
J Optim Theory Appl (2014) 161:738–762
DOI 10.1007/s10957-013-0468-4

Unified Duality Theory for Constrained Extremum
Problems. Part I: Image Space Analysis

S.K. Zhu · S.J. Li

Received: 22 September 2013 / Accepted: 26 October 2013 / Published online: 9 November 2013
© Springer Science+Business Media New York 2013

Abstract This paper is concerned with a unified duality theory for a constrained ex-
tremum problem. Following along with the image space analysis, a unified duality
scheme for a constrained extremum problem is proposed by virtue of the class of
regular weak separation functions in the image space. Some equivalent characteri-
zations of the zero duality property are obtained under an appropriate assumption.
Moreover, some necessary and sufficient conditions for the zero duality property are
also established in terms of the perturbation function. In the accompanying paper,
the Lagrange-type duality, Wolfe duality and Mond–Weir duality will be discussed
as special duality schemes in a unified interpretation. Simultaneously, three practical
classes of regular weak separation functions will be also considered.

Keywords Image space analysis · Constrained extremum problem · Separation
function · Lagrange-type duality · Perturbation function

1 Introduction

This two-part paper series is concerned with the duality theory of a constrained ex-
tremum problem. We particularly aim to establish a duality problem and study some
of its relationships to the primal problem by means of the image space analysis (for
short, ISA).

In the last decades, the ISA for constrained extremum problems has been of great
interest in the academic and professional communities. The ISA was initiated in [1]
and extensively used as a preliminary and auxiliary step for investigating some topics
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of the optimization theory, such as optimality conditions [2–9], existence of solutions
[10], dualities [11–13], variational principles [4, 14], penalty methods [3, 9, 15, 16],
regularities and stabilities [17, 18], and so on.

Since the path-breaking paper [2], it has been shown that the ISA is a unified
scheme for studying any kind of problem, which can be casted into the form of
the impossibility of a parametric system like, for example, constrained extremum
problems, variational inequalities, equilibrium problems, and so on. Moreover, many
papers have been devoted to extend the ISA to investigate the constrained vector op-
timization problem, the vector variational inequality and the vector equilibrium prob-
lem. In [19], several theoretical aspects of vector optimization problems and vector
variational inequalities, like optimality conditions, dualities, penalty methods as well
as scalarization, were exploited based on the ISA. Moreover, the ISA was general-
ized to a vector quasi-equilibrium problem with a variable ordering relation in [20],
and some scalar and vector saddle point optimality conditions, arising from the ex-
istence of a vector separation in the corresponding image space (for short, IS), were
established. For more details, we refer to [21–23] and references therein.

As we know, the Lagrangian duality is an important method in constrained opti-
mization theory. Among several crucial aspects, the zero duality gap property be-
tween the primal and dual problems plays a key role. In the past few years, the
classic Lagrangian duality theory has been extensively generalized by various kinds
of Lagrangian-type functions, especially the augmented Lagrangian function, intro-
duced by Hestenes [24, 25] and Powell [26], and the nonlinear Lagrangian function,
proposed by Rubinov et al. [27]. In [28], Yang and Huang established an equivalence
between two types of zero duality gap properties, which were described using aug-
mented Lagrangian dual functions and nonlinear Lagrangian dual functions. Rubinov
et al. [29] examined the validity of the zero duality gap properties for two important
dual schemes, and obtained some necessary and sufficient conditions for the zero du-
ality gap property in terms of the lower semicontinuity of the perturbation functions.
In [30], Wang et al. presented a unified nonlinear Lagrangian dual scheme, and es-
tablished necessary and sufficient conditions for the zero duality gap property. They
also derived necessary and sufficient conditions for four classes of zero duality gap
properties, and obtained the equivalence among them.

Motivated by the work reported in [2, 4–6, 11, 12, 30, 31], the purpose of this
paper is to establish a unified duality scheme by virtue of the ISA. To this end, we
first propose a generalized Lagrange function for a constrained extremum problem
based on the class of regular weak separation functions in the IS and then, establish a
general dual problem. Under an appropriate assumption, we obtain some equivalent
characterizations to the zero duality gap property. In addition, we get some neces-
sary and sufficient conditions for the zero duality gap property in the form of lower
semicontinuity of the perturbation function. In the accompanying paper (Part II), we
will discuss the Lagrange-type duality, Wolfe duality and Mond–Weir duality in a
unified interpretation. As applications, we will particularly consider three practical
classes of regular weak separation functions, which are the separable function in [4],
the augmented Lagrangian function in Rockafellar and Wets [32], and the nonlinear
Lagrangian function in Rubinov et al. [27].

The organization of this paper is as follows. In Sect. 2, we recall some preliminar-
ies, especially the concept of separation functions in the ISA. In Sect. 3, we establish
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a unified duality scheme for a constrained extremum problem based on the class of
regular weak separation functions in the IS, and study the zero duality gap property.

2 Preliminaries and Separation Functions in the ISA

In this paper, we consider the following constrained extremum problem:

(P) minf (x), s.t. x ∈ X, gi(x) ≥ 0, i = 1,2, . . . ,m,

where X is a metric space, and f : X → R and gi : X → R, i = 1,2, . . . ,m, are
real-valued functions. As usual, we denote the vector-valued function g : X → R

m

by g(x) := (g1(x), g2(x), . . . , gm(x)) for all x ∈ X, and the feasible set by R :=
{x ∈ X | gi(x) ≥ 0, i = 1,2, . . . ,m}. Throughout this paper, we assume that R �= ∅.
Take arbitrary x̄ ∈ X, we consider the map A : X → R

1+m with

A(x) := (
f (x̄) − f (x), g(x)

)
, ∀x ∈ X,

and the sets

K := {
(u, v) ∈R

1+m | u = f (x̄) − f (x), v = g(x), x ∈ X
}
,

H := {
(u, v) ∈R

1+m | u > 0, vi ≥ 0, i = 1,2, . . . ,m
}
.

For simplicity, we denote H by R++ ×R
m+. Obviously, K is the image of the map A,

i.e., K = A(X). We recall from [4, 11, 12] that the space R1+m is said to be the image
space associated with (P) and K is said to be the image of (P). It is worth noting that
the image K is not generally convex even though the functions involved enjoy some
convexity properties. To overcome this difficulty, a regularization of the image K,
namely the extension with respect to the cone clH, denoted by

E := K − clH

= {
(u, v) ∈R

1+m | u ≤ f (x̄) − f (x), vi ≤ gi(x), i = 1,2, . . . ,m,x ∈ X
}

was introduced in [4]. As a result, the convexity of the regularization image E can be
verified under some appropriate conditions; for example, A is −(clH)-convexlike.
We refer to [4, 7–12] and references therein for more details.

Remark 2.1 It is worth mentioning that the choice of x̄ is arbitrary. Based on this fact,
we use the notation A and K, although they seem to be dependent on the point x̄. Just
as shown in [4], even if it is a mere formal question, it is not convenient, and it is better
to define u as above in K; see more details in [4, 11, 12]. Note that H + clH = H.
Take especially x̄ ∈ R. Then, it is easy to verify that x̄ is a global minimum point for
(P) if and only if

K ∩H = ∅,

or equivalently,

E ∩H = ∅.



J Optim Theory Appl (2014) 161:738–762 741

Throughout this paper, the choice of x̄ is arbitrary unless otherwise specified.

Consider a function w : R1+m × Π → R, where Π is a set of parameters to be
specified case by case. For every π ∈ Π , the non-negative level set and the positive
level set of the function w(•;π) :R1+m →R are respectively defined by

lev≥0w(•;π) := {
(u, v) ∈R

1+m | w(u,v;π) ≥ 0
}

and

lev>0w(•;π) := {
(u, v) ∈R

1+m | w(u,v;π) > 0
}
.

In the sequel, for the sake of simplicity, we will always use the same symbol Π to
denote the set of parameters, even though the family of parameters is not necessarily
the same.

Definition 2.1 (See [4]) The class of all the functions w :R1+m × Π →R such that

H ⊂ lev≥0w(•;π), ∀π ∈ Π (1)

and
⋂

π∈Π

lev>0w(•;π) ⊂ H (2)

is called the class of weak separation functions, and is denoted by W(Π).

Since the class W(Π) is too large, another subclass is introduced as follows by
strengthening Definition 2.1.

Definition 2.2 (See [4]) The class of all the functions w :R1+m × Π →R such that

⋂

π∈Π

lev>0w(•;π) = H (3)

is called the class of regular weak separation functions, and is denoted by WR(Π).

It is worth noting that the main distinction between the classes W(Π) and WR(Π)

reflects different historical approaches, i.e., the Fritz–John and the Kuhn–Tucker ap-
proaches, to the use of the same basic scheme in optimization theories. We refer to
[4, 6] for more details. In this paper, we will use the subclass W�s(Π) consisting of
all the elements in W(Π), such that the function w(•;π) :R1+m →R is lower semi-
continuous for every π ∈ Π . Obviously, WR(Π) ⊂ W(Π) and W�s(Π) ⊂ W(Π).
Throughout the paper, we set

W�s
R (Π) := WR(Π) ∩W�s(Π).
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3 Unified Duality Scheme and Zero Duality Gap Property

Inspired by the ideas reported in [2, 4, 6, 29, 30, 33], the purpose of this section is
to establish a unified duality scheme for (P) by virtue of the class WR(Π), and to
investigate the zero duality gap property.

Definition 3.1 Given the classes W(Π) and WR(Π), the sets K and H admit a
separation with respect to w ∈W(Π) and π̂ ∈ Π iff

w(u,v; π̂) ≤ 0, ∀(u, v) ∈ K. (4)

Moreover, the separation is said to be regular iff w ∈ WR(Π).

We observe that K ∩ H = ∅ if either K and H admit a separation, and (4) is
verified in strict sense (as it follows from (1) and (2)), or K and H admit a regu-
lar separation (as it follows from (3)). In addition, let x̄ ∈ R. Then it follows from
Remark 2.1 that x̄ is a global minimum point for (P).

3.1 A Unified Duality Via the Class WR(Π)

In this subsection, we follow the regular weak separation approach to establish a
unified duality scheme for (P).

As shown in Definition 3.1, the regular separation of K and H in the IS is as-
sociated with a parameter π̂ ∈ Π , and moreover, gives a sufficient condition for x̄

to be a global minimum point for (P) when x̄ ∈ R. Naturally, this motivates us to
study the corresponding results of (P) in the primal space, that is, every (u, v) ∈ K
turns to u = f (x̄) − f (x), v = g(x) with x ∈ X. Given the class WR(Π) and a reg-
ular weak separation function w ∈ WR(Π), we consider the real-valued function
Lw : X × Π → R, defined by

Lw(x,π) := w(1,0Rm;π)f (x̄) − w
(
f (x̄) − f (x), g(x);π)

, ∀(x,π) ∈ X × Π,

(5)
where 0Rm denotes the origin of Rm. The function Lw will be called a generalized
Lagrange function for (P) corresponding to w.

We observe that, for Π = R+×R
m+ and w(u,v; θ,λ) = θu+〈λ,v〉, for all (u, v) ∈

R
1+m and all (θ, λ) ∈ Π , Lw(x; θ,λ) = θf (x) − 〈λ,g(x)〉 collapses to the standard

John function. In addition, if θ > 0, especially, θ = 1, then Lw(x;1, λ) = f (x) −
〈λ,g(x)〉 collapses to the standard Lagrange function.

For every given π ∈ Π , consider the set

Iπ :=
{
x̂ ∈ X | Lw(x̂,π) = inf

x∈X
Lw(x,π)

}
.

Let

M := {
(x̂, π) ∈ X × Π | x̂ ∈ Iπ

}
. (6)
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Now, based on the general arguments of separations in the IS of (P), we consider
the following dual problem:

(DP) sup
(x,π)∈Q

Lw(x,π),

where Q is a nonempty subset of M. For simplicity, we denote

Q◦ := {
π ∈ Π | ∃x ∈ X, s.t. (x,π) ∈Q

}
.

Moreover, if

inf
x∈R

f (x) = sup
(x,π)∈Q

Lw(x,π),

then we say that the zero duality gap property with respect to w holds.
Analogously, for every given x ∈ X, consider the set

Jx :=
{
π̂ ∈ Π | Lw(x, π̂) = sup

π∈Π

Lw(x,π)
}
.

Let

N := {
(x, π̂) ∈ X × Π | π̂ ∈ Jx

}
. (7)

We consider a new problem associated with (P) as follows:

(̂P) inf
(x,π)∈F

Lw(x,π),

where F is a nonempty subset of N . Similarly, we denote

Fo := {
x ∈ X | ∃π ∈ Π, s.t. (x,π) ∈F

}
.

Throughout this paper, we assume that R ⊂ Fo. Note that this assumption is not
restrictive for several major classes of generalized Lagrange-type functions, such
as the Lagrange function Lw(x;1, λ) := f (x) − 〈λ,g(x)〉,∀x ∈ X,∀λ ∈ R

m+, and
the augmented Lagrange function Lw(x;1, λ) := f (x) − supz∈{g(x)}−R

m+(〈λ, z〉 −
rσ (z)),∀x ∈ X,∀λ ∈ R

m+ (see more details in Sect. 4 of [34]). In fact, it is
easy to verify that we have π̂ = (1,0Rm) ∈ Jx for every x ∈ R, which implies
R × {(1,0Rm)} ⊂ N . Thus, R ⊂ Fo holds if we take R × {(1,0Rm)} ⊂ F .

For simplicity, we denote

α = sup
(x,π)∈Q

Lw(x,π) and β = inf
(x,π)∈F

Lw(x,π).

It is easy to verify that the inequality relationship α ≤ β always holds. In fact, we
have from (6) and (7) that

α = sup
(x,π)∈Q

Lw(x,π) = sup
π∈Q◦

inf
x∈X

Lw(x,π)

≤ sup
π∈Π

inf
x∈Fo

Lw(x,π)

≤ inf
x∈Fo

sup
π∈Π

Lw(x,π) = inf
(x,π)∈F

Lw(x,π) = β.
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Next, we first explain the relationships between the problems (̂P) and (P), and
then obtain the weak duality property for (P) under an appropriate condition. To this
end, we shall consider regular weak separation functions satisfying the following
assumption:

Assumption A. w ∈ WR(Π) satisfies w(1,0Rm;π) = 1 for all π ∈ Π , and

inf
π∈Π

w(u, v;π) =
{

u, if v ∈R
m+,

−∞, if v /∈R
m+.

Note that Assumption A is essentially a reinforcement of Definition 2.2. In fact,
if we make on further assumption that the infimum in Assumption A can be attained
for every v ∈ R

m+, then every function w : R1+m × Π → R satisfying Assumption A
must be a regular weak separation function. On the one hand, for every (u, v) ∈ H,
i.e., u > 0 and v ∈R

m+, it follows from Assumption A that

w(u,v;π) ≥ inf
π∈Π

w(u, v;π) = u > 0, ∀π ∈ Π,

which implies

H ⊂
⋂

π∈Π

lev>0w(•;π).

On the other hand, for every (u, v) ∈ R
1+m satisfying w(u,v;π) > 0 for all π ∈ Π ,

we have infπ∈Π w(u, v;π) ≥ 0. Then it follows that v ∈R
m+. Otherwise, by Assump-

tion A, v /∈ R
m+ implies infπ∈Π w(u, v;π) = −∞. This is a contradiction. Since the

infimum in Assumption A is attained, there exists some π̂ ∈ Π such that

u = inf
π∈Π

w(u, v;π) = w(u,v; π̂) > 0.

Thus, we can conclude that w ∈ WR(Π). However, it is not any regular weak sepa-
ration function satisfying Assumption A. We give the following example to illustrate
the case.

Example 3.1 Let the set of parameters Π = R++ × R
m+ and the function w :

R
1+m × (R++ × R

m+) → R be defined by w(u,v; θ,λ) := θu + 〈λ,v〉,∀(u, v) ∈
R

1+m,∀(θ, λ) ∈ Π . By Definition 2.2, it is easy to verify that w is a regular weak
separation function. Although, Assumption A does not hold. In fact, by directly cal-
culating, we have w(1,0Rm; θ,λ) = θ for all (θ, λ) ∈R++ ×R

m+, and

inf
(θ,λ)∈Π

w(u, v; θ,λ) =
{

0, if v ∈R
m+, u ≥ 0,

−∞, if v ∈R
m+, u < 0 or v /∈ R

m+.

Note that, if we take Π = {1}×R
m+ and the function w :R1+m × ({1}×R

m+) → R

defined by w(u,v;1, λ) := u+〈λ,v〉,∀(u, v) ∈R
1+m,∀(1, λ) ∈ Π , then it is easy to

verify that w is a regular weak separation function satisfying Assumption A.
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The following lemma is a direct consequence of Assumption A.

Lemma 3.1 Let the regular weak separation function w ∈ WR(Π) satisfy Assump-
tion A. Then it follows that Fo ⊂ R. Together with R ⊂ Fo, one has R = Fo.

Proof Take arbitrary x ∈ Fo. Then there exists some π̂ ∈ Π such that

Lw(x, π̂) = sup
π∈Π

Lw(x,π).

Together with Assumption A, it follows that

w
(
f (x̄) − f (x), g(x); π̂) = inf

π∈Π
w

(
f (x̄) − f (x), g(x);π)

.

This implies g(x) ∈R
m+. Otherwise, g(x) /∈ R

m+. We have necessarily

inf
π∈Π

w
(
f (x̄) − f (x), g(x);π) = −∞

by Assumption A. This is a contradiction. Therefore, we have x ∈ R, which shows
Fo ⊂ R since x is arbitrary. �

Now, we give the following lemma to show the relationships between the problems
(̂P) and (P) under Assumption A.

Lemma 3.2 Let the regular weak separation function w ∈ WR(Π) satisfy Assump-
tion A. Then the extrema of problems (̂P) and (P) are equal, that is,

inf
x∈R

f (x) = β < +∞.

Moreover, if (x̂, π̂) ∈ F is a global minimum point of (̂P), then x̂ ∈ R and it is a global
minimum point of (P). Conversely, if x̂ is a global minimum point of (P), then there
exists some π̂ ∈ Jx̂ such that (x̂, π̂) ∈ F , and it is a global minimum point of (̂P).

Proof It follows from (5), (6), (7) and Assumption A that

β = inf
(x,π)∈F

Lw(x,π) = inf
x∈Fo

sup
π∈Π

Lw(x,π)

= inf
x∈Fo

sup
π∈Π

(
w(1,0Rm;π)f (x̄) − w

(
f (x̄) − f (x), g(x);π))

= f (x̄) − sup
x∈Fo

inf
π∈Π

w
(
f (x̄) − f (x), g(x);π)

.

By Assumption A and Lemma 3.1, it follows that Fo = R. Then we have

β = f (x̄) − sup
x∈R

inf
π∈Π

w
(
f (x̄) − f (x), g(x);π)

.

Furthermore, it follows from x ∈ R that g(x) ∈ R
m+, and we get

inf
π∈Π

w
(
f (x̄) − f (x), g(x);π) = f (x̄) − f (x).
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Thus, we can conclude that

β = inf
(x,π)∈F

Lw(x,π) = f (x̄) − sup
x∈R

(
f (x̄) − f (x)

)

= inf
x∈R

f (x),

that is, the extrema of the problems (̂P) and (P) are equal. Since R �= ∅, we get

β = inf
x∈R

f (x) < +∞.

Moreover, on the one hand, if (x̂, π̂) ∈ F is a global minimum point of (̂P), then
(x̂, π̂) ∈ N and Lw(x̂, π̂) = β . By (7), we have π̂ ∈ Jx̂ . Moreover, it follows from
Assumption A that

Lw(x̂, π̂) = sup
π∈Π

Lw(x̂,π) = f (x̄) − inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π)

.

Together with Lw(x̂, π̂) = β < +∞ and Assumption A, we have g(x̂) ∈R
m+ and

inf
x∈R

f (x) = β = Lw(x̂, π̂) = f (x̄) − (
f (x̄) − f (x̂)

) = f (x̂),

which implies that x̂ ∈ R and it is a global minimum point of (P). On the other hand,
if x̂ ∈ R is a global minimum point of (P), then

f (x̂) = inf
x∈R

f (x).

Since x̂ ∈ R, we have g(x̂) ∈ R
m+. It follows from Assumption A and Lemma 3.1 that

f (x̂) = f (x̄) − (
f (x̄) − f (x̂)

)

= w(1,0Rm;π)f (x̄) − inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π)

= sup
π∈Π

Lw(x̂,π)

≥ inf
x∈Fo

sup
π∈Π

Lw(x,π)
(
since x̂ ∈ R = Fo

)

= inf
(x,π)∈F

Lw(x,π) = β = inf
x∈R

f (x) = f (x̂).

Thus, we have

inf
(x,π)∈F

Lw(x,π) = sup
π∈Π

Lw(x̂,π).

Furthermore, since x̂ ∈ Fo, then there exists some π̂ ∈ Π such that (x̂, π̂) ∈ F .
Therefore, π̂ ∈ Jx̂ and

Lw(x̂, π̂) = sup
π∈Π

Lw(x̂,π) = inf
(x,π)∈F

Lw(x,π),

that is, (x̂, π̂) is a global minimum point of (̂P). �



J Optim Theory Appl (2014) 161:738–762 747

Theorem 3.1 Let the regular weak separation function w ∈WR(Π) satisfy Assump-
tion A. Then the following results hold:

(i) The weak duality holds, that is,

inf
x∈R

f (x) ≥ sup
(x,π)∈Q

Lw(x,π).

(ii) x̂ ∈ X is a global minimum point of (P) if and only if

sup
π∈Π

Lw(x̂,π) = β.

Proof (i) Since α ≤ β always holds, it follows from Lemma 3.2 that

inf
x∈R

f (x) ≥ sup
(x,π)∈Q

Lw(x,π).

(ii) x̂ ∈ X being a global minimum point of (P) implies

g(x̂) ∈ R
m+, inf

x∈R
f (x) = f (x̂). (8)

Moreover, it follows from (5) and Assumption A that

sup
π∈Π

Lw(x̂,π) = sup
π∈Π

(
w(1,0Rm;π)f (x̄) − w

(
f (x̄) − f (x̂), g(x̂);π))

= f (x̄) − inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π)

= f (x̄) − (
f (x̄) − f (x̂)

) = f (x̂).

Together with Lemma 3.2 and (8), we have

sup
π∈Π

Lw(x̂,π) = inf
x∈R

f (x) = β.

Conversely, if β = supπ∈Π Lw(x̂,π), then we get

β = sup
π∈Π

(
w(1,0Rm;π)f (x̄) − w

(
f (x̄) − f (x̂), g(x̂);π))

= f (x̄) − inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π)

.

Since β < +∞, it follows from Assumption A that g(x̂) ∈R
m+, and then, x̂ ∈ R and

inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π) = f (x̄) − f (x̂).

Together with Lemma 3.2, we have

inf
x∈R

f (x) = β = f (x̄) − inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π)

= f (x̄) − (
f (x̄) − f (x̂)

) = f (x̂).

Thus, x̂ ∈ R is a global minimum point of (P). This completes the proof. �
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Note that all the results in Lemmas 3.1 and 3.2, and Theorem 3.1, are independent
of the choice of x̄. As we know, when the regular weak separation function w ∈
WR(Π) is separable with respect to u and v (see more details in Sect. 4, Case 1,
of [34]), a similar condition to Assumption A has been obtained by Giannessi et al.
[14]. Moreover, the following assumption in Rubinov et al. [6, 33], which is weaker
than Assumption A, has been introduced:

(Ã) inf
π∈Π

w(u, v;π) ≥ u, ∀v ∈R
m+,

and it has been shown that Assumption (Ã) is sufficient to assure that the weak duality
holds. However, we cannot obtain all the corresponding results in Theorem 3.1, which
play important roles in the sequel analysis. The following example explains the cases.

Example 3.2 Consider the following constrained extremum problem:

min
(−x2), s.t. 1 − x2 ≥ 0, −x2 − x + 2 ≥ 0.

Take the family of parameters Π = {2} × R
2+ and the function w : R3 × Π → R,

defined by

w(u,v;2, λ) := 2u + sup
z∈{v}−R

2+

(〈λ, z〉 − ‖z‖1
)

= 2u + sup
z1≤v1,z2≤v2

(
λ1z1 + λ2z2 − |z1| − |z2|

)
,

∀(u, v) ∈ R
3,∀(2, λ) ∈ Π.

It is easy to verify that w is a regular weak separation function and

inf
(2,λ)∈Π

w(u, v;2, λ) = 2u, ∀v ∈ R
2+

(see more details in Sect. 4, Case 2, of [34]). Thus, Assumption (Ã) holds but As-
sumption A does not. Moreover, let x̄ = −2 and x̂ = 1. Then we have

Lw(x̂;2, λ) = −2 − sup
z1≤0,z2≤0

(
λ1z1 + λ2z2 − |z1| − |z2|

) = −2, ∀(2, λ) ∈ Π,

which implies

sup
(2,λ)∈Π

Lw(x̂;2, λ) = −2.

Clearly, x̂ is a global minimum point, β = −1 and sup(2,λ)∈Π Lw(x̂;2, λ) < β . There-
fore, the weak duality holds, but the conclusion (ii) in Theorem 3.1 does not hold.
However, if we take Π = {1} ×R

2+ and the function w : R3 × Π → R, defined by

w(u,v;1, λ) := u + sup
z∈{v}−R

2+

(〈λ, z〉 − ‖z‖1
)
, ∀(u, v) ∈ R

3,∀(1, λ) ∈ Π,
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then w is a regular weak separation function satisfying Assumption A. Moreover, we
have

sup
(1,λ)∈Π

Lw(x̂;1, λ) = −1 = β,

that is, the weak duality and the assertion (ii) of Theorem 3.1 hold.

Remark 3.1 Note that, if Assumption A holds, it follows from Lemma 3.2 that the
zero duality gap property with respect to w can be expressed in the form α = β . Since
the weak duality holds, that is, α ≤ β always holds (as shown in Theorem 3.1(i)), we
can equivalently express the zero duality gap property as α ≥ β .

3.2 Zero Duality Gap Properties

The purpose of this subsection is to investigate some equivalent characterizations of
the zero duality gap property for (P) from two aspects. We first follow the regular
separation in the IS and the classic approach, such as the Lagrange multiplier and
the saddle point, and then apply the perturbation function of (P) to discuss the zero
duality gap property. In the beginning, we introduce some standard notions associated
with the generalized Lagrange function for (P).

Definition 3.2 Given the regular weak separation function w ∈ WR(Π) and the gen-
eralized Lagrange function Lw for (P) corresponding to w, then π̂ ∈ Π is said to be
a generalized Lagrange multiplier for (P) corresponding to w iff

inf
x∈X

Lw(x, π̂) = β.

Remark 3.2 As we know, if we let x̄ ∈ X such that f (x̄) is the global minimum for
(P), then K ∩H = ∅ (Note that x̄ may not be a feasible point). In addition, if π̂ ∈ Π

is a generalized Lagrange multiplier for (P) corresponding to w and Assumption A
holds, it follows from Theorem 3.1(i) that

sup
x∈X

w
(
f (x̄) − f (x), g(x); π̂) = 0,

that is, w(u,v; π̂) ≤ 0,∀(u, v) ∈K. Thus, the sets K and H admit a regular separation
with respect to w ∈WR(Π) and π̂ ∈ Π .

Definition 3.3 Given the regular weak separation function w ∈ WR(Π) and the gen-
eralized Lagrange function Lw for (P) corresponding to w, then (x̂, π̂) ∈ X × Π is
said to be a generalized Lagrange saddle point for (P) corresponding to w iff

Lw(x̂,π) ≤ Lw(x̂, π̂) ≤ Lw(x, π̂), ∀x ∈ X,∀π ∈ Π.

Next, we establish some equivalent statements to the zero duality gap property
for (P).
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Lemma 3.3 Given x̂ ∈ X and π̂ ∈ Π , and the regular weak separation function
w ∈ WR(Π) satisfying Assumption A, then the following assertions are equiva-
lent:

(i) x̂ ∈ R is a global minimum point and π̂ is a generalized Lagrange multiplier for
(P) corresponding to w.

(ii) x̂ ∈ X and (x̂, π̂) ∈ X × Π is a generalized Lagrange saddle point for (P) cor-
responding to w.

In addition, we also have (x̂, π̂) ∈ M ∩ N and w(f (x̄) − f (x̂), g(x̂); π̂) = f (x̄) −
f (x̂).

Proof (i) ⇒ (ii) Since x̂ ∈ R is a global minimum point and π̂ is a generalized La-
grange multiplier for (P) corresponding to w, it follows from Theorem 3.1(ii) and
Definition 3.2 that

sup
π∈Π

Lw(x̂,π) = β = inf
x∈X

Lw(x, π̂),

i.e., Lw(x̂,π) ≤ β ≤ Lw(x, π̂),∀x ∈ X,∀π ∈ Π . Specially, let x = x̂ and π = π̂ .
Then we get β = Lw(x̂, π̂). Thus, Lw(x̂,π) ≤ Lw(x̂, π̂) ≤ Lw(x, π̂),∀x ∈ X,

∀π ∈ Π , that is, (x̂, π̂) ∈ X × Π is a generalized Lagrange saddle point for (P) cor-
responding to w.

(ii) ⇒ (i) Since (x̂, π̂) ∈ X × Π is a generalized Lagrange saddle point for (P) cor-
responding to w, we get

Lw(x̂,π) ≤ Lw(x̂, π̂) ≤ Lw(x, π̂), ∀x ∈ X,∀π ∈ Π. (9)

First, we prove that Lw(x̂,π) ≤ Lw(x̂, π̂),∀π ∈ Π , implies x̂ ∈ R. In fact, it follows
from Assumption A that the above inequality implies w(f (x̄) − f (x̂), g(x̂);π) ≥
w(f (x̄) − f (x̂), g(x̂); π̂),∀π ∈ Π . So,

inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π) ≥ w

(
f (x̄) − f (x̂), g(x̂); π̂)

. (10)

Suppose that x̂ /∈ R. Then we have g(x̂) /∈R
m+. It follows from Assumption A that

inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π) = −∞.

However, this is a contradiction to (10). Second, we prove that

w
(
f (x̄) − f (x̂), g(x̂); π̂) = f (x̄) − f (x̂).

On the one hand, since x̂ ∈ R, we have g(x̂) ∈ R
m+. By Assumption A and (10), we

get

inf
π∈Π

w
(
f (x̄) − f (x̂), g(x̂);π) = f (x̄) − f (x̂) ≥ w

(
f (x̄) − f (x̂), g(x̂); π̂)

.



J Optim Theory Appl (2014) 161:738–762 751

On the other hand, it follows from (9), Assumption A and Lemma 3.1 that x̂ ∈
R = Fo and

β = inf
(x,π)∈F

Lw(x,π) = inf
x∈Fo

sup
π∈Π

Lw(x,π)

≤ sup
π∈Π

Lw(x̂,π) ≤ Lw(x̂, π̂) ≤ inf
x∈X

Lw(x, π̂)

≤ inf
x∈F◦ Lw(x, π̂) ≤ sup

π∈Π

inf
x∈F◦ Lw(x,π)

≤ inf
x∈F◦ sup

π∈Π

Lw(x,π)

= β. (11)

Thus, we have β = Lw(x̂, π̂) = w(1,0Rm; π̂)f (x̄) − w(f (x̄) − f (x̂), g(x̂); π̂). To-
gether with Assumption A, Lemma 3.2 and x̂ ∈ R, we get

f (x̄) − w
(
f (x̄) − f (x̂), g(x̂); π̂) = β = inf

x∈R
f (x) ≤ f (x̂),

which implies w(f (x̄)−f (x̂), g(x̂); π̂ ) ≥ f (x̄)−f (x̂). Therefore, we can conclude
that

w
(
f (x̄) − f (x̂), g(x̂); π̂) = f (x̄) − f (x̂),

which implies

f (x̂) = f (x̄) − w
(
f (x̄) − f (x̂), g(x̂); π̂) = inf

x∈R
f (x),

that is, x̂ ∈ R is a global minimum point for (P). Lastly, it follows from (11) that

Lw(x̂, π̂) = sup
π∈Π

Lw(x̂,π) = inf
x∈X

Lw(x, π̂) = β.

Thus, π̂ is a generalized Lagrange multiplier for (P) corresponding to w, and simul-
taneously, x̂ ∈ Iπ̂ and π̂ ∈ Jx̂ , i.e., (x̂, π̂) ∈ M∩N . This completes the proof. �

Specially, if we take x̄ ∈ R, then we immediately have the following characteriza-
tion in terms of a regular separation related to K and H in the IS, which generalizes
and improves Theorem 5.2 in [3], Proposition 5.2.11 in [4], Theorem 2.1 in [8], The-
orem 3.2 in [9], and Theorems 3.2 and 3.3 in [14].

Lemma 3.4 Given π̄ ∈ Π and the regular weak separation function w ∈ WR(Π)

satisfying Assumption A, then the following assertions are equivalent:

(i) x̄ ∈ R, and the sets K and H admit a regular separation with respect to w and π̄ .
(ii) x̄ ∈ R is a global minimum point and π̄ is a generalized Lagrange multiplier for

(P) corresponding to w.
(iii) x̄ ∈ X and (x̄, π̄) ∈ X × Π is a generalized Lagrange saddle point for (P) cor-

responding to w.

In addition, we also have (x̄, π̄) ∈M∩N and w(0, g(x̄); π̄) = 0.
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Proof We only need to prove that (i) ⇒ (ii) and (iii) ⇒ (i) since the equivalence of
(ii) and (iii) is fulfilled from Lemma 3.3.

(i) ⇒ (ii) Since the sets K and H admit a regular separation with respect to w

and π̄ , that is,

w
(
f (x̄) − f (x), g(x); π̄) ≤ 0, ∀x ∈ X, (12)

we have K ∩ H = ∅. Together with x̄ ∈ R and Remark 2.1, it follows that x̄ is a
global minimum point for (P), i.e.,

f (x̄) = inf
x∈R

f (x). (13)

Moreover, by (12) we get

sup
x∈X

w
(
f (x̄) − f (x), g(x); π̄) ≤ 0.

Together with (5), (13), Assumption A and Lemma 3.2, we get

inf
x∈X

Lw(x, π̄) = w(1,0Rm; π̄)f (x̄) − sup
x∈X

w
(
f (x̄) − f (x), g(x); π̄)

≥ f (x̄)

= β = inf
(x,π)∈F

Lw(x,π) = inf
x∈Fo

sup
π∈Π

Lw(x,π)

≥ inf
x∈Fo

Lw(x, π̄)

≥ inf
x∈X

Lw(x, π̄),

where the second inequality holds since π̄ ∈ Π and supπ∈Π Lw(x,π) ≥ Lw(x, π̄),

∀x ∈ Fo. Therefore, we have

inf
x∈X

Lw(x, π̄) = β,

that is, π̄ is a generalized Lagrange multiplier for (P) corresponding to w.

(iii) ⇒ (i) Let (x̄, π̄) ∈ X × Π be a generalized Lagrange saddle point for (P) corre-
sponding to w. Then we have

Lw(x̄,π) ≤ Lw(x̄, π̄) ≤ Lw(x, π̄), ∀x ∈ X,∀π ∈ Π.

By the method similar to the proof of Lemma 3.3 (ii) ⇒ (i), we get x̄ ∈ R,
w(0, g(x̄); π̄) = 0 and (x̄, π̄) ∈ M ∩ N . Together with Lw(x̄, π̄) ≤ Lw(x, π̄),

∀x ∈ X, it follows that

w
(
f (x̄) − f (x), g(x); π̄) ≤ 0, ∀x ∈ X,

that is, the sets K and H admit a regular separation with respect to w and π̄ . This
completes the proof. �
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Remark 3.3 Compared with some recent papers [7–9] and references therein,
Lemma 3.4 establishes an equivalent characterization not only for a Lagrange sad-
dle point, but also for a Lagrange multiplier by virtue of the existence of a regular
weak separation in the IS under Assumption A. Very recently, Luo et al. [9] showed
that the existence of a regular nonlinear separation was equivalent to a saddle point
for a special augmented Lagrange function by using Proposition 3.2 in [9]. Note
that, if we take specially the parameter set Π and the regular separation function
w ∈ WR(Π), defined by (6) (resp. (18)) in [9], then Assumption A reduces to (19)
and (20) (resp. (9) and (10)) in [9]. Moreover, it follows from Lemma 3.4 that Theo-
rems 3.1 and 3.2, and Corollary 3.1 in [9] are immediately held. Thus, in Lemma 3.4
we establish some more comprehensive results for (P) by virtue of a more general
regular weak separation in the IS.

Theorem 3.2 Let the regular weak separation function w ∈WR(Π) satisfy Assump-
tion A. Then the following results hold:

(i) If Q∩F �= ∅, then the zero duality gap property with respect to w holds, that is,

sup
(x,π)∈Q

Lw(x,π) = inf
x∈R

f (x).

(ii) For every (x̂, π̂) ∈ Q ∩ F , it follows that the zero duality gap property with re-
spect to w holds, and x̂ ∈ R is a global minimum point of (P) and (x̂, π̂) is
a global maximum point of (DP). Specially, if F = N , then the converse also
holds. In addition, we have

w
(
f (x̄) − f (x̂), g(x̂); π̂) = f (x̄) − f (x̂).

Proof (i) It is easy to verify that Q ∩ F �= ∅ implies α = β . In fact, it follows from
Q∩F �= ∅ that there exists some (x̂, π̂) ∈Q∩F . Then we have

α = sup
(x,π)∈Q

Lw(x,π) ≥ Lw(x̂, π̂) ≥ inf
(x,π)∈F

Lw(x,π) = β. (14)

Since α ≤ β always holds, we get α = β . Moreover, if the regular weak separation
function w ∈ WR(Π) satisfies Assumption A, then by Lemma 3.2 we have

sup
(x,π)∈Q

Lw(x,π) = α = β = inf
x∈R

f (x).

(ii) For every (x̂, π̂) ∈ Q ∩ F , we have Q ∩ F �= ∅. By (i), it follows that the zero
duality gap property holds. Moreover, by (14) and α ≤ β , we get Lw(x̂, π̂) = α = β .
Thus, (x̂, π̂) ∈ Q ∩ F is a maximum point of (DP), and also is a minimum point
of (̂P). Together with Lemma 3.2, we have that x̂ ∈ R is a global minimum point
of (P), i.e.,

inf
x∈R

f (x) = f (x̂).

So, we get f (x̂) = β = Lw(x̂, π̂) and then, w(f (x̄)−f (x̂), g(x̂); π̂ ) = f (x̄)−f (x̂).
Specially, let F = N . If the zero duality gap property with respect to w holds, and
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x̂ ∈ R is a global minimum point of (P) and (x̂, π̂) is a global maximum point of
(DP), then we have

(x̂, π̂) ∈Q (15)

and

Lw(x̂, π̂) = sup
(x,π)∈Q

Lw(x,π) = inf
x∈R

f (x) = β.

Since x̂ ∈ R is a global minimum point of (P), by Theorem 3.1(ii) we get

sup
π∈Π

Lw(x̂,π) = β.

Thus,

Lw(x̂, π̂) = sup
π∈Π

Lw(x̂,π),

which implies π̂ ∈ Jx̂ . Then we have (x̂, π̂) ∈ N . Together with (15), we can con-
clude that (x̂, π̂) ∈ Q∩N . �

Note that, if F = N , then we have the following corollary from Lemma 3.3, and
Theorems 3.1 and 3.2.

Corollary 3.1 Let π̂ ∈ Π and let the regular weak separation function w ∈ WR(Π)

satisfy Assumption A. If one of the following conditions is fulfilled,

(i) x̂ ∈ R is a global minimum point and π̂ is a generalized Lagrange multiplier for
(P) corresponding to w,

(ii) x̂ ∈ X and (x̂, π̂) ∈ X × Π is a generalized Lagrange saddle point for (P) corre-
sponding to w,

then, for every set Q ⊂ M with (x̂, π̂) ∈Q, the zero duality gap property with respect
to w holds and

Lw(x̂, π̂) = f (x̂) = inf
x∈R

f (x) = max
(x,π)∈Q

Lw(x,π).

Proof It follows from the proof of Lemma 3.3 that the conditions (i) and (ii) are
equivalent, and any one of the conditions (i)–(ii) implies

Lw(x̂, π̂) = sup
π∈Π

Lw(x̂,π).

Thus, π̂ ∈ Jx̂ and then, (x̂, π̂) ∈ N . Moreover, since (x̂, π̂) ∈ Q, we have (x̂, π̂) ∈
Q∩N . Together with Theorem 3.2(ii) with F = N , we get that the zero duality gap
property holds and

f (x̂) = inf
x∈R

f (x) = max
(x,π)∈Q

Lw(x,π) = Lw(x̂, π̂).

This completes the proof. �

Similarly, the following result holds when x̄ ∈ R and F = N by Lemma 3.4, and
Theorems 3.1 and 3.2.
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Corollary 3.2 Let π̄ ∈ Π and let the regular weak separation function w ∈ WR(Π)

satisfy Assumption A. If one of the following conditions is fulfilled,

(i) x̄ ∈ R, and the sets K and H admit a regular separation with respect to w and π̄ ,
(ii) x̄ ∈ R is a global minimum point and π̄ is a generalized Lagrange multiplier for

(P) corresponding to w,
(iii) x̄ ∈ X and (x̄, π̄) ∈ X × Π is a generalized Lagrange saddle point for (P) cor-

responding to w,

then, for every set Q ⊂ M with (x̄, π̄) ∈Q, the zero duality gap property with respect
to w holds and

Lw(x̄, π̄) = f (x̄) = inf
x∈R

f (x) = max
(x,π)∈Q

Lw(x,π).

Remark 3.4 As shown in Theorem 3.2 (resp. Corollaries 3.1 and 3.2), the condi-
tion Q ∩ F �= ∅ (resp. Q ∩ N �= ∅) is very useful to establish the zero duality gap
property. In fact, Corollary 3.1 (resp. Corollary 3.2) gives a sufficient condition for
Q∩N �= ∅ by means of a generalized Lagrange multiplier or a generalized Lagrange
saddle point (resp. a general regular separation in the IS). Moreover, we will see in
Sect. 3.2 of [34] that the condition Q ∩ N �= ∅ for Wolfe and Mond–Weir dualities
can be verified under some appropriate assumptions. Note that Q ∩ F �= ∅ is only
a sufficient condition, and simultaneously, if Q ∩ F = ∅, then the zero duality gap
property may still hold. We give the following example to explain these cases.

Example 3.3 Consider Example 3.2. Obviously, we have the feasible set R = [−1,1].
Let Π = {1} × R

2+. Next, we consider two special regular weak separation func-
tions w, defined on R

3 × Π .

Case 1. Let w(u,v;1, λ) = u+ supz∈{v}−R
2+(〈λ, z〉− ‖z‖1) for all (u, v) ∈ R

3 and all

λ ∈ R
2+. Then w is a regular weak separation function satisfying Assumption A. It is

easy to verify that R ×{(1,0,0)} ⊂ N . Specially, we take R ×{(1,0,0)} = F , which
implies R ⊂ Fo. Now, take x̄ = 0 and π̂ = (1,1,1) ∈ Π . Then we have

Lw(x, π̂) = −x2 − sup
z1≤1−x2,z2≤−x2−x+2

(
z1 + z2 − |z1| − |z2|

)

=

⎧
⎪⎨

⎪⎩

3x2 + 2x − 6, if x ≤ −2 or x ≥ 1,

x2 − 2, if −2 ≤ x ≤ −1,

−x2, if −1 ≤ x ≤ 1.

Thus, we have Iπ̂ = {−1,1}. If we take Q = {(−1, (1,1,1)), (1, (1,1,1))}, then it
follows Q ⊂ M and Q∩F = ∅. Moreover, by directly calculating, we get

sup
(x,π)∈Q

Lw(x,π) = −1 = inf
x∈R

f (x),

which shows that the zero duality gap property holds.
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Case 2. Let w(u,v;1, λ) = u + 〈λ,v〉 for all (u, v) ∈ R
3 and all λ ∈ R

2+. Then w

is a regular weak separation function satisfying Assumption A, and simultaneously,
R × {(1,0,0)} ⊂ N holds. Specially, let F = N , and then we have R ⊂ Fo. Take
arbitrary λ̃ ∈ R

2+ with λ̃1 ≥ 2 and λ̃2 = 0. Then we get Lw(x;1, λ̃) = (λ̃1 −1)x2 − λ̃1.
It is easy to verify that 0 ∈ I(1,λ̃), which implies the set Q := {(0, (1, λ̃)) ∈ R × Π |
λ̃1 ≥ 2, λ̃2 = 0} ⊂ M. Moreover, by directly calculating, we get

Lw(0;1, λ) = −λ1 − 2λ2, ∀(1, λ) ∈ Π,

which implies J0 = {(1,0,0)}. Thus, we can conclude that Q ∩ F = ∅. Simultane-
ously, we have

sup
(x,(1,λ))∈Q

Lw(x;1, λ) = −2 < −1 = inf
x∈R

f (x),

that is, the zero duality gap property does not hold.

In the following, we discuss the zero duality gap property by virtue of a perturba-
tion function. To this end, we need to introduce some standard notions related with
the perturbed optimization problem of (P).

Definition 3.4 For every y ∈ R
m, let R(y) := {x ∈ X | gi(x) ≥ yi, i = 1,2, . . . ,m}.

The problem

inf
x∈R(y)

f (x)

is called the perturbed optimization problem of (P). The perturbation function p :
R

m → R ∪ {±∞}, associated with (P), is defined as the optimal value map of the
perturbed optimization problem, that is,

p(y) := inf
x∈R(y)

f (x), ∀y ∈R
m.

Remark 3.5 Obviously, p(0Rm) = infx∈R f (x). Thus, if Assumption A holds, then
it follows from Lemma 3.2 and Theorem 3.1(i) that the zero duality gap property
with respect to w can be expressed in the form p(0Rm) = α, and p(0Rm) ≥ α always
holds. Therefore, the zero duality gap property with respect to w can be reformulated
as p(0Rm) ≤ α.

In order to establish a necessary condition for the zero duality gap property with
respect to w, we consider the subclass W�s

R (Π) ⊂ WR(Π) satisfying the following
monotonicity assumption:

Assumption B. w ∈ W�s
R (Π) and w is monotone increasing with respect to the first

argument, that is,

∀(
u1, v1),

(
u2, v2) ∈ R

1+m with
(
u2, v2) ∈ {(

u1, v1)} −R
1+m+

implies

w
(
u2, v2;π) ≤ w

(
u1, v1;π)

, ∀π ∈ Π.
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We will show in Sect. 4 of [34] that there are some major classes of regular weak
separation functions satisfying Assumption B. By Assumptions A and B, we give
the following necessary condition for the zero duality gap property by means of the
perturbation function.

Theorem 3.3 Given the regular weak separation function w ∈ WR(Π) satisfying
Assumptions A and B, if the zero duality gap property with respect to w holds, then
the perturbation function p is lower semicontinuous at 0Rm .

Proof Assume that p is not lower semicontinuous at 0Rm . Then lim infy→0Rm p(y) <

p(0Rm). Thus, there exist some ε > 0 and a sequence {yk} ⊂ R
m such that yk → 0Rm

and

p
(
yk

) ≤ p(0Rm) − ε, ∀k ∈N. (16)

Since the zero duality gap property with respect to w holds, we have

p(0Rm) = α = sup
(x,π)∈Q

Lw(x,π) = sup
π∈Q◦

inf
x∈X

Lw(x,π).

For ε > 0, there exists some π̂ ∈ Q◦ such that

p(0Rm) − ε

3
≤ inf

x∈X
Lw(x, π̂)

≤ inf
x∈R(yk)

Lw(x, π̂), ∀k ∈N.

Moreover, by the definition of the perturbation function p, we get

p
(
yk

) = inf
x∈R(yk)

f (x), ∀k ∈ N.

Then, for every k ∈ N, there exists some xk ∈ R(yk) such that f (xk) ≤ p(yk) + ε
3 .

Together with Assumptions A and B, (16) and yk ∈ {g(xk)} −R
m+, we get

p(0Rm) − ε

3
≤ inf

x∈R(yk)
Lw(x, π̂)

≤ Lw

(
xk, π̂

) = w(1,0Rm; π̂)f (x̄) − w
(
f (x̄) − f

(
xk

)
, g

(
xk

); π̂)

≤ f (x̄) − w

(
f (x̄) − p

(
yk

) − ε

3
, yk; π̂

)

≤ f (x̄) − w

(
f (x̄) − p(0Rm) + 2ε

3
, yk; π̂

)
, ∀k ∈ N.

Take lim sup as k → +∞ on both sides, and we have

p(0Rm) − ε

3
≤ f (x̄) − lim inf

k→+∞w

(
f (x̄) − p(0Rm) + 2ε

3
, yk; π̂

)
.
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Since yk → 0Rm , w ∈ W�s
R (Π) and Assumption A holds, we have

p(0Rm) − ε

3
≤ f (x̄) − lim inf

y→0Rm

w

(
f (x̄) − p(0Rm) + 2ε

3
, y; π̂

)

= f (x̄) − w

(
f (x̄) − p(0Rm) + 2ε

3
,0Rm; π̂

)

≤ f (x̄) − inf
π∈Π

w

(
f (x̄) − p(0Rm) + 2ε

3
,0Rm;π

)

= f (x̄) −
(

f (x̄) − p(0Rm) + 2ε

3

)

= p(0Rm) − 2ε

3
, (17)

where the first inequality holds since {yk} ⊂ R
m, yk → 0Rm and

lim inf
y→0Rm

w

(
f (x̄) − p(0Rm) + 2ε

3
, y; π̂

)
≤ lim inf

k→+∞w

(
f (x̄) − p(0Rm) + 2ε

3
, yk; π̂

)
.

Obviously, (17) is impossible. Thus, we complete the proof. �

Conversely, in order to obtain the sufficient condition for the zero duality gap
property by virtue of the perturbation function, we need the following assumption
associated with the image K of (P) and the regular weak separation function w ∈
WR(Π) with the family of parameters specified by {1} ×R

m+:

Assumption C. There exists some α > 0 such that

w(u,v;π) ≤ min {u,απ1v1, απ2v2, . . . , απmvm}
for every (u, v) ∈K and every π = (1,π1,π2, . . . , πm) ∈ Π = {1} ×R

m+.
Next, we establish the following sufficient condition for the zero duality gap prop-

erty by virtue of the perturbation function.

Theorem 3.4 Assume that Q = M. Let the regular weak separation function w ∈
WR(Π) satisfy Assumptions A and C. If the perturbation function p is lower semi-
continuous at 0Rm , then the zero duality gap property with respect to w holds.

Proof Assume that the zero duality gap property with respect to w does not
hold. By Assumption A, Q = M and Theorem 3.1(i), we have infx∈R f (x) >

supπ∈Π infx∈X Lw(x,π). Then there exists some δ > 0 such that

p(0Rm) > inf
x∈X

Lw(x,π) + δ, ∀π ∈ Π.

Take πk = (1, k, k, . . . , k) ∈ Π with k ∈ N. We have

p(0Rm) − δ

2
> inf

x∈X
Lw

(
x,πk

) + δ

2
, ∀k ∈ N.
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Then, for every k ∈ N, there exists xk ∈ X such that

p(0Rm) − δ

2
> Lw

(
xk,πk

)

= w
(
1,0Rm;πk

)
f (x̄) − w

(
f (x̄) − f

(
xk

)
, g

(
xk

);πk
)
, ∀k ∈N.

Together with Assumptions A and C, and (f (x̄) − f (xk), g(xk)) ∈ K for all k ∈ N,
there exists some α > 0 such that

p(0Rm) − δ

2

> f (x̄) − min
{
f (x̄) − f

(
xk

)
, αkg1

(
xk

)
, αkg2

(
xk

)
, . . . , αkgm

(
xk

)}

= max
{
f

(
xk

)
, f (x̄) − αkg1

(
xk

)
, f (x̄) − αkg2

(
xk

)
, . . . , f (x̄) − αkgm

(
xk

)}
.

Thus, we have gi(x
k) ≥ βk,∀i = 1,2, . . . ,m, where βk := p(0Rm)− δ

2 −f (x̄)

−αk
,∀k ∈ N.

Let yk ∈ R
m with yk

i = βk,∀i = 1,2, . . . ,m. Then it follows that xk ∈ R(yk), which
implies p(yk) ≤ f (xk). Moreover, yk → 0Rm and p(0Rm) − δ

2 > f (xk). Therefore,
we can conclude that

p(0Rm) − δ

2
≥ lim inf

k→+∞p
(
yk

) ≥ lim inf
y→0Rm

p(y) = p(0Rm)

since p is lower semicontinuous at 0Rm . This is a contradiction. �

Now, we can immediately establish the following equivalent characterization of
the zero duality gap property by virtue of the perturbation function from Theo-
rems 3.3 and 3.4.

Corollary 3.3 Assume that Q = M. Let the regular weak separation function w ∈
WR(Π) satisfy Assumptions A, B and C. Then the zero duality gap property with
respect to w holds if and only if the perturbation function p is lower semicontinuous
at 0Rm .

We will see in Sect. 4 of [34] that there exist some kinds of regular weak sepa-
ration functions satisfying Assumption C. However, Assumption C is very restrictive
when the regular weak separation function w, defined on R

1+m × ({1} × R
m+), re-

duces to some special cases; for example, just as shown in [28, 29, 31], it is not
valid for the classic Lagrange function Lw(x;1, λ) = f (x)−〈λ,g(x)〉 when we take
w(u,v;1, λ) = u + 〈λ,v〉. Simultaneously, it is also not valid for the augmented La-
grange function Lw(x;1, λ) = f (x) − supz∈{g(x)}−R

m+(〈λ, z〉 − rσ (z)) when we take
w(u,v;1, λ) = u + supz∈{v}−R

m+(〈λ,v〉 − rσ (z)) (see more details in Sect. 4, Case 2,
of [34]). It is worth noting that, if there exists some η ∈R such that infx∈X f (x) ≥ η,
i.e., f is bounded from below on X, then Theorem 3.4 can be applied to the following
penalization problem (̃P), which is equivalent to (P) in the sense that (̃P) and (P) have
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the same feasible sets and the same objective functions. Consider the penalization
problem

(̃P) minf (x), s.t. x ∈ X,
[
gi(x)

]
− ≥ 0, i = 1,2, . . . ,m,

where [gi(x)]− := min{0, gi(x)}. Note that x̄ ∈ X is arbitrary. Similarly, we can re-
place f (x̄) with η in Theorem 3.4. For more details, we refer to [33, 35, 36]. Then
the image of (̃P) has the form

K := {
(u, v) ∈R

1+m | u = η − f (x), v = [
g(x)

]
−, x ∈ X

}
,

where [g(x)]− := ([g1(x)]−, [g2(x)]−, . . . , [gm(x)]−) ∈ R
1+m. Obviously, we have

K ⊂ −R
1+m+ . Then, for the penalization problem (̃P), we have the following refor-

mulation corresponding to Assumption C:

Assumption C̃. There exists some α > 0 such that

w(u,v;π) ≤ min{u,απ1v1, απ2v2, . . . , απmvm}
for every (u, v) ∈K ⊂ −R

1+m+ and every π = (1,π1,π2, . . . , πm) ∈ Π = {1} ×R
m+.

As a result, Assumption C̃ is not so restrictive for the regular weak separation
function w defined on (−R

1+m+ ) × ({1} × R
m+). Moreover, we will show in Sect. 4

of [34] that Assumption C̃ is valid for the classic Lagrange penalization function
Lw(x;1, λ) = f (x) − 〈λ, [g(x)]−〉 when we take w(u,v;1, λ) = u + 〈λ,v〉. At the
same time, Assumption C̃ is valid for the classic augmented Lagrange penaliza-
tion function Lw(x;1, λ) = f (x) − supz∈{[g(x)]−}−R

m+(〈λ, z〉 − rσ (z)) when we take
w(u,v;1, λ) = u + supz∈{v}−R

m+(〈λ,v〉 − rσ (z)).

4 Conclusions

Recently, the introduction of ISA has shown that the IS associated with the prob-
lem provides a natural environment for the Lagrange ideas. Moreover, the classic
Lagrange duality has been redescribed by means of the regular weak separation be-
tween two sets, K and H, in the IS. In this paper, we present a unified duality scheme
for a constrained extremum problem by virtue of the ISA. Specially, we establish
an equivalent characterization not only for a Lagrange saddle point, but also for a
Lagrange multiplier by using the existence of a regular weak separation in the IS,
which extend and improve some existing results. At the same time, we show that
the existence of a regular weak separation in the IS is sufficient and necessary for
the zero duality gap property. Finally, we propose some equivalent conditions for the
zero duality gap property in terms of the lower semicontinuity of the perturbation
function.

As far as we know, the Lagrangian-type (exact and inexact) penalty methods are
closely related with duality theories. Just as shown in this paper, the ISA provides a
unified approach, namely a regular weak separation in the IS, to analyze and deduce
the general duality scheme. Thus, it is very interesting and valuable to further inves-
tigate corresponding penalty methods, especially to study the relationships between
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the (exact and inexact) penalty and the existences of some appropriate separations in
the IS, by means of ISA, and we will make effort to do it in our future work.
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