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An implicit, second-order space and time discretization scheme together with a parallel
multigrid method involving a strip grid domain partitioning has been developed to solve
fully coupled, nonlinear phase field equations involving solute and heat transport for mul-
tiple solidifying dendrites. The computational algorithm has been shown to be stable and
monotonously convergent, and allowed time marching steps that were 3–4 orders of mag-
nitude larger than those employed in similar explicit approaches, resulting in an increase of
3–4 orders of magnitude in computing efficiency. Full solute and thermal coupling was
achieved for metallic alloys with a realistic, high Lewis number of >104. The parallel mul-
tigrid computing scheme is shown to provide a scalable methodology that allowed the effi-
cient use of distributed supercomputing resource to simulate the evolution of tens of
complex shaped 2D dendrites in a computational domain containing tens or even hundreds
of millions of grid points. The simulations have provided insight into the dynamic interplay
of many growing dendrites in a more realistic fully coupled thermal-solute condition, cap-
turing for the first time fine scale features such as dendrite splitting.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Since the successful demonstration of the phase field (PF) approach for the simulation of dendrite shape during solidifi-
cation by Kobayashi in 1994 [1], the PF method has been developed intensively worldwide for the simulation of pure metal
and alloy dendrite microstructural evolution [2–7]. The PF method employs a diffuse interface concept with a continuous PF
variable / that varies smoothly but steeply across a diffuse interface that represents the separation between solid and liquid
phases and avoids the need for explicit tracking of the physical position of the solid–liquid interface [8]. Generally, the evo-
lution of / is governed by the spatial and temporal distribution of alloy internal energy (specific and latent heat) and the
interface gradient energy, and the introduction of / produces a set of partial differential equations (PDEs) governing the
phase field, solute and temperature. Because temperature and the composition of both liquid and solid phases in an alloy
are linked by thermodynamic considerations, the PDEs are strongly coupled and non-linear, and consequently are difficult
to solve efficiently. Hence, in most of the studies concerning PF based simulations of dendrite evolution during solidification
reported so far simplified version of the PDEs have been used to decouple the thermal and solute fields e.g. dendrite growth
in an isothermal field (without transient heat transfer) [9], at a constant pre-determined cooling rate [10], or under an ap-
plied predefined and fixed thermal gradient [11,12]. Finite difference discretization and an explicit time-marching method
have generally been used to solve the discretized PDEs. Consequently, in order to make the complex, coupled case of alloy
. All rights reserved.
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dendritic solidification tractable, the resulting simulations either omit some of the underlying physics, or predict unrealistic
dendrite morphologies compared with reality. Further serious challenges concern the time-stepping constraint and small
discretization distances required for stability in the explicit method so that computing times become enormous and even
the most powerful supercomputers can calculate dendrite shape evolution for only a few tens of dendrites, making it very
difficult, if not impossible, to simulate microstructures over meaningful volumes of material with a sensible computer bur-
den, and with sufficient underlying physics (linked solute and thermal transport), to be insightful for practical solidification
problems.

To take the coupled thermal-solute effect into account, Karma and Rappel [13,14] and Ramirez et al. [15] have recently
developed a coupled thermal-solute PF model for dilute binary alloys. By introducing a term named the ‘‘anti-trapping’’ cur-
rent to the solute conservation equation, non-equilibrium effects such as interface stretching and surface diffusion effects
arising when the solid and liquid diffusivities are unequal were eliminated, and very good quantitative agreement between
simulation and analytical equations based on the Gibbs–Thomson equation for curvature effects on solid–liquid interfaces
were obtained. However, the required coupling of a thermal field into the solidifying system introduces further computing
complexity due to the multi-scale character of the very large difference between the thermal and solute diffusion rate char-
acterized by the Lewis number i.e. the ratio between the thermal and solute diffusivities, which is typically �104 for metallic
alloys. As a consequence, for the study of fully coupled thermal-solute dendrite growth in metallic alloys, typically only one
quarter or half of a solidifying primary dendrite can be simulated, and even then an artificially low Lewis number of order of
magnitude 101–102 must be assumed [15] in order to reduce computational cost.

In an effort to address more practical Lewis numbers, length and time scales, implicit rather than explicit algorithms have
been developed. Rosam et al. [16,17] presented an adaptive mesh, multigrid algorithm and showed that this approach could
simulate successfully dendrite shape evolution during solidification at a lower computational cost by refining the discretized
grid at the diffuse interface area only. More importantly, due to the inherent high stability of the implicit approach, limits on
the Lewis number were removed. In comparison with the other numerical methods that might be applied to phase field
equations such as the generalized minimal residual (GMRES) or conjugated gradient (CG) [18], a multigrid approach can pro-
vide solutions involving a number of computational operations that are near linearly proportional to the problem scale or
dimension [19].

In summary, the many phase field approaches to the simulation of the way in which dendrite shape evolves during solid-
ification usually suffer from one or more of the following restrictions:

(1) artificially low Lewis number,
(2) very small length and time scales associated with the explicit method,
(3) a decoupling of thermal and solute fields (that are strongly coupled in practice), and
(4) only a few dendrites can be considered and therefore microstructure prediction is non-sensible.

In this paper we present a new numerical approach with dramatic increases in computational efficiency for the phase
field method in order to simulate the evolution of dendritic microstructures, including multiple dendrite growth, impinge-
ment and solute segregation. The approach is a major extension of the multigrid algorithm applied by Rosam et al. [16,17]
but implemented here with a new highly parallelized computing scheme. As a consequence of the improved robustness and
computational efficiency, we then present results for the first time of multiple dendrite growth for realistic Lewis numbers of
�104 corresponding to metallic alloys in a fully coupled thermal-solute field, including secondary dendrite arm stretching
and dendrite impingement.
2. The phase field model

2.1. Governing equations

The coupled thermal-solute PF model for the solidification of dilute binary alloys proposed by Ramirez et al. [15] was
adopted in this study. The governing PDEs are:
@/
@t
¼ �K/

dF
d/

ð1Þ

@c
@t
¼ ~r � Kc

~r dF
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�~jat
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ð2Þ
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where t is time, /, c, T are phase field, solute concentration (molar), and temperature respectively, K/ and Kc are constants, a
is thermal diffusivity, L is latent heat, and cp is alloy specific heat. F is the system free energy and during the solidification of a
dilute binary alloy is given by [15]:
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where r is the gradient free energy coefficient, fAB denotes the bulk free energy density of a binary mixture of A and B atoms/
molecules,~jat is an ‘‘antitrapping’’ current introduced by Karma [8] to counter-balance spurious effects at the PF diffusion
interface:
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where W0 denotes the interface thickness, c1 is the initial solute concentration, and k is equilibrium concentration partition
coefficient obtained from the binary alloy phase diagram.

According to thin interface limit analysis [8,15], the anisotropic dimensionless forms of the PF equations can be written
as:
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where A(w) = 1 + e cos[x(w � w0)] is an anisotropy function and e denotes the amplitude of the anisotropy strength, x is the
symmetry pattern coefficient (x = 4, 6 represents a four and six fold crystal structure, respectively), and w indicates the ori-
entation of the dendrite i.e. the angle between the main arm and the x axis ðw ¼ arctanð/y=/xÞÞ. Le is the Lewis number, and
M is a scaled slope of the alloy liquidus (assuming a straight line) in the binary alloy phase diagram i.e. M ¼ jmjð1� kÞ=ðL=cpÞ
where m is the actual slope of the liquidus taken from the phase diagram.
U ¼
2c=c1

1þk�ð1�kÞ/� 1

1� k
ð9Þ
and
h ¼ T � TM �mc1
L=cp

ð10Þ
are the dimensionless solute and temperature respectively; TM is the melting temperature of pure element A, and k is a scaled
parameter with its reciprocal measuring the height of the dimensionless energy barrier (H) of the double well potential
[8,15]:
k ¼ 15L2

16HcpTM
¼ 15RTMð1� kÞL

16v0Hcpjmj
ð11Þ
where v0 is molar volume.
In the phase field equation, modeling of the alloy system energy fluctuation is commonly achieved by introducing a noise

term to each of Eqs. (6)–(8) [14]. In this study, a single noise term _n was introduced in Eq. (6) and was implemented using a
Gaussian random number with specific amplitude, an approach similar to that used by Mullis [19] for the simulation of the
solidification of pure Ni. As discussed later, a single noise term embedded in the source term in Eq. (6) not only introduces
fluctuations in the temperature field, but also in the solute field via the phase field variable /.

In Eqs. (6)–(8), the time and length are scaled by the relaxation time s0 and diffuse interface width W0, respectively, and
~D ¼ ðD � s0Þ=W2

0 and ~a ¼ Le � ~D are dimensionless solute and thermal diffusivities. The physical time and length can be recov-
ered via the following equations [15]:
W0 ¼ d0
k
a1

ð12Þ
s0 ¼
d2

0

D
a2

a1
k3 ð13Þ
where d0 is the thermal capillary length, i.e. d0 = C/(L/cp), C is the Gibbs–Thomson coefficient and D is the solute diffusivity.
According to thin interface limit analysis, a1 = 0.8839 and a2 = 0.6267 [15].
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2.2. Boundary conditions and energy source terms

A Neumann boundary with zero fluxes is applied to Eqs. (6)–(8) and therefore there are no heat and solute flux across the
boundaries. In order to simulate cooling (or heating during melting), an ‘‘artificial’’ energy source term _q is introduced in Eq.
(8), acting as either a heat source ( _q < 0) or sink ( _q > 0) to numerically mimic the effect of the heat flux into/out of the com-
putational domain:
@h
@t
¼ ~ar2hþ 1

2
@/
@t
� _q ð14Þ
In the approach presented here, there is no nucleation barrier to the transformation of liquid to solid, and growth of solid
occurs on pre-existing spherical solid ‘‘seed’’ crystals introduced into the computational domain. In this way, the simulation
of many dendrites with latent heat release under a heating/cooling condition can be performed, and the benchmark tests
described later show that this approach gives a good qualitative approximation to real solidification conditions.

2.3. The orientation field

In the case of multi-dendrite growth with randomly oriented crystals, the orientation of the dendrite is usually addressed
by applying extra equations describing the orientation field. In these studies, the free energy equation is thus modified by
including a term related to the dendrite orientation within a fixed reference frame. However, there are concerns that this
approach is unphysical because the free energy should not be dependent on the reference frame of the system. To address
this concern, extensive work has been conducted towards achieving the invariant formulation of the free energy under rota-
tion of the reference frame [5,20–22]. Because the focus of our study is on the dendrite growth and morphology evolution, a
simpler approach for dendrite orientation is employed comprising two steps. First, the orientation of each of the dendrites is
randomly specified with a pre-existing solid seed introduced in the computational domain. Second, as the dendrite grows
very small volumes of liquid are added/transformed to solid, the crystal orientation for this new increment in solid is as-
sumed the same as that of the local crystal orientation of the dendrite. In other words, the dendrite grows by transformation
of nearby liquid into solid of the same orientation, which is physically similar to the real case and consistent with numerical
approaches used in these sharp interface methods [23,24].

3. Numerical methods

3.1. Space and time discretization

Eqs. (6)–(8) were discretized on a two dimensional (2D) Cartesian square grid of equal spacing Dx using a finite difference
(FD) scheme. For the first-order derivative of a variable, i.e. @/=@x or @/=@y, a simple central discretization was used, and for
the Laplace operator, a compact 2nd order nine point stencil was employed [25]:
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where the superscript n indicates time step. In order to maintain 2nd order precision for both space and time during discret-
ization, a 2nd order backward difference formulae (BDF2) method was employed for time discretization that retrieves infor-
mation from two previous time steps [17]:
@u
@t
¼ un þ a0 � un�1 þ a1 � un�2

b� Dt
ð17Þ
where a0 = �4/3, a1 = 1/3, and b = 2/3. Rosam et al. [16,17] proved that the BDF2 method for time discretization is more sta-
ble than that of the 1st order Euler method. Accordingly, the final forms of the discretized Eqs. (6)–(8) are:
G/ð/nþ1Þ ¼ PS;/ þ p0;/

X
i;j

/nþ1 þ px;/ /nþ1
iþ1;j � /nþ1

i�1;j

� �
þ py;/ /nþ1

i;jþ1 � /nþ1
i;j�1

� �
¼ R/ ð18Þ

GUðUnþ1Þ ¼ pS;UUnþ1
i;j þ p0;U

X
i;j

Unþ1 þ px;U Unþ1
iþ1;j � Unþ1

i�1;j

� �
þ py;U Unþ1

i;jþ1 � Unþ1
i;jþ1

� �
¼ RU ð19Þ

Ghðhnþ1Þ ¼ pS;hh
nþ1
i;j þ p0;h

X
i;j

hnþ1 ¼ Rh ð20Þ
A detailed description of the related terms in Eqs. (18)–(20) is given in Appendix A.
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3.2. Full approximation storage (FAS) multigrid method

To solve the nonlinear PF Eqs. (18)–(20), the FAS multigrid method that was first introduced by Brandt [26,27] is em-
ployed. The advantage of using the FAS method is that global linearization commonly needed in the Newton process (used
for nonlinear problems) is avoided and the only linearization required is a local one in order to define the relaxation proce-
dure e.g. Gauss–Seidel–Newton procedure. To solve a function AkðukÞ ¼ fk the FAS multigrid algorithm includes the following
steps [25]:

(1) If k = 1, solve Ak(uk) = fk directly.
(2) Pre-smoothing steps on the fine grid: ul

k ¼ Sðul�1
k ; fkÞ; l ¼ 1; . . . ;v1.

(3) Computation of the residual: rk ¼ fk � Akuv1
k .

(4) Restriction of the residual and solution: rk�1 ¼ Rk�1
k rk; ûk�1 ¼ R̂k�1

k uv1
k .

(5) Set fk�1 ¼ rk�1 þ Ak�1ðûk�1Þ.
(6) Call c times the FAS scheme to solve Ak�1ðuk�1Þ ¼ fk�1.
(7) Coarse-grid correction: uv1þ1

k ¼ uv1
k þ Ik

k�1ðuk�1 � ûk�1Þ.
(8) Post-smoothing steps on the fine grid: ul

k ¼ Sðul�1
k ; fkÞ; l ¼ v1 þ 2; . . . ;v1 þ v2 þ 1.

For restriction of the residual, as indicated above by operator R, the full weight (FW) operator is adopted, while a direct
injection is used for the restriction of the solution u, as indicated by R̂. A bilinear operator is used for the interpolation, as
indicated by I. Further details of the transfer operators for restriction and interpolation can be found in [25]. For relaxation,
as denoted by operator S, a Gauss–Seidel line smoother is employed to achieve a higher degree of parallelism. This smoother
is composed of two half-steps: during the first half step, the odd lines (or columns) of the grid points are smoothed, after
which the even lines (or columns) are smoothed using the updated values of the neighbor grid points. In this way, each
half-step of the relaxation is fully parallelized. The smoothing process is carried out using the Gauss–Seidel method:
ulþ1 ¼ ul � GuðulÞ � R0u
pl

S;u

ð21Þ
where u denotes the target relaxation variable, i.e. /, U, or h. Gu(ul) is the target equation i.e. (18)–(20), and R0u is the right
hand side term during the smoothing procedure, which is always different from the equation right hand side terms Ru in
Eqs. (18)–(20).

The relaxation for U and h is straight-forward. However for the non-linear PF variable /, a Newton–Gauss–Seidel method
is employed, and pS,/ is evaluated by the derivation of the PF source term PS,/ using Eq. (29) (in Appendix A):
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3.3. Parallel computing scheme

In general, parallel computing of discretized PDEs can be realized either by using a fast sequential solver with its com-
ponents parallelized as efficiently as possible or by decomposing the given problem into a number of sub-problems or
sub-domains and then solving them separately in a parallel manner [25]. Although global multigrid partitioning and domain
decomposition are, conceptually, quite different, in practice certain variants of both approaches are similar or may even lead
to the same algorithm.

In this study, a sequential FAS multigrid solver with parallelized multigrid components is employed. The crucial multigrid
aspects with respect to parallelization are usually: (1) the smoothing procedure; (2) the transfer operations (restriction and
interpolation); and (3) the residual determination procedure. To achieve a high degree of parallelism, two important issues
need to be addressed: (1) grid partitioning of the computing domain; and (2) communication between adjacent processes. In
addition, because the number of grids points is different at different grid levels, the communication ‘‘overhead’’ becomes
worse towards and especially at the coarsest grid level and therefore special care needs to be taken.

3.3.1. Grid partitioning
The purpose of grid partitioning of a discretized domain is to distribute the entire computing overhead to multiple pro-

cessors, and trying to achieve the same computing performance for each processor. A rectangular domain assumingly con-
sisting of M � N (where M = 2m, and N = 2n) cells can be partitioned either into sub-squares with each containing
approximately MP � NP cells or strips with each having M � NP (or MP � N) cells. The latter can be programmed using a sim-
pler communication mechanism and a full line smoother, and therefore is adopted here to further divide the square domain
into Nproc = 2p subdomains (processes) as shown in Fig. 1a. The number of cells in each of the Nproc sub-domains is identical
and equal to 2m � 2n�p. In order to achieve the communication between neighbor processes efficiently, as discussed in the
following section, two overlap lines of cells were added at the left and right sides of the sub-domain respectively, as shown in
Fig. 1a. Consequently, for each sub-domain, and corresponding to each process, there are a total of 2m � 2n�p+1 cells. One of



Fig. 1. Schematics show (a) grid partitioning of the computational domain and (b) communication mechanism between adjacent processes for parallel
computing.
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the significant advantages of distributing the computational load to 2p processes is that in terms of grid points, the structure
of the multigrid components of each process stays the same and the computational effort is practically divided into 2P parts,
which are independent of one another, achieving the so called single program multiple data (SPMD) [28] architecture.
3.3.2. Communication between processes
For each process denoted by IP in Fig. 1b, communication occurs only locally with nearest neighbors i.e. IP� 1 and IP + 1. In

order to reduce communication overhead, a thin overlap area of width 1 is applied to copy the data located in its neighbor
sub grids (Fig. 1b). In this way, during communication, each process sends all data belonging to one side of the overlap area
of a neighbor sub-grid collectively i.e. in one long message, to its corresponding neighbor process and receives the data cor-
responding to its own overlap area for that neighbor in a similar efficient fashion.

A careful examination of the multigrid procedure reveals that data communication only needs to be carried out during the
smoothing process and the transfer operations. For smoothing, during the first half step of relaxation sweeps, the odd col-
umns of data (as indicated in Fig. 1b by column number 1, 3, NP� 2, etc.) can be updated according to Eq. (21), and no com-
munication is needed. The second half step of relaxation can then be performed on the even columns of data (as indicated in
Fig. 1b by column number 2, 4, NP� 3, etc.) using the newly calculated values from the first half step. After the whole relax-
ation procedure is finished, the newly updated data in the first even column, i.e. column 2 and the last even column, i.e. col-
umn Np � 3 (as shown in Fig. 1b) needs to be sent from the current process IP to its pre-process IP � 1 (as indicated in the
upper part of Fig. 1b by the solid arrow line), and post-process IP + 1 (as indicated in the upper part of Fig. 1b by the dash
arrow line), respectively. The receiving operations are performed accordingly and the new data is stored in the overlapped
region. Similar communication occurs during restriction and interpolation.
3.3.3. Coarsest level procedure
As discussed above special care has to be taken at the coarsest level of the parallel multigrid algorithm. Taking the ‘‘V’’

cycle for example, when the multigrid reaches the coarsest level, there must be at least one cell (or two columns) of data
left for each process. If the process number is Nproc = 2p, the domain of the target problem at coarsest level must then
include at least 2p � 2p cells. The multigrid algorithm can be preceded either by further shrinking the dimension of
the domain through more communication or sending the related data from all the processes to another single process
(or all processes) and then retrieving the solution there. In practice, the second way is always more efficient (which is
also adopted in this study) because the computational costs (operations and time) are always trivial for a problem of this
scale.

After the data, including parameter and solution matrices, have been transferred to a single process (such as the root pro-
cess), a fast solver such as a further multigrid (employed here), LU decomposition, or preconditioning CG or GMRES can be
employed for solving the linear equations e.g. solute and temperature equations. For the PF equation, i.e. Eq. (18), a Newton-
Line-Searching method was employed due to its global convergence. Details of this method can be found in [18].
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3.3.4. Analysis of the parallel performance
Two principles are used here to judge the performance of the parallel algorithm. The first is speedup (denoted here as Sp),

which is defined as the ratio of the time taken to solve a problem on a single process element to the time required to solve
the same problem on a parallel computer with Nproc identical processing elements. The second is parallel efficiency (denoted
here as E), which is a measure of the fraction of time for which a processing element is usefully employed; it is defined as the
ratio of speedup to the number of processing elements [28], i.e. E = Sp/Nproc. An ideal parallel system should be Sp = Nproc and
E = 1, but due to the inevitable communication overhead the actual speed-up will be less than Nproc and the efficiency will be
a value between 0 and 1.

Firstly a two dimensional square domain (which is commonly used for the PF simulation) is taken for an example, assum-
ing the domain has a size of N � N cells (equivalent to (N + 1) � (N + 1) grid points). For simplicity, the number of arithmetic
operations (including smoothing, restriction, interpolation, and residual estimation, etc) needed for a single grid point is as-
sumed to be the same at all grid levels and can be characterized by a fixed computing time tcomp. If the infinite Taylor series is
used and taking the ‘‘V’’ cycle for instance, the required total computing time for a sequential multigrid algorithm is
tseq = (N + 1)2 � tcomp � (1 + 1/4 + 1/16 + � � �) = 4/3 � (N + 1)2 � tcomp. For a parallel system, the communication time needed
for a message of length Lm is tcomm = ac + bc � Lm where ac is the start-up time (or latency) which has to be spent whenever
a message is sent, and 1/bc is the bandwidth of the respective communication channel [25]. If N = 2n and the coarsest level
has 2P � 2P cells, then for the multigrid algorithm there are totally n � p grid levels.

Considering the same problem used for the sequential algorithm calculated using Nproc identical processes and assuming
the total elapsed time is tpar, and for the current proposed model:
tpar ¼ ~tcal�f þ ~tcal�c þ ~tcm�f þ ~tcm�c ð23Þ
where
~tcal�f ¼
4
3
� N

Nproc
þ 1

� �
� ðN þ 1Þ � tcomp ð24aÞ

~tcal�c ¼
4
3
� ðNproc þ 1Þ2 � tcomp ð24bÞ

~tcm�f ¼ l1½ðn� p� 1Þac þ 2ðN þ 1Þbc� ð24cÞ

~tcm�c ¼ l2½ac þ cðNproc þ 1Þ � bc� ð24dÞ
are the elapsed time for computation before reaching the coarsest grid level, time for computation at the coarsest level, time
for communication before reaching the coarsest grid level, and the time for communication at the coarsest level, respec-
tively. c, l1, and l2 are constants. The parallel speed-up is then:
S�1
p ¼

tseq

tpar
¼ N=Nproc þ 1

N þ 1
þ Nproc þ 1

N þ 1

� �2

þ Ccomm ð25Þ
where
Ccomm ¼
3
4

l1ðn� p� 1Þ þ l2

ðN þ 1Þ2
ac

tcomp
þ 2l1

N þ 1
þ l2cðNproc þ 1Þ

ðN þ 1Þ2

 !
bc

tcomp

 !
ð26Þ
The ideal parallel speed-up (disregarding the communication terms) is:
S�1
p ¼

N=Nproc þ 1
N þ 1

þ Nproc þ 1
N þ 1

� �2

ð27Þ
The ideal parallel efficiency is then:
E�1 ¼ N þ Nproc

N þ 1
þ Nproc þ 1

N þ 1

� �2

Nproc ð28Þ
From Eq. (28), the parallel efficiency can be improved by either increasing the size of the problem domain N or by reduc-
ing the number of the processes applied during the parallel computation. Therefore, the current parallel algorithm is suitable
for a large size problem with a comparatively small number of processes. If the communication effect is considered, i.e. by
taking Ccomm into account, the overall efficiency reduction will be further dependent on the structure and efficiency of the
parallel system employed.

The parallel code was developed on the 640-core (1.9 TB RAM) supercomputing cluster named as SAL housed at the
Oxford Supercomputing Center using C++ language and two message passing libraries namely Message Passing Interface
(MPI) [29] and Open Multi-Processing (OpenMP) [30]. In the program, OpenMP was used in conjunction with MPI to provide
a second level of parallelism, resulting in an overall so-called hybrid program structure. The hybrid structure of the code was
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employed to allow implementation on a supercomputing system comprising a combination of distributed and shared mem-
ory systems [28,31]. The grid partitioning, job dispatching and data communication were handled in the first level of paral-
lelism i.e. controlled by the MPI processes on the distributed memory level. For each MPI process, computing tasks such as
matrix and vector related operations were then handled by the shared memory system through the second level parallelism
i.e. OpenMP.

4. Model validation and parameter study

Validation for the PF model was carried out by comparing the simulated solute concentration at a dendrite tip with that
calculated according to the well-known velocity-dependent Gibbs–Thomson condition [15] Ui ¼ ½�d0ð1� 15eÞ=q� hi�=Mc1
where Ui and hi are the dimensionless solute concentration and temperature at the dendrite tip. The interface temperature hi

is determined at / = 0.9 [15]. The dendrite tip radius of curvature q is determined using q ¼ ð@/=@xÞ=ð@2/=@y2Þ [15,32]. It is
worth stressing that dendrite tip velocity, radius of curvature, Peclet numbers etc simulated using the PF model can also be
compared with classical dendrite growth theories e.g. LGK (according to Lipton, Glicksman and Kurz) and LKT (according to
Lipton, Kurz and Trivedi) [33]. In this study, we focus on the evolution of the dendrite morphology, testing the validity of the
PF model, and the efficiency of the numerical schemes developed.

4.1. Isothermal dendrite growth

Firstly isothermal dendrite growth was simulated in a square domain containing 1024 � 1024 cells with dx = dy = 0.8, and
a solid nucleus with a radius R0 = 28d0 seeded in the liquid alloy at the bottom-left corner with symmetrical boundary con-
ditions applied at the bottom and left boundaries. Isothermal dendrite growth is initiated by imposing a solutal undercooling
of X ¼ ðc0

l � c1Þ=½ð1� kÞc0
l � to the system and Mc1 = 1 � (1 � k)O, and U0 = O/[1 � (1 � k)O] where U0 is the fixed value of U

in the left-hand side of Eq. (6). The values of the system parameters adopted in this study are the same as those in [8,15], i.e.
O = 0.55, e = 0.02, k = 0.15, and the scaling parameter k = 3.1914.

The PF equations were solved using a simple adaptive time marching scheme similar to that used in [17]. A method based
on proportional integral (PI) control theory [18] was used to control the marching of next time step in order to avoid unstable
cyclic adaptivity: Dtnþ1 ¼ S � Dtn � err�b

n � errc
n�1 where S < 1 is a safety factor (0.8 was used here), and errn and errn�1 are the

errors from the current and last time steps. According to [18] b and c were chosen to be 0.133 and 0.233 respectively.
Fig. 2a shows the evolution of the calculated truncation error of / and U as a function of the number of simulation steps

(against the left y axis). The truncation error of U decreases abruptly from its initial value (about 6.6 � 10�4) and then
reaches a much lower value (about 10�5) within the first 1000 time steps. On the other hand, the truncation error of / in-
creases gradually at first and then reaches an approximately constant value until the end of the simulation. Fig. 2a also shows
the evolution of the adaptive time step as a function of the number of simulation steps (against the right y axis). The time
step increases and reaches a maximum (about 0.36) and then decreases slightly, after which it rises again to the end of the
simulation. This qualitative shape of this history for the adaptive time step has a similar evolution shape to that reported by
Rosam et al. [16].

By applying the implicit multigrid algorithm, a comparatively large time step was used successfully during the simula-
tion. As shown in Fig. 2a, at a relatively small truncation error, i.e. �7.0 � 10�4, the final time step can be as large as 0.5,
Fig. 2. (a) The evolution of the adaptive time step and the calculated truncation errors of /, U as a function of simulation steps, and (b) comparison between
U calculated using PF model and the Gibbs–Thomson condition.
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�6.25 times larger than the limit used in the explicit algorithm [17]. By employing the adaptive timing and parallel comput-
ing schemes, the simulation was finished within 1.6 h using an eight core computing node in the SAL cluster. It is worth
stressing that the efficiency of the method is not fully demonstrated until the temperature equation is also considered as
discussed later.

Fig. 2b shows a comparison of U (at the tip of the evolving dendrite) obtained using the PF model and the same according
to the Gibbs–Thomson analysis under the same condition (there is also an insert in Fig. 2b showing the contour maps of the
solute and phase fields). The x axis tD=d2

0 is dimensionless time where D and d0 are solute diffusivity and capillary length,
respectively. As seen from Fig. 2b, there is good agreement for the solute concentration at the dendrite tip with only a
few percent difference at all stages of the evolving dendrite.

One of the parameters for the current phase field model, namely the scaling parameter k is usually chosen arbitrarily in
literature. As far as accuracy is concerned, it is recommended that k should be chosen to be as small as possible (because
W0 / k according to Eq. (12)). However, from a computational point of view a decrease of k usually delays the evolving rate
of a growing dendrite, leading to elongating of the computing hours, which is not favorable in practice. Here, tests were also
performed concerning the effect of k on the dendrite morphology.

Fig. 3a–c show the calculated dendrite (one quarter) morphologies (retrieved at / = 0) with different-sized initial seeds,
i.e. R0 = 15d0, 28d0, and 44d0, and all the profiles are retrieved when the dendrite tips reach the same position (xtip = 866.54 d0

away from the seed center, corresponding to a dimensionless length of 300 at k = 3.1914). Each profile in Fig. 3a–c shows the
effect of a different scaling parameter, varied from 1.5957 to 12.7656. In Fig. 3a–c, the main arms of the dendrite propagate
along x and y axis, with both lengths scaled by d0.

The influence of k on the dendrite profiles is amplified as the seed size decreases. The most prominent effect is the change
in the morphology of the dendrite between the primary x and y dendrite arms, for example in Fig. 3a, this region changes
from concave to convex curvature as k is increased from 1.5957 to 12.7656. This effect is much less pronounced in Fig. 3c
for larger initial seed crystals dimensions.
4.2. Convergence evaluation

Fig. 4a shows the dendrite profiles (/ = 0) calculated using different spatial discretizations (dx = 0.2, 0.4, 0.8, 1.2, and 1.6)
for an initial seed radius of 15d0. All the profiles were retrieved when the dendrite tips reach the same position as that shown
in Fig. 3. In Fig. 4a, the local area near the seed center is enlarged and shown in detail in the zoom-in insert. The profile con-
verges as the spatial step decreases and a clear deviation of the profile can be observed when the spatial step dx > 1. But such
deviation only happens locally near the location of the initial seed, and as the seed grows, it gradually vanishes along the
dendrite arms. Using this result, the spatial time step dx is subsequently chosen as 0.8 in the following simulations to eval-
uate both accuracy and efficiency. Fig. 4b shows the calculated dendrite profiles using five constant time steps, 0.04, 0.08,
0.32, 0.64 and 1.60 (the corresponding time step limit for the explicit method is approximately 0.08) and one adaptive time
scheme. Notice that relatively ‘‘large’’ values i.e. dt > 0.32 were used to test the upper limit for maintaining the stability of the
algorithm. As shown in Fig. 4b, excellent convergence can be achieved even when the time step is increased to 0.64, and the
profiles are almost overlapping for time steps of 0.04, 0.08, 0.32 and 0.64. There is deviation of shape when the time step is
further increased i.e. from 0.64 to 1.60. The most significant difference is that the concave structure in between the two pri-
mary arms tends to stretch further towards the seed centre as the time step is increased. Through this type of numerical
tests, it was determined that for this isothermal case, the stability limit of the current algorithm was slightly higher than
dt = 1.6 (approximately 20 times larger than the limit required for an explicit algorithm). To keep the time step in a ‘‘safe’’
Fig. 3. Calculated dendrite morphologies (the / profile) under different scaling parameters k = 1.5957, 3.1914, 6.3826, 9.5742, and 12.7656 at different
initial seed radius, i.e. R0: (a) R0 = 15 d0, (b) R0 = 28 d0, and (c) R0 = 44 d0.
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regime, the incremental dendrite growth should be restricted. Dendrite growth is mostly controlled by the diffusion of the
solute (because heat transfers 3–4 orders of magnitude faster than solute), and so dt < dx2/4D. In this respect, the time step
for the following cases presented below in which solute was coupled with temperature was set at dt = 0.8 � dx2/4D, which is
8000 times larger than the time step for coupled conditions in the more commonly used explicit algorithm.
4.3. Parallel efficiency and scalability

Applying the same isothermal case, Fig. 5 shows the related testing results concerning the parallel efficiency and scala-
bility of the method. All calculations were performed to a duration of 100 dt. The problem size was increased progressively
from #O = 512 � 512 to #O = 8192 � 8192, with each simulation increased by a factor of 2. For each case, the process num-
ber used for calculation i.e. Nproc was changed from 1 to 64 (also each time increased by a factor of 2). Calculations were
stopped when there was more than 10% deviation of the calculation time to that predicted by the linear scalability theory
was observed.

Fig. 5a shows the calculation time against the number of processes. The symbols indicate the simulation results while the
lines denote the ideal trend for the calculation time as a function of the process number (simply calculated by the calculation
time using one process divided by Nproc). For the smallest case, i.e. #O = 512 � 512 the calculation time decreases linearly as
the process number increases until Nproc = 8 at which point the simulation time is significantly larger than the ‘‘ideal’’ calcu-
lation time. This situation is greatly improved as the problem size, i.e. #O is increased. As seen from Fig. 5a, the same point is
reached at Nproc = 16 when #O = 1024 � 512, Nproc = 32 when #O = 2048 � 1024, and Nproc = 64 when #O = 4096 � 4096. This
is expected, because the bigger the computing domain is, the more the effort will be used for calculation rather than com-
Fig. 5. Parallel efficiency and scalability tests using the proposed method for the isothermal dendrite growth case with the calculation time versus (a) the
number of the processes under different sizes of computing domain and (b) the number of mesh cells under different numbers of the parallel processes.
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munication, and consequently the parallel efficiency will be improved. However, such improvement cannot be limitlessly
increased because the data length during communication will also be increased.

Fig. 5b shows the calculation time against the number of the mesh cells. Here, the ‘‘ideal’’ trend lines were determined by
the calculation time under #O = 8192 � 8192 = 226 multiplied by #O/226. The symbol type indicates the process number dur-
ing the simulation. The parallel scalability of the method is shown to be extremely high. The calculation time increases lin-
early as the domain size increases from #O = 512 � 512 to #O = 8192 � 8192. This situation applies almost ideally when the
process number, i.e. Nproc is 1, 2 and 4. For the case when Nproc reaches 8, there is a deviation of the simulation time (from the
linear trend) when #O = 512 � 512. This is also as expected because using too many processes to simulate a ‘‘small’’ case
does not extract the benefit of this particular method.

5. Dendrite evolution in the coupled thermal-solutal condition

For testing the ability of the proposed parallel multigrid approach, a multi-dendrite simulation was performed on a rel-
ative large, square domain of 8192 � 8192 cells by applying 64 processes. An Al-4wt%Cu alloy was simulated using param-
Table 1
Physical properties of the Al–Cu alloy used during simulation [11,33].

Parameter/Physical property Value

Latent heat of melting, L (J kg�1) 3.82 � 105

Specific heat, cp (J kg�1 K�1) 1.05 � 103

Density, q (kg m�3) 2.61 � 103

Liquid solute diffusivity, D (m2 s�1) 3.0 � 10�9

Lewis number, Le 104

Liquidus slope, m (K/wt%) �2.6
Initial alloy composition, c1 (wt%) 4
Equilibrium partition coefficient, k 0.15
Anisotropy strength, e 0.03
Thermal capillary length, d0 (m) 6.6 � 10�10

Gibbs–Thomson coefficient, C (K m) 2.4 � 10�7

Fig. 6. Simulated dendrite growth in a coupled thermal-solute condition in a domain of 8192 � 8192 mesh grids with 20 initial random seeds at different
time, i.e. tD=d2

0 = (a) 8191.7, (b) 24575.1, (c) 40958.5, (d) 65533.6, and (e) 81917. The solute concentration for (e) measured in c/c1 is shown in (f).
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eters shown in Table 1. Other important parameters were: (1) the noise amplitude _n = 1 � 10�3; (2) a constant time step
dt ¼ 0:8� ðdxÞ2=ð4� eDÞ, 8000 times larger than the restrict limit employed in explicit algorithms because the adaptive time
scheme is no longer suitable when the noise term is introduced; (3) the spatial step dx = 0.8; and (4) the scaling parameter
k = 5 was chosen in order to facilitate the development of dendrites. By applying these parameters the final size of the com-
puting domain is 37072 d0 � 37072 d0, which represents a physical domain of 25 � 25 lm. Another important parameter is
the artificial energy source (or drain) term _q in Eq. (14) which was set at 1.3 � 10�3 after a number of numerical tests were
undertaken to select conditions that mimic cooling of the system and the evolution of realistic dendrite morphology, such as
high-order dendrite arm branching and solute segregation. The physical formulation of the heat source (or drain) term can be
restored by utilizing the real time and length scales into _qreal ¼ qL

s0
� _q, from which the actual value of the heat drain term

_qreal � 1:0� 10�4Wlm�3. The computing domain was initialized with a uniform undercooling of Dh = �0.05 (�18 K) and
the liquid alloy domain was then filled with 20 randomly positioned and oriented solid seeds of R0 = 25d0.
5.1. Dendrite evolution, impingement, solute segregation and heat transfer

Fig. 6a–e show the morphology evolution of the 20 dendrites in the period from tD=d2
0 � 8191.7 to tD=d2

0 � 81917 during
the solidification calculated using 64 processes and taking �18 h. Colors are used in Fig. 6a–e to distinguish different den-
drites. At first, all seeds grow independently and gradually evolve into a four-fold morphology; then as each primary arm
marches into the surrounding undercooled melt, its secondary dendrite arms gradually develop and grow. After the main
arms from different dendrites meet and impinge, the growth of the main arms is restricted, while the higher order branches
gradually grow faster and some of these arms may even overtake the main arm as indicated by the circle in Fig 6c. The sim-
ulation also shows that some dendrite tips split during growth (marked by the arrow in Fig. 6c). This dendrite tip splitting
phenomenon has been extensively observed in experiment and discussed in [34], however, this is the first time such event is
revealed by a PF simulation in the thermal-solutal coupled condition. Fig. 6f shows the solute distribution corresponding to
the dendrite morphology shown in Fig. 6e. As expected, during solidification, strong solute segregation exists among the
high-order dendrite arms especially at their roots.

Fig. 7a–e show the temperature distributions corresponding to Fig. 6a–e. Fig. 7f shows the thermal histories at the
locations marked by 1, 2, 3 and 4 in Fig. 6a. Due to the release of latent heat during solidification, the temperature is always
Fig. 7. Temperature contour maps at tD=d2
0 = (a) 8191.7, (b) 24575.1, (c) 40958.5, (d) 65533.6, and (e) 81917 corresponding to the dendrite morphologies

shown in Fig. 6. The thermal histories at position 1–4 indicated in Fig. 6a are shown in (f).
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higher at the growing interface of the dendrite, especially in locations involving the growth of higher order arms. The differ-
ent stages corresponding to Fig. 7a–e are also indicated in Fig. 7f by (a) to (e). The overall evolution of temperature at dif-
ferent locations is broadly similar: the temperature starts from an initial value (h = �0.05) and reduces quickly until it
reaches a minimum which is followed by a gradual increase (as latent heat is evolved more quickly), and then drops slowly
after reaching a maximum. The turning point in the temperature profile, as indicated in Fig. 7f by P1, denotes the moment
when the secondary branches start growing out from the main arms since the heat release associated with large solid/liquid
area associated with secondary arms decreases the resulting cooling rate of system. The local minimum, as indicated in
Fig. 7f by P2 (corresponding to tD=d2

0 � 16,000) indicates the moment when a local equilibrium between the cooling and
the heating (resulting from the release of heat) is reached.

5.2. Effect of growth parameters

Simulations were performed for the different growth parameters listed in Table 2 (Case 1 is shown in Fig. 6), and inves-
tigation focused on the magnitude of the cooling term _q (Case 2), the scaling parameter k (Case 3), the anisotropy strength e
(Case 4), and the radius of the initial seed R0 (Case 5), some of which (as discussed in Section 4) were shown to have a strong
Table 2
Simulation parameters and time for case studies with 64 processes.a

Case (#) k e R0 (d0) t Simulation time (hour)b

1 5 0.03 25 1.3 � 10�3 17.3
2 5 0.03 25 1.8 � 10�3 17.4
3 10 0.03 25 1.3 � 10�3 16.6
4 10 0.01 25 1.3 � 10�3 12.3
5 10 0.03 180 1.3 � 10�3 12.7

a The rest parameters are the same as Table 1.
b For Cases 4 and 5, simulation is terminated at t/s0 = 612.7.

Fig. 8. Simulated dendrite morphologies at t/s0 = 408.5 using simulation parameters listed in Table 1; (a)–(e) are corresponding to Case 1 to Case 5 in Table
2, and (f) shows the comparison of dendrite morphology evolved from Seed 1 in more details.
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influences on dendrite morphology in some cases. Fig. 8a–e show the related dendrite morphologies calculated at t/
s0 = 408.5 using the parameters corresponding to Cases 1–5 in Table 2. In order to further clarify the influences of these
parameters, the growth of a single dendrite, evolving from seed 1 (indicated by 1 in Fig. 6a) is retrieved and shown in more
detail in Fig. 8f.

As shown from Fig. 8a and b, an increase in the cooling term _q from 1.3 � 10�3 to 1.8 � 10�3 leads to a more developed
and mature dendrite morphology. Comparison of Case 3 and Case 5 in Fig. 8f shows that as the initial seed radius increases,
extra branches grow between the main arms, as already observed and discussed in Section 4. But this feature, as highlighted
by the zoom-in insert, only survives locally around the seed center. The subsequent growth of the dendrite gives an overall
very similar final dendrite morphology. The effect of the anisotropy strength, (comparing Case 5 and Case 4 in Fig. 8f), is more
dramatic than other parameters. Due to the low amplitude of the anisotropy in Case 4, the dendrite tends to grow in all direc-
tions with much more tip splitting, resulting in a more seaweed-like morphology. Another prominent feature according to
Case 4, as can also be seen from Fig. 8d and f, is that a four-fold structure exists at each dendrite center, which was evolved
from the initial seed. The tip of such structure then grows, acting more like a newly formed seed, into a developed dendrite
morphology.

In theory, by applying the proposed parallel multigrid approach the computing domain of the phase field problem can be
further enlarged (i.e. >8192 � 8192). The overall computing time can be maintained or even reduced as long as the process
number is increased. As mentioned, 64 cores were applied during these tests, which compared with the capacity of the
supercomputers nowadays is rather a smaller number, which is usually approaching an order of magnitude of 104–105. In
this respect, the capacity of the simulation for the two dimensional case could include dendrites in a number of 103–104.
Nevertheless, the physics inside would stay the same.
6. Conclusions

An implicit, parallel multigrid computing scheme has been developed and successfully applied to solve phase field equa-
tions for the simulation of multi-dendrite shape evolution under coupled thermal-solute conditions. Through detailed para-
metric studies, convergence evaluation and computation efficiency analysis, the following conclusions can be drawn:

(1) The parallel multigrid approach is highly efficient and scalable with a well-behaved monotonous convergence char-
acteristic. For metal alloys in the coupled thermal-solute situation with a Lewis number approaching reality i.e.
�104, a time marching step of 3–4 orders of magnitude larger than the limit imposed in explicit algorithms has been
realized without compromising accuracy.

(2) The parallel multigrid approach can efficiently utilize supercomputing resources to simulate many dendrites under
realistic solidification conditions with much less computing time than previous work, including multiple dendrite
growth, impingement, high-order side branching, and solute segregation, overcoming a major restriction of the phase
field approach.

(3) Parametric studies concerning multi-dendrite growth reveal that the dendrite morphology is highly dependent on the
assumed crystal anisotropy strength and the cooling rate, but not on the assumed seed radius and the scaling param-
eter k. Under some circumstances, dendrite growth behavior such as tip splitting not captured in previous simulations
was predicted.

The parallel multigrid approach has been shown to be robust and suitable for solving the two dimensional phase field
problem. However, there are two main points that the current model lacks:

(1) No adaptive mesh was employed during the multi-dendrite simulations. The advantage of the adaptive mesh is that
the mesh is refined only in the interface area, which can lead to an overall improvement in computing performance.
However, the magnitude of the computing residual error is usually increased in adaptive schemes, which in turn is
affected by the noise applied during the simulations. Secondly, a computational load imbalance may arise when a par-
allel scheme is also applied because an adaptive mesh can destroy the load balance of the data with respect to each
parallel process.

(2) Important process physics such as convection, buoyancy, etc were not considered here. Also, the current model
does not consider growth of the grain boundaries at the last stage of the solidification. However, the parallel
multigrid approach should provide a robust and efficient starting point for incorporating these additional
physics.
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Appendix A

The related terms in Eqs. (18)–(20) are given as:
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