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method for two-dimensional potential problems∗
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In this paper, a meshfree boundary integral equation (BIE) method, called the moving Kriging interpolation-

based boundary node method (MKIBNM), is developed for solving two-dimensional potential problems. This study

combines the BIE method with the moving Kriging interpolation to present a boundary-type meshfree method, and

the corresponding formulae of the MKIBNM are derived. In the present method, the moving Kriging interpolation is

applied instead of the traditional moving least-square approximation to overcome Kronecker’s delta property, then the

boundary conditions can be imposed directly and easily. To verify the accuracy and stability of the present formulation,

three selected numerical examples are presented to demonstrate the efficiency of MKIBNM numerically.
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1. Introduction

In recent years, the meshfree (or meshless)
method, which has achieved remarkable progress in
computational mechanics and related fields, has re-
ceived more and more attention due to its flexibil-
ity and good convergence rate.[1,2] Beyond the tra-
ditional finite element method (FEM), mesh is not
necessary in the meshfree method, then the large de-
formation, fracture mechanics with crack growth and
explosion problems can be simulated with the method
without re-meshing technique. A group of meshfree
methods have been proposed in recent years and ap-
plied in engineering computation. Nayroles et al. have
developed an important step towards the meshfree
method, called the diffuse element method (DEM).[3]

Belytschko et al. have refined and modified the
DEM to formulate the so-called element-free Garlerkin
(EFG) method.[4] Atluri et al. have proposed a mesh-
less local Petrov–Galerkin (MLPG) method.[5] There
are also other meshfree methods which have been de-
veloped and applied in engineering computation, such
as the point interpolation method,[6] the complex vari-

able meshless method,[7,8] reproducing kernel particle
method with complex variables,[9,10] hybrid boundary
node method,[11] the boundary element-free method
(BEFM).[12−17]

The boundary element method (BEM) is a nu-
merical technique based on boundary integral equa-
tion, which has been developed since the middle of the
last century. A key feature of the BEM is that it only
requires discretization of the surface rather than vol-
ume. In other words, only the two-dimensional (2D)
bounding surface of a three-dimensional (3D) body
needs to be discretized. Combining the moving least-
square (MLS) approximation[18] with boundary inte-
gral equation (BIE) method, Mukherjee et al. have
presented a meshfree method of the BIE to solve po-
tential problems and linear elasticity problems, called
the boundary node method (BNM).[19,20] Atluri et al.
have developed another important meshfree method,
called the local boundary integral equation (LBIE)
method to solve the linear and nonlinear boundary
value problems.[21,22] The BNM does not require ele-
ment or mesh for the interpolation of boundary vari-
ables and possesses the advantage of dimensionality
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reduction. However, the boundary conditions can-
not be satisfied accurately because the shape func-
tions based on MLS approximation lack Kronecker’s
delta property. The LBIE method can easily solve
a complicated boundary value problem, but the local
foundational solution is more complicated than that
the conventional BEM uses.

The Kriging interpolation is a form of general-
ized linear regression for the formulation of an opti-
mal estimator in a minimum mean square error sense.
Gu[23] has first introduced the moving Kriging inter-
polation and has successfully demonstrated the effec-
tiveness of the moving Kriging interpolation functions
in solving one-dimensional (1D) steady-state heat con-
duction problems. Combining the BIE method with
the moving Kriging interpolation, the moving Krig-
ing interpolation-based boundary node method (MK-
IBNM) is proposed in this paper. The moving Krig-
ing interpolation based on a group of arbitrarily dis-
tributed points on the boundary of the problem do-
main is adopted to construct the shape functions.[23,24]

Because the shape functions possess Kronecker’s delta
property, the MKIBNM overcomes the shortcomings
of BNM. The boundary conditions can be imposed as
the conventional BEM.

An implementation of the MKIBNM has been
presented for 2D potential problems in the rest of this
paper. Several numerical examples are presented to
demonstrate the method.

2. Moving Kriging

2.1.Moving Kriging interpolation

The moving Kriging interpolation in the MK-
IBNM are defined on the 1D bounding surface of 2D
domain Ω , using a set of discrete nodes on Γ . As in
the conventional BEM formulation, the moving Krig-
ing interpolation for u and q can be constructed inde-
pendently.

Consider a sub-domain Γx ⊆ Γ , the neighbour-
hood of a point s, in which the total number of the
nodes is n. The Kriging interpolation for u and its
normal derivative q ≡ ∂u/∂n on Γ are defined as fol-
lows:

uh(s) = [pT(s)Sα + rT(s)Sβ ]U , (1)

qh(s) = [pT(s)Sα + rT(s)Sβ ]Q, (2)

where s is a curvilinear coordinate (here the arc
length) on Γ . Unlike Cartesian coordinates, in the
present work, s is chosen to be the local coordinate of
a boundary point with respect to the evaluation point.
For example, the value of s for an evaluation point
is always zero, points lying ‘ahead’ of the evaluation
point have positive values of s while those ‘behind’ it
have the negative values of s. pj(s) = [ 1 s · · · sm−1 ]
are monomial basis function in s. Matrices Sα and Sβ

are
Sα = (P TR−1P )−1P TR−1, (3)

and
Sβ = R−1(I − PSα), (4)

where I is a unit matrix.
The n×m matrix P that has evaluated function

values at the given set of nodes is defined as

P =




p(s1)
...

p(sn)


 =




p1(s1) p2(s1) · · · pm(s1)

p1(s2) p2(s2) · · · pm(s2)
...

...
. . .

...

p1(sn) p2(sn) · · · pm(sn)




. (5)

And the n × n matrix of correlation R is given in an
explicit form

R[R(si, sj)] =




1 R(s1, s2) · · · R(s1, sn)

R(s2, s1) 1 · · · R(s2, sn)
...

...
. . .

...

R(sn, s1) R(sn, s2) · · · 1




.

(6)
The r(s) in Eqs. (1) and (2) is also given as

r(s) = [R(s, s1) R(s, s2) · · · R(s, sn)]T , (7)

where R(si, sj) is the correlation function between any
two of the n nodes si and sj . There exist various func-
tions that could be selected, however, a frequently and
widely used one is Gaussian function

R(si, sj) = exp(−ηr2
ij), (8)

where
rij = ‖si − sj‖ , (9)

and η > 0 is a correlation parameter of the model.
Equations (1) and (2) can also be rewritten as

uh(s) = Φ(s)U =
n∑

k

φk(s)uk, (10)

qh(s) = Φ(s)Q =
n∑

k

φk(s)qk, (11)
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where φk(s) is the moving Kriging shape function as-
sociated with node k, defined by

φk(s) =
m∑

j=1

pj(s)Sαjk +
n∑

i=1

rk(s)Sβik. (12)

The 1D shape functions with p (s) =
{
1, s, s2

}

are shown in Fig. 1. It can be found that Kronecker’s
delta property is satisfied.

Fig. 1. The 1D shape functions with p(s) =
{

1, s, s2
}

.

2.2.Mathematical properties of moving

Kriging interpolation

A key property of the moving Kriging shape func-
tion is the Kronecker’s delta property. It leads to
a simple procedure of implementation of boundary
conditions. The moving Kriging shape function in
Eq. (12) can also be rewritten in other form at the
node s = si with i = 1, 2, . . . , n

φk(si) =
m∑

j=1

pj(si)Sαjk +
n∑

i=1

rk(si)Sβik, (13)

which can be written in the form

[φk(si)] = PSα + RSβ , (14)

where Sα, Sβ , P , and R are given by Eqs. (3)–(6), re-
spectively. Substituting Eqs. (3) and (4) into Eq. (14)
leads to

[φk(si)] = PSα + RR−1(I − PSα) = I (15)

or

φk(sj) =





1 (k = j; k, j = 1, 2, . . . , n),

0 (k 6= j; k, j = 1, 2, . . . , n).
(16)

Another important property of the moving Krig-
ing shape functions is that the moving Kriging in-
terpolation can reproduce any function in the basis
exactly.[23] In particular, if a linear basis is employed
to construct the moving Kriging shape functions, all
constants and linear terms can then be reproduced
exactly, i.e.

n∑

k=1

φk(s) = 1, (17)

n∑

k=1

φk(s)sk = s. (18)

3. MKIBNM formulation

Consider the following 2D potential problem in
the domain Ω bounded by Γ





∇2u(x) = 0 in Ω ,

u(x) = ū(x) x ∈ Γu,

q(x) =
∂u(x)

∂n
= q̄(x) x ∈ Γt,

(19)

where u(x) is an unknown function, and n is the nor-
mal to the boundary Γ .

The well-known BIE formulation for 2D potential
problems is given by

C(ξ)u(ξ) =
∫

Γ

u∗(ξ,x)q(x)dΓ−
∫

Γ

∂u∗(ξ,x)
∂n

u(x)dΓ ,

(20)
where C(ξ) is a coefficient which depends on the inter-
nal angle the boundary Γ makes at the given source
point ξ. The value of C(ξ) for any boundary can
be proved to be C(ξ) = θ/2π, where θ is the inter-
nal angle of the corner in radians. In addition, when
the source point ξ is located inside the domain Ω ,
C(ξ) = 1; and u∗ is the fundamental solution for po-
tential problems. The fundamental solution for 2D
potential problems is given by

u∗(ξ,x) =
1
2π

ln
1

r(ξ,x)
, (21)

where r(ξ,x) is the distance between the source point
ξ and the field point x.

The boundary Γ is assumed to be divided into
sub-domains Γi, (i = 1, 2, . . . , N), with N being the
total number of the sub-domains. Γi and Γi−1 are
connected with a point, and Γi is only used to carry
out numerical integration in Eq. (20).

Equation (20) can also be rewritten as
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C(ξ)u(ξ) =
N∑

i=1

∫

Γi

u∗(ξ,x)
∂u(x)

∂n
dΓ −

N∑

i=1

∫

Γi

∂u∗(ξ, x)
∂n

u(x)dΓ . (22)

Substituting Eqs. (10) and (11) into Eq. (22) yields the following equation

C(ξn)u(ξn) =
N∑

i=1

∫

Γi

u∗(ξn,x)
nk∑

k=1

φk(x)q(ξk)dΓ −
N∑

i=1

∫

Γi

∂u∗(ξn,x)
∂n

nk∑

k=1

φk(x)u(ξk)dΓ , (23)

where ξn is the source point and nk is the number of boundary nodes in the domain depending on the field
point x.

Equation (23) can be written as

C(ξn)u(ξn) =
N∑

i=1

nk∑

k=1

q(ξk)
∫ 1

−1

u∗(ξn,x)φk(x)J(η)dη −
N∑

i=1

nk∑

k=1

u(ξk)
∫ 1

−1

q∗(ξn,x)φk(x)J(η)dη, (24)

where η is the local coordinate and J(η) is the Jaco-
bian.

J(η) =

√(
dx

dη

)2

+
(

dy

dη

)2

. (25)

Using the numerical method for the integrals in
Eq. (24) to every source point, we can obtain the MK-
IBNM system equation

CU + HU = GQ, (26)

where

U = [u(x1) u(x2) . . . u(xN )]T , (27)

Q = [q(x1) q(x2) . . . q(xN )]T , (28)

and C, H, and G are the corresponding coefficient
matrices.

We can see that the integrands in Eq. (24) include
some log singular integrals, the singular integrals are
evaluated by the logarithmic Gaussian quadrature for-
mulation.

Because the shape functions of MKIBNM have
Kronecker’s delta property, the boundary conditions
can be implemented in the same way as the con-
ventional BEM. Substituting the boundary conditions
into Eq. (26) and solving the system equation, we can
obtain all the unknown boundary node values. It is
possible to calculate any internal value of u, the value
of u is calculated at any internal point using Eq. (24),
which can be rewritten as

u(ξ) =
N∑

i=1

∫

Γi

u∗(ξ,x)
∂u(x)

∂n
dΓ

−
N∑

i=1

∫

Γi

∂u∗(ξ,x)
∂n

u(x)dΓ . (29)

This is the MKIBNM for 2D potential problems.

4. Numerical examples

In this section, three examples are presented to
demonstrate the applicability of the MKIBNM for 2D
potential problems. It must be pointed out that the
linear basis function is used in the MKIBNM, and
the correlation function is a Gaussian function with
the correlation parameter η = 10. The numerical re-
sults obtained by the MKIBNM are compared with
the exact solutions for showing the effectiveness of the
present method.

4.1.Modified Neumann problem of a cir-

cle

We consider a modified Neumann problem for a
circle with radius r0 = 3, the prescribed boundary
conditions are

q =
du

dn
= cos θ

except for the points (3, 0) and (3, π) (the ends
of the horizontal diameter), where u |θ=0 = 3, and
u |θ=π = −3 , θ is the usual polar coordinate.

The exact solution of this problem is

u(r, θ) = x = r0 cos θ,

The circular plate shown in Fig. 2 is considered
here, a total of 32 boundary nodes are used to dis-
cretize the boundary of the problem. The 32 uniform
integration cells are employed to evaluate the integral
of matrices.
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Fig. 2. Node distribution.

Numerical results from the MKIBNM, together
with the exact solution are shown in Fig. 3. It is evi-
dent that the results accord well with the exact solu-
tion.

Fig. 3. Exact and numerical solutions of u at the bound-

ary.

4.2.Dirichlet problem of an ellipse

The second example we consider is a Dirichlet
problem of an ellipse. The ellipse has the equation

x = a cos θ, y = b sin θ.

In this example, we set a = 5000, b = 2500. The
prescribed boundary conditions are u = x = a cos θ.

The exact solution of this problem is

q =
b2x√

a4y2 + b4x2
=

b2 cos θ√
a2 sin2 θ + b2 cos2 θ

.

The elliptic plate shown in Fig. 4 is considered
here, a total of 48 boundary nodes are used to dis-
cretize the boundary of the problem. The 48 uniform

integration cells are used to evaluate the integral of
matrices.

Numerical results from the MKIBNM, together
with the exact solution, are shown in Fig. 5. It can be
seen that the present results are in excellent agreement
with the exact solution.

Fig. 4. Node distribution.

Fig. 5. Exact and numerical solutions of u at the bound-

ary.

4.3.Mixed problem of a square

The third example we consider is a mixed prob-
lem for a square. The rectangular plate is governed
by Laplace equation

∇2u(x) = 0, x ∈ [0, 5], y ∈ [0, 10].

The prescribed boundary conditions are

u(0, y) = 0,
∂u(5, y)

∂x
= 0,

u(x, 10) = 100 sin(πx/10), u(x, 0) = 0.

The exact solution for u is

u(x, y) =
100 sin(πx/10) sinh(πy/10)

sinh(π)
.

The rectangular plate shown in Fig. 6 is consid-
ered, a total of 60 boundary nodes are used to dis-
cretize the boundary of the problem. The 60 uniform
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integration cells are used to evaluate the integral of
matrices.

Fig. 6. Node distribution.

Fig. 7. Exact and numerical solutions of u at y = 5.

Numerical results from the MKIBNM, together
with the exact solution are shown in Figs. 7 and 8.

Again, the results obtained by the present method
match well with the exact solution.

Fig. 8. Exact and numerical solutions of u at x = 3.

5. Conclusions

A new formulation of the boundary-type mesh-
free method, called the MKIBNM, is presented for
2D potential problems. The boundary integral equa-
tion is discretized using the moving Kriging interpo-
lation based on scattered nodes on the boundary of
the problem domain. The shape functions constructed
using the moving Kriging interpolation possess Kro-
necker’s delta property, then the boundary conditions
can be imposed easily and directly. The MKIBNM
does not require element or mesh for the interpolation
of boundary variables, and possesses the dimension-
ality advantage. In addition, the MKIBNM also has
simpler implementation procedures and lower compu-
tation cost than the BNM due to simpler interpolation
scheme and smaller system equation dimension. The
numerical results demonstrate that the present MK-
IBNM is an effective meshless method.
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