 and 14, we will find the explicit solution of (6) in the form of



















s1(t, r) = A cos(M(t, r))F (r) ,

s2(t, r) = A sin(M(t, r))F (r) ,

s3(r) = BF (r) ,

(7)

where M(t, r) and F (r) are functions to be determined, A and B are constants.

Substituting (7) into (6), we get

AB(F (r))2 sin(M(t, r))

(

∂

∂r
M(t, r)

)2

−AB(F (r))2 cos(M(t, r))
∂2

∂r2
M(t, r)

− 2ABF (r) cos(M(t, r))
∂

∂r
M(t, r)

d

dr
F (r) −AB

n

r
(F (r))2

× cos(M(t, r))
∂

∂r
M(t, r) +AB

1

r
(F (r))2 cos(M(t, r))

∂

∂r
M(t, r)

+A sin(M(t, r))

(

∂

∂t
M(t, r)

)

F (r) = 0 , (8)

−AB(F (r))2 cos(M(t, r))

(

∂

∂r
M(t, r)

)2

−AB(F (r))2 sin(M(t, r))
∂2

∂r2
M(t, r)

− 2ABF (r) sin(M(t, r))
∂

∂r
M(t, r)

d

dr
F (r) −AB

n

r
(F (r))2

× sin(M(t, r))
∂

∂r
M(t, r) +AB

1

r
(F (r))2 sin(M(t, r))

∂

∂r
M(t, r)

−A cos(M(t, r))

(

∂

∂t
M(t, r)

)

F (r) = 0 , (9)

−A2(F (r))2
∂2

∂r2
M(t, r)− 2A2F (r)

∂

∂r
M(t, r)

d

dr
F (r)

− n

r
A2(F (r))2

∂

∂r
M(t, r) +

1

r
A2(F (r))2

∂

∂r
M(t, r) = 0 . (10)
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Furthermore, if we insert (10) into (8) and (9), we have










































r

(

∂2

∂r2
M(t, r))F (r) + 2r

(

∂

∂r
M(t, r)

)

d

dr
F (r) + F (r)

(

∂

∂r
M(t, r)

)

n

− F (r)
∂

∂r
M(t, r) = 0 ,

B

(

∂

∂r
M(t, r)

)2

F (r) +
∂

∂t
M(t, r) = 0 .

(11)

If we settle down on the following ansatzs

M(t, r) =
G(r)

t− T
+ C , (12)

where G(r) is the function in terms of r which is to be determined T and C are

constants.

Substituting (12) into (11), we have










































r

(

d2

dr2
G(r))F (r) + 2r

(

d

dr
G(r)

)

d

dr
F (r) + F (r)

(

d

dr
G(r)

)

n

− F (r)
d

dr
G(r) = 0 ,

B

(

d

dr
G(r)

)2

F (r) −G(r) = 0 .

(13)

Solving the above ordinary differential equations, we find out the exact solution

of (13) as follows






















G(r) =
(2C2 + 3C1r

2/3+n/3 + C2n)
3

27(n+ 2)3
,

F (r) =
3(n+ 2)r2/3−2n/3

(2C2 + 3C1r2/3+n/3 + C2n)BC2
1

,

(14)

where γ, C1, C2 are any constants.

According to the above deduction, we have

Theorem 1. Let T > 0, C1, C2, C are any constants, then





s1
s2
s3





















A cos
(

(2C2+3C1r
2/3+n/3+C2n)

3

27(n+2)3(t−T ) + C
)

3(n+2)r2/3−2n/3

(2C2+3C1r2/3+n/3+C2n)BC2
1

A sin
(

(2C2+3C1r
2/3+n/3+C2n)

3

27(n+2)3(t−T ) + C
)

3(n+2)r2/3−2n/3

(2C2+3C1r2/3+n/3+C2n)BC2
1

3(n+2)r2/3−2n/3

(2C2+3C1r2/3+n/3+C2n)C2
1

















(15)

is a blowup solution of (6).
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Proof. It is not difficult to verify the blowup property of the solution. When

r0 ≤ r ≤ r1, T > 0, we can verify directly

|sr|2 =

(

d

dr
F (r)

)2

(A2 +B2) +
A2( d

drG(r))2(F (r))2

(−t+ T )2
,

which is not bounded as t → T .

Remark 1.

(i) For the solution (15), a calculation shows

|s(t, r)|2 =
9(n+ 2)2r4/3−4n/3(A2 +B2)

(2C2 + 3C1r2/3+n/3 + C2n)2B2C4
1

,

which is independent of t, so
∫ r1
r0

r|s(t, r)|2 dr (0 < r0 ≤ r1 < ∞) is a conserva-

tion quantity.

(ii) Since the solution has no bound as r → 0 at the initial time t = 0, it does not

belong to finite energy solution.

3. Global Solution and Blowup Solution about SM

In Sec. 2, the blowup solution on the cone is proposed. In this section, we investigate

the other ansatz which live on the H2. In the following parts, some new traveling

wave solutions and some new non-traveling wave solutions will be presented. We

will see that non-traveling wave solutions can develop a finite time blowup behavior

if the coefficients are suitably selected.

3.1. Traveling wave solutions about the SM

Let

u = ei(
∑n

j=1 pjxj+wt+ξ1)c0 , (16)

where pj , w, ξ1, c0 are constants.

According to (16), we get the exact smooth solution about (4)

u = ei(
∑n

j=1 pjxj+wt+ξ1)c0 , (17)

where w =
∑n

j=1 p
2
i
c20+1

c20−1
.

Employing (5), the exact solution of (3) is





s1
s2
s3



 =













±
√

−1 + s20 cos
(

∑n
j=1 pjxj + wt + ξ1

)

±
√

−1 + s20 sin
(

∑n
j=1 pjxj + wt+ ξ1

)

s0













, (18)

where s0 =
1+c20
1−c20

, w = −∑n
j=1 p

2
i s0 (pj , w, ξ1, c0 are constants).
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We can find out some other traveling wave solutions in the Euclid coordinates.

Here, we consider the two-dimensional case on (x, y) coordinates. Let


















s1(t, x, y) = cos(ωt+ ζ) sin(θ(x, y)) ,

s2(t, x, y) = sin(ωt+ ζ) sin(θ(x, y)) ,

s3(x, y) = cos(θ(x, y)) ,

(19)

where w, ζ are constants.

According to (19), (3) can be transformed into

∂2θ(x, y)

∂x2
+

∂2θ(x, y)

∂y2
= ω sinh θ(x, y) . (20)

Equation (20) can be regarded as a Sinh-Gordon equation. Conveniently, we

propose two different kinds of exact solutions of (20) in the following content.

The traveling wave solutions is:

θ(x, y) = ±2 ln

[

tan
ω(C1x+ C2y + C3)

2(ω(C2
1 + C2

2 ))
1/2

]

, (21)

θ(x, y) = ±4 arctan

[

exp
ω(C1x+ C2y + C3)

(ω(C2
1 + C2

2 ))
1/2

]

, (22)

where C1, C2 and C3 are arbitrary constants.

We can also find out some functional separable solutions. Similar to the deduc-

tion process of Ref. 15, we can obtain the functional separable solutions of (20).

Assume

θ(x, y) = 4 arctanh[f(ξ1)g(ξ2)] , (23)

where ξ1 = ax+ b, ξ2 = cy + d, functions f = f(ξ1) and g = g(ξ2) are determined

by the first-order autonomous Ordinary Differential Equations as follows

(f ′
ξ1)

2 = Af4 +Bf2 + C , (g′ξ2)
2 = −Cg4 + (1 −B)g2 −A , (24)

where A, B and C are arbitrary constants.

We omit some details about the deduction and present some exact solutions of

(20). If A 6= 0, we have the following Jacobi elliptic function solution of (24).

f =

√
2C sn

(

1
2

√

−2B − 2
√
B2 − 4CAξ1 + C1,

√
2
√

−(2CA−B2−B
√
B2−4CA)CA

2CA−B2−B
√
B2−4CA

)

√

−C(B +
√
B2 − 4CA)

,

(25)

g =

√
2A sn

(

1
2

√

−2 + 2B + 2
√
B2 − 2B + 1 + 4CAξ2 + C2,

√
−2C3CA

C3

)

√

A(−1 +B +
√
B2 − 2B + 1 + 4CA)

, (26)
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where C1 and C2 are constants,

C3 = 2CA− 2B +B2 +B
√

B2 − 2B + 1 + 4CA+ 1−
√

B2 − 2B + 1 + 4CA .

If A = 0, then we obtain

f = −
(

Ce2C1
√
B − e2ξ1

√
B
)

2
√
Be

√
B(C1+ξ1)

, (27)

g = − 2eG(C2+ξ2)(1−B)(1 − C3)

−4Ce2ξ2G + 4BCe2ξ2G − e2C2G
, (28)

where C3 =
√
1−B, C1 and C2 are constants.

In fact, according to the deduction process above, we have proven the following

theorem.

Theorem 2.

(i) Equations (18) and (19) (combined with (21) and (22)) are exact traveling wave

solutions about (3).

(ii) Equation (19) (combined with (23), (25)–(26) and (27)–(28)) are exact solutions

about (3).

3.2. Non-traveling wave solution about the SM

Here, we choose another ansatz in our calculation for finding out the solution of

SME. In fact, the ansatz which in a radial coordinates situation imply that our

solution will be a non-traveling wave solution. Our ansatz for (4) is in the following

form:

u(r, t) = ei(f(t)r
a)g(t) , (29)

where r =
(
∑n

j=1 x
2
j

)1/2
, a is a constant, f(t) and g(t) are the functions to be

determined.

In the radial coordinates, (4) can be changed into

iut = −urr −
n− 1

r
ur −

2ū

1− |u|2u
2
r . (30)

Substituting (29) into (30), then separating the real part and imaginary part of

it, we have

ra+2 d

dt
f(t)− ra+2

(

d

dt
f(t)

)

(g(t))2 + (f(t))2r2aa2

+ (g(t))2(f(t))2r2aa2 = 0 , (31)

(

d

dt
g(t)

)

r2 + f(t)raa2g(t)− 2f(t)raag(t) + f(t)raag(t)n = 0 . (32)
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If n = a = 2, we can deduce the exact solutions of (31) and (32) as follows

f(t) = ± C1

4
√

C2
2 + 2C2C1t+ C2

1 t
2 − 4

,

g(t) =
1

2
C2 +

1

2
C1t∓

1

2

√

C2
2 + 2C2C1t+ C2

1 t
2 − 4 ,

where C1 and C2 are arbitrary constants.

Accordingly, the exact solution of (4) is

u(t, r) = −1

2
e
± iC1r2

4

√
C2
2+2C2C1t+C2

1t2−4

(

±
√

C2
2 + 2C2C1t+ C2

1 t
2 − 4− C2 − C1t

)

.

(33)

Employing (5), the exact solution of (3) is





s1
s2
s3



 =





















cos

(

C1r
2 sign(C1t+C2)

4
√

−1+C2
1 t

2+2C1C2t+C2
2

− C3

)

1√
−1+C2

1 t
2+2C1C2t+C2

2

− sin

(

C1r
2 sign(C1t+C2)

4
√

−1+C2
1 t

2+2C1C2t+C2
2

− C3

)

1√
−1+C2

1 t
2+2C1C2t+C2

2

− (C1t+C2)sign(C1t+C2)√
−1+C2

1 t
2+2C1C2t+C2

2





















, (34)

where C1, C2 and C3 are arbitrary constants.

One easily sees that (34) satisfies (3). Indeed, noticing that ∆s3 = 0, it suffices

to show









∂ts1

∂ts2

∂ts3









=









−s3∆s2

s3∆s1

−s1∆s2 + s2∆s1









. (35)

One can easily check (35) using MATHEMATICA or MAPLE. So (34) is a

solution of (3).

In fact, we can construct solution (34) in another way. Let n = 2, we choose the

following form of the solution



















s1(t, r) = cos(m(t, r))a(t) ,

s2(t, r) = sin(m(t, r))a(t) ,

s3(t) = −
√

1 + (a(t))2 ,

(36)

where m(t, r) and a(t) are functions to be determined.
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Substituting (36) into (3), similar to the deduction process of Sec. 2, we find

out the equations for m(t, r) and a(t) as follows







































a(t)r
√

1 + (a(t))2
∂2

∂r2
m(t, r) + a(t)

(

∂

∂r
m(t, r)

)

√

1 + (a(t))2

−
(

d

dt
a(t)

)

r = 0 ,

√

1 + (a(t))2
(

∂

∂r
m(t, r)

)2

− ∂

∂t
m(t, r) = 0 .

(37)

Accordingly, we find out the solution about (37) as follows



















m(t, r) = − C1r
2 sign(C1t+ C2)

4
√

−1 + C2
1 t

2 + 2C1C2t+ C2
2

+ C3 ,

a(t) =
1

√

−1 + C2
1 t

2 + 2C1C2t+ C2
2

,

(38)

where C1, C2, C3 are any constants. According to the above deduction, we find out

the exact solution of (3):

Theorem 3. Equation (33) is a solution of (4); (34) is a solution of (3).

Remark 2.

(i) If the coefficients of (34) are suitably selected, (34) can be a blowup solution.

We can calculate directly that

|sr|2 =
C2

1r
2

4(C2 + 1 + C1t)2(C2 − 1 + C1t)2
. (39)

In fact, if C2
2 > 1 and ± 1

C1
− C2

C1
> 0, (39) is not bounded as t → ± 1

C1
− C2

C1
.

According to (39), obviously, if C2
2 = 1, (34) blows up at t = 0.

It will be easy to find out the suitable coefficients which lead to a blowup

solution of (4). For example, if C1 = −1, C2 = 2 and C3 = 0, exactly we have

the following blowup (blow up at t = 1) solution





cos
(

r2

4
√
3+t2−4t

)

√
3 + t2 − 4t

·
sin
(

r2

4
√
3+t2−4t

)

√
3 + t2 − 4t

· t− 2√
3 + t2 − 4t



 .

(ii) Equation (34) can be a global solution. If C2
2 > 1 and ± 1

C1
− C2

C1
< 0, (39) is

bounded as for any t > 0.

(iii) We mention that (−s1, s2,−s3) is also a solution of (4). Since the solution has

no decay as r → ∞, it does not belong to any Sobolev spaces.
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Similar to the deduction of Theorem 3, we can extent the Theorem 3 to the

three-dimensional case. We seek the solution to (4) with the form


















s1(t, x1, x2, x3) = cos(m(t, x1, x2, x3))h(t) ,

s2(t, x1, x2, x3) = sin(m(t, x1, x2, x3))h(t) ,

s3(t) = −
√

1 + (h(t))2 ,

(40)

where m(t, x1, x2, x3) and h(t) are functions to be determined.

Substituting (40) into (4), we get































































√

1 + (h(t))2h(t)
∂2

∂x2
1

m(t, x1, x2, x3) +
√

1 + (h(t))2h(t)
∂2

∂x2
2

m(t, x1, x2, x3)

+
√

1 + (h(t))2h(t)
∂2

∂x2
3

m(t, x1, x2, x3)−
d

dt
h(t) = 0 ,

√

1 + (h(t))2
(

∂

∂x1
m(t, x1, x2, x3)

)2

+
√

1 + (h(t))2
(

∂

∂x2
m(t, x1, x2, x3)

)2

+
√

1 + (h(t))2
(

∂

∂x3
m(t, x1, x2, x3)

)2

− ∂

∂t
m(t, x, y, z) = 0 .

(41)

Furthermore, we look for the functional separable solution of (41). Let

m(t, x1, x2, x3) = p(t)q(x1, x2, x3), we have














































































√

1 + (h(t))2(p(t))2 +
d

dt
p(t) = 0 ,

√

1 + (h(t))2h(t)p(t) +
d

dt
p(t) = 0 ,

∂2

∂x2
1

q(x1, x2, x3) +
∂2

∂x2
2

q(x1, x2, x3) +
∂2

∂x2
3

q(x1, x2, x3) + 1 = 0 ,

(

∂

∂x1
q(x1, x2, x3)

)2

+

(

∂

∂x2
q(x1, x2, x3)

)2

+

(

∂

∂x3
q(x1, x2, x3)

)2

+ q(x1, x2, x3) = 0 .

(42)

Solving (42), exactly we have






















p(t) = ± 1
√

−1 + t2 − 2tC1 + C2
1

, h(t) = p(t) ,

q(x, y, z) = − 1

12
((x1 − x2)

2 + (x1 − x3)
2 + (x2 − x3)

2) ,

(43)

where C1 is a constant.
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According to (40) and (43), we find out the exact solution of (4) as follows:

Theorem 4. Let C2
1 ≥ 1, then





s1
s2
s3



 =

























cos

(

±x2
1 − x1x2 + x2

2 − x1x3 + x2
3 − x2x3

6
√

−1 + t2 − 2tC1 + C2
1

)

1
√

−1 + t2 − 2tC1 + C2
1

sin

(

±x2
1 − x1x2 + x2

2 − x1x3 + x2
3 − x2x3

6
√

−1 + t2 − 2tC1 + C2
1

)

1
√

−1 + t2 − 2tC1 + C2
1

(C1 − t)sign(t− C1)
√

−1 + t2 − 2tC1 + C2
1

,

























is a solution of (4).

Remark 3. Following the above deduction, we can construct the exact solu-

tion of (4) for any spacial dimension n. In fact, let x = (x1, x2, . . . , xn), K =

(K1,K2, . . . ,Kn) and |K| = 1, then s(x1, x2, . . . , xn, t) = v(x1, x2, y, t) (v is a solu-

tion of (4) and y = K · x) is the n-dimensional solution of (4).

4. Concluding Remarks

In the case when the curvature of the target manifold is S2, under the radially

symmetrical coordinates, the evolution of SM is given by the equation

iut = −urr −
1

r
ur +

2ū

1 + |u|2u
2
r . (44)

In fact, a global solution of (3) was first presented in Ref. 7 as follows

u(t, r) = e
i br2

4
√

1+b2(t−T )2
(
√

1 + b2(t− T )2 − b(t− T )
)

, (45)

where r =
(
∑2

j=1 x
2
j

)1/2
, T > 0 and b is a constant.

We remove the north pole from this sphere and apply the adverse stereographic

projection

(s1, s2, s3) =

(

±2Re(u)

1 + |u|2 ,
±2 Im(u)

1 + |u|2 ,
1− |u|2
1 + |u|2

)

∈ S2\N , (46)

then (44) transforms to an equivalent LL

st = s×
(

srr +
1

r
sr

)

. (47)

Employing (46), the exact solution of (47) is

(s1, s2, s3) =






±
cos br2

4
√

1+b2(t−T )2
√

1 + b2(t− T )2
,±

sin br2

4
√

1+b2(t−T )2
√

1 + b2(t− T )2
,

b(t− T )
√

1 + b2(t− T )2






. (48)
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We can see that (45) and (48) are the global smooth solutions of (44) and (47),

respectively. However, from the analysis of Sec. 3, we see that the solutions of SM

and DLL can develop a finite time blowup behavior when the target manifold are

replaced by H2. It reveals an important factor that the geometry of the target

manifold should play an important role in the behavior of solutions since it affects

the nature of the nonlinear term in the SM.

From Sec. 3, it will be clear that given smooth initial data as in SM, a smooth

solution can develop a finite time singular behavior. Furthermore, on the finite

spacial domain, this blowup solution is a finite energy solution in its initial time.

However, the energy of the cone solution proposed in Sec. 2 will not be a convergent

one in the initial time.
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