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Abstract

For some fourth-order boundary value problems, several new existence theorems on multiple positive,
negative and sign-changing solutions are obtained. The critical point theory and the supersolution and
subsolution method are employed to discuss this problem.
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1. Introduction

In this paper, we consider the existence and multiplicity of positive, negative and sign-
changing solutions to the following fourth-order boundary value problem (BVP):⎧⎨

⎩
u(4) = f (t, u(t)), t ∈ [0, 1]
u(0) = u(1) = 0,
u′′(0) = u′′(1) = 0,

(1)

where f ∈ C([0, 1] × R
1,R1).

Owing to the importance of high order differential equations in physics, the existence and
multiplicity of the solutions to such problems have been studied by many authors, see [2,4–6,
10–12,14,15]. They all obtained the existence of positive solutions provided f is superlinear
or sublinear in u by employing the cone expansion or compression fixed point theorem. In [9],

∗ Corresponding author.
E-mail address: gdhan@mail.xjtu.edu.cn (G. Han).

0362-546X/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2006.03.042

http://www.elsevier.com/locate/na
mailto:gdhan@mail.xjtu.edu.cn
http://dx.doi.org/10.1016/j.na.2006.03.042


2592 G. Han, F. Li / Nonlinear Analysis 66 (2007) 2591–2603

by using the strongly monotone operator principle and the critical point theory to discuss BVP
(1), the authors established some sufficient conditions for f to guarantee that the problem has a
unique solution, at least one nonzero solution, or infinitely many solutions.

In the present paper, by combining the critical point theory and the method of subsolutions and
supersolutions, some new existence theorems on multiple positive, negative and sign-changing
solutions are obtained. Our theorem can deal with the nonlinearity composed by a sublinear
function and a superlinear function; see Example 21 in Section 3.

This paper is organized as follows. In Section 2 we give some preliminaries, including a
critical point theorem which will be used in our main result, the definition of supersolution and
subsolution, and some concepts concerning the partially ordered Banach space. The main results
are established in Section 3.

2. Preliminaries

Let H be a real Hilbert space, E a real Banach space such that E is embedded in H . Let J be
a C2−0 functional defined on H , that is, the differential J ′ of J is locally Lipschitz continuous
from H to H . Assume that J ′(u) = u − Au and J ′ is also locally Lipschitz continuous as an
operator from E to E .

We need the following concept of E-regular.

Definition 1. An operator A is said to be E-regular if there exists a finite sequence {Ei },
i = 0, 1, . . . , n + 1, of real Banach spaces such that

(i) E = E0 ↪→ E1 ↪→ E2 ↪→ · · · ↪→ En ↪→ En+1 = H ;
(ii) A(Ei ) ⊂ Ei−1 and A |Ei

∈ C(Ei , Ei−1) for i = 1, 2, . . . , n + 1.

Remark 2. This definition was introduced by Hofer [8] to overcome the difficulty that in
applications the natural cone in H has empty interior but has nonempty interior in E . Similar
definition also presented in Chang [3].

Theorem 3 ([13]). Assume that A is E-regular, J satisfies the PS condition on H and there are
two open convex subsets D1 and D2 of E with the properties that D1 ∩ D2 	= ∅, A(∂E D1) ⊂ D1
and A(∂E D2) ⊂ D2. If there exists a path h : [0, 1] → E such that

h(0) ∈ D1 \ D2, h(1) ∈ D2 \ D1,

and

inf
u∈D

E
1 ∩D

E
2

J (u) > sup
t∈[0,1]

J (h(t)),

then J has at least four critical points, one in D1 ∩ D2, one in D1 \ D
E
2 , one in D2 \ D

E
1 and

one in E \ (DE
1 ∪ D

E
2 ). Here ∂E D and D

E
mean respectively the boundary and the closure of

D relative to E.

Definition 4. α ∈ C4[0, 1] is called a subsolution for BVP (1.1) if⎧⎨
⎩
α(4) ≤ f (t, u(t)), t ∈ [0, 1]
α(0) ≤ 0, α(1) ≤ 0,
α′′(0) ≥ 0, α′′(1) ≥ 0.
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A subsolution which is not a solution is called a strict subsolution. Supersolutions and strict
supersolutions are defined by reversing the signs of the above inequalities.

We also need some basic concepts of ordered Banach spaces.

Definition 5. An ordered real Banach space is a pair (X, P), where X is a real Banach space and
P a closed convex subset of X such that (−P) ∩ P = {0} and R

+ · P ⊂ P . The partial order on
X is given by the cone P . For u, v ∈ X we write

u ≤ v ⇔ v − u ∈ P;
u < v ⇔ u ≤ v but u 	= v;
u � v ⇔ v − u ∈ int (P).

If P has nonempty interior, then it is call a solid cone. If every ordered interval is bounded,
then P is called a normal cone. An operator A : D(A) → X is called order preserving (in the
literature sometimes increasing) if

u ≤ v ⇒ Au ≤ Av,

strictly order preserving if

u < v ⇒ Au < Av,

and strongly order preserving if

u < v ⇒ Au � Av.

3. Main results

In this section, we will employ the abstract result in Section 2 to establish some existence
theorems on positive, negative and sign-changing solutions of BVP (1). Firstly, we give some
lemmas to change BVP (1) to a variational problem. Let C[0, 1] denote the usual real Banach
space with the norm ‖u‖C = maxt∈[0,1] |u(t)| for all u ∈ C[0, 1]. We can easily verify that

C0[0, 1] = {u ∈ C[0, 1] : u(0) = u(1) = 0}
is also a Banach space with respect to ‖ · ‖C . Let

P = {u ∈ C0[0, 1] : u(t) ≥ 0 for all t ∈ [0, 1]},
then P is a normal solid cone in C0[0, 1] and

int(P) = {u ∈ C0[0, 1] : u(t) > 0 for all t ∈ (0, 1)}.
By L2[0, 1] we denote the usual real reflexive Banach space with the norm ‖u‖ =
(
∫ 1

0 |u(t)|2dt)1/2 for all u ∈ L2[0, 1] and the real Hilbert space with the inner product (u, v) =∫ 1
0 u(t)v(t)dt for all u, v ∈ L2[0, 1].

It is well known that the solution of BVP (1) in C4[0, 1] is equivalent to the solution of the
following integral equation in C[0, 1]:

u(t) =
∫ 1

0
G(t, s)

[∫ 1

0
G(s, τ ) f (τ, u(τ ))dτ

]
ds, t ∈ [0, 1], (2)
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where G : [0, 1] × [0, 1] → [0, 1] is Green’s function for −u′′(t) = 0 for all t ∈ [0, 1] subject
to u(0) = u(1) = 0, i.e.

G(t, s) =
{

s(1 − t), 0 ≤ s ≤ t ≤ 1,
t (1 − s), 0 ≤ t ≤ s ≤ 1.

Define operators K , f : C[0, 1] → C[0, 1], respectively, by

K u(t) =
∫ 1

0
G(t, s)u(s)ds, t ∈ [0, 1],∀u ∈ C[0, 1], K 2 = K ◦ K ,

fu(t) = f (t, u(t)), t ∈ [0, 1],∀u ∈ C[0, 1].
(3)

Since K : C[0, 1] → C0[0, 1], integral equation (2) is equivalent to the following operator
equation in C0[0, 1]:

u = K 2fu. (4)

Remark 6. It is easy to see that

(i) G : [0, 1] × [0, 1] → [0, 1] is nonnegative continuous;
(ii) max(t,s)∈[0,1]×[0,1] G(t, s) = 1/4;

(iii) f : C[0, 1] → C[0, 1] is bounded and continuous.

The operator K defined in (3) can also be defined on L2[0, 1]. In fact, we have the following
lemma.

Lemma 7. K : L2[0, 1] → C0[0, 1] is a linear completely continuous operator and K :
L2[0, 1] → L2[0, 1] is also a linear completely continuous operator. In addition, K :
C0[0, 1] → C0[0, 1] is strongly order preserving.

Proof. For given u ∈ L2[0, 1], it follows from (ii) of Remark 6 that

|K u(t)| =
∣∣∣∣∣
∫ 1

0
G(t, s)u(s)ds

∣∣∣∣∣ ≤ 1

4

∫ 1

0
|u(s)|ds ≤ 1

4

(∫ 1

0
|u(s)|2ds

)1/2

= 1

4
‖u‖, t ∈ [0, 1]. (5)

So K u is a function well defined on [0, 1]. For any given ε > 0, since G is continuous on
[0, 1] × [0, 1], there exists δ > 0 such that |G(t1, s) − G(t2, s)| < ε for all t1, t2 and s in [0, 1]
with |t1 − t2| < δ. And then for all t1, t2 with |t1 − t2| < δ, it follows that:

|K u(t1)− K u(t2)| =
∣∣∣∣∣
∫ 1

0
(G(t1, s)− G(t2, s))u(s)ds

∣∣∣∣∣
≤
∫ 1

0
|G(t1, s)− G(t2, s)||u(s)|ds

≤ ε

∫ 1

0
|u(s)|ds

≤ ε‖u‖. (6)
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This implies that K u ∈ C[0, 1]. And from (5) we have

‖K u‖C ≤ 1

4
‖u‖, u ∈ L2[0, 1]. (7)

It is obvious that K is linear and K u(0) = K u(1) = 0 for all u ∈ L2[0, 1]. So, from (7), we
obtain that K : L2[0, 1] → C0[0, 1] is continuous.

Let S ⊂ L2[0, 1] be a bounded subset. Then there exists M > 0 such that ‖u‖ ≤ M for
all u ∈ S. It follows from (7) and (6) that K (S) is bounded and equicontinuous. According to
the Arzela–Ascoli theorem, K (S) is a precompact subset of C[0, 1]. Observing that K (S) ⊂
C0[0, 1] and C0[0, 1] is a Banach space with respect to the norm of C[0, 1], we have that
K (s) is a precompact subset of C0[0, 1]. Therefore, K : L2[0, 1] → C0[0, 1] is completely
continuous. Moreover, K : L2[0, 1] → L2[0, 1] is completely continuous because C[0, 1] can
be continuously embedded into L2[0, 1].

As for the last part of this lemma, it is enough to prove that K u � 0 for any u ∈ P \ {0}
because K : C0[0, 1] → C0[0, 1] is a linear operator. For any u ∈ P \ {0}, i.e. u(t) ≥ 0 for all
t ∈ [0, 1] and u(t) 	≡ 0 in t ∈ [0, 1], according to the property of G(t, s), it is easy to see that
K u(t) > 0 for all t ∈ (0, 1), thus K u ∈ int(P), i.e. K u � 0. The proof is completed. �

Remark 8. From the definition of K , we can obtain that K u 	= 0 for all u ∈ L2[0, 1] with u 	= 0.
Therefore, K u1 	= K u2 for all u1, u2 ∈ L2[0, 1] with u1 	= u2. It is easy to see that the eigen-
values of K 2 are 1/(k4π4) and the corresponding eigenvectors are sin kπ t, k = 1, 2, . . .. K 2 is
linear compact, symmetric and the norm ‖K 2‖ = 1/π4, where K 2 maps L2[0, 1] into itself.

Since the critical point theory will be employed to deal with BVP (1), we also need the
following lemmas. Please find their proof in [9].

Lemma 9. (i) The operator equation (4) has a solution in C0[0, 1] if and only if the operator
equation

v = K fKv (8)

has a solution in L2[0, 1].
(ii) The uniqueness of the solution for these two above equations is also equivalent.

(iii) If (8) has a nonzero solution in L2[0, 1], then (4) has a nonzero solution in C0[0, 1].
Lemma 10. Let Φ(u) = ∫ 1

0

∫ u(t)
0 f (t, v)dv dt , u ∈ C[0, 1]. Then

(i) Φ is Fréchet differentiable on C[0, 1] and (Φ′(u))(w) = (f, w) for all u, v ∈ C[0, 1];
(ii) Φ ◦ K is Fréchet differentiable on L2[0, 1] and (Φ ◦ K )′(v) = K fKv for all v ∈ L2[0, 1].

Choose H = L2[0, 1] and E = C0[0, 1] to be our Hilbert space and Banach space,
respectively. Define a functional J : H → R

1

J (v) = 1

2
‖v‖2 − Φ(Kv), v ∈ H. (9)

Then, according to Lemma 10, we have

J ′(v) = v − K fKv for all v ∈ H. (10)

Hence, Lemma 9 implies that the operator equation u = K 2fu has a solution in E if and only if
the functional J has a critical point in H . Thus BVP (1) has been transformed into a variational
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problem. Before we state our main results, we list some conditions as follows which will play
roles.

(H3.1) There exist a strict subsolution α and a strict supersolution β of BVP (1) with α < β,
α(0) = α(1) = α′′(0) = α′′(1) = 0 and β(0) = β(1) = β ′′(0) = β ′′(1) = 0;

(H3.2) f (t, u) is strictly increasing in u;

(H3.3) f (t, u) is locally Lipschitz continuous in u;

(H3.4) there exist μ ∈ (0, 1/2) and M > 0 such that 0 < F(t, u) �
∫ u

0 f (t, v)dv ≤ μu f (t, u)
for all |u| ≥ M and t ∈ [0, 1];
(H3.5) α1 < β1, α2 < β2 are two pairs of strict subsolutions and strict supersolutions of BVP (1)
with αi (0) = αi (1) = α′′

i (0) = α′′
i (1) = 0, βi (0) = βi (1) = β ′′

i (0) = β ′′
i (1) = 0 for i = 1, 2.

Remark 11. There are several cases in which (H3.1) is satisfied. For example:

(a) f (t, 0) = 0, limu→0+ f (t,u)
u < π4 and limu→0− f (t,u)

u < π4 uniformly for t ∈ [0, 1]. In this
case, α = −δ sinπ t is a strict subsolution and β = δ sinπ t is a strict supersolution for suitable
positive number δ.

(b) There exists a number k > 0 such that | f (t, u)| ≤ k in u ∈ [−ck, ck], where ck =
maxt∈[0,1] ek(t) and ek satisfies⎧⎨

⎩
e(4)k (t) = k, t ∈ [0, 1]
ek(0) = ek(1) = 0,
e′′

k (0) = e′′
k (1) = 0.

In this case, α = −ek and β = ek are a strict subsolution and a strict supersolution, respectively.

Remark 12. (H3.3) is used only to deduce that J ′ is locally Lipschitz continuous. If f ∈
C1([0, 1] × R

1,R1), this assumption can be removed. In fact, if f ∈ C1([0, 1] × R
1,R1), it

is easy to see that J is a C2 functional and thus J ′ is locally Lipschitz continuous. See [7, P. 456,
Remark 4].

The following lemmas will lead to the main results of this section.

Lemma 13. Define A = K fK : H → H . Then A is E-regular. (i) If (H3.2) holds, then
A : C0[0, 1] → C0[0, 1] is strongly order preserving.(ii) If (H3.3) holds, then J ′ is locally
Lipschitz continuous both as an operator from H to H and as one from E to E.

Proof. By Lemma 7 and (iii) of Remark 6, it is clear that A is E-regular. (i) can be directly
obtained by the fact that K : C0[0, 1] → C0[0, 1] is strongly order preserving and f (t, u) is
strictly increasing in u. Next we prove (ii). Let U ⊂ H be a bounded set. For any u and v ∈ U ,

‖Au − Av‖ = ‖K fK u − K fKv‖
≤ ‖K‖L(H,H) · ‖fK u − fKv‖

= ‖K‖L(H,H) ·
(∫ 1

0
| f (t, K u(t))− f (t, Kv(t))|2dt

)1/2

. (11)

Since K (U) is bounded and noticing (H3.3), there exists a positive number L such that

| f (t, K u(t))− f (t, Kv(t))| ≤ L|K u(t)− Kv(t)| for all t ∈ [0, 1]. (12)
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Combining (11) and (12), we get

‖Au − Av‖ ≤ L‖K‖L(H,H) ·
(∫ 1

0
|K u(t)− Kv(t)|2dt

)1/2

= L‖K‖L(H,H) · ‖K u − Kv‖
≤ L‖K‖2

L(H,H) · ‖u − v‖.
Hence A is locally Lipschitz continuous, and so is J ′. In a similar way, it is easy to prove
J ′ : E → E is locally Lipschitz continuous. So we sketch it. The proof is completed. �

Lemma 14. If (H3.1) and (H3.2) hold, then there exist ϕ and ψ ∈ E with

ϕ � ψ, ϕ � Aϕ, Aψ � ψ.

Proof. By (H3.1) and Definition 4, a direct computation shows that

α < K 2fα, K 2fβ < β.

Operating on both sides of the above two inequalities with K f and noticing that K is strongly
order preserving and (H3.2), we obtain that

K fα � K fK (K fα), K fK (K fβ) � K fβ.

Let ϕ = K fα and ψ = K fβ, then ϕ,ψ ∈ E ,

ϕ � ψ, ϕ � Aϕ, Aψ � ψ.

The proof is done. �

Theorem 15. Assume that (H3.1), (H3.2), (H3.3)and (H3.4) hold. Then BVP (1.1) has at least
four solutions.

Proof. According to Lemma 14, there exist ϕ and ψ ∈ E with

ϕ � ψ, ϕ � Aϕ, Aψ � ψ.

Define

D1 = {u ∈ E : u � ψ} and D2 = {u ∈ E : u � ϕ}.
Clearly, D1 and D2 are nonempty open convex subsets of E and D1 ∩ D2 = {u ∈ E : ϕ � u �
ϕ} 	= ∅. Moreover, if u ∈ ∂E D1, then u ≤ ψ . Thus, by Lemma 13, Au � ψ and A(∂E D1) ⊂ D1.
Similarly, A(∂E D2) ⊂ D2.
Step 1. J satisfies the PS condition on H . Since F(t, u) − μu f (t, u) is continuous on [0, 1] ×
[−M,M], there exists C > 0 such that

F(t, u) ≤ μu f (t, u)+ C for all t ∈ [0, 1] and u ∈ [−M,M].
By assumption (H3.4), we obtain

F(t, u) ≤ μu f (t, u)+ C for all t ∈ [0, 1] and u ∈ R
1. (13)

Suppose {vn} ⊂ H and there exists M1 > 0 such that |J (vn)| ≤ M1 and J ′(vn) =
vn − K fKvn → 0 with respect to the H -norm. Notice that

(J ′(vn), vn) = (vn − K fKvn, vn) = ‖vn‖2 −
∫ 1

0
f (t, Kvn(t))Kvn(t)dt .
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It follows from (13) and the definition of J that

M1 ≥ J (vn) = 1

2
‖vn‖2 −

∫ 1

0
F(t, Kvn(t))dt

≥ 1

2
‖vn‖2 − μ

∫ 1

0
f (t, Kvn(t))Kvn(t)dt − C

=
(

1

2
− μ

)
‖vn‖2 + μ(J ′(vn), vn)− C

≥
(

1

2
− μ

)
‖vn‖2 − μ‖J ′(vn)‖‖vn‖ − C, n = 1, 2, . . . .

Since J ′(vn) → 0 as n → ∞, there exists N0 ∈ N such that

M1 ≥
(

1

2
− μ

)
‖vn‖2 − ‖vn‖ − C, n > N0.

This implies that {vn} ⊂ H is bounded. And then, the properties of K and f guarantee that {vn}
has a convergent subsequence in H . Thus, J satisfies the PS condition on H .

Step 2. J is bounded from below on D
E
1 ∩ D

E
2 = [ϕ,ψ]. For any v ∈ [ϕ,ψ], it follows from

Lemma 7 and (H3.2) that

Kϕ ≤ Kv ≤ Kψ, f(Kϕ) ≤ f(Kv) ≤ f(Kψ).

Since P is normal, there exists M0 > 0 such that

‖Kv‖C < M0 and ‖f(Kv)‖C < M0 for all v ∈ [ϕ,ψ].
Notice that E ↪→ H , there is a number N0 > 0 such that ‖u‖ ≤ N0‖u‖C . So,

‖f(Kv)‖ · ‖Kv‖ ≤ N2
0 ‖f(Kv)‖C · ‖Kv‖C ≤ N2

0 M2
0 . (14)

Therefore, according to (13), Hölder’s inequality and (14), we have

J (v) = 1

2
‖v‖2 −

∫ 1

0
F(t, Kv(t))dt

≥ 1

2
· min{‖ϕ‖2, ‖ψ‖2} − μ

∫ 1

0
f (t, Kv(t))Kv(t)dt − C

≥ 1

2
· min{‖ϕ‖2, ‖ψ‖2} − μ

∫ 1

0
| f (t, Kv(t))||Kv(t)|dt − C

≥ 1

2
· min{‖ϕ‖2, ‖ψ‖2} − μ‖f(Kv)‖ · ‖Kv‖ − C

≥ 1

2
· min{‖ϕ‖2, ‖ψ‖2} − μN2

0 M2
0 − C

= constant for all v ∈ [ϕ,ψ].
As a result, J is bounded from below on [ϕ,ψ].
Step 3. Define a path h R : [0, 1] → E as

h R(s) = R cos((1 − s)π) sinπ t + R sin((1 − s)π) sin 2π t, R > 0.

Then h R(0) = −R sinπ t and h R(1) = R sinπ t . Let gR(t) = R sinπ t + ϕ(t), then gR(0) =
gR(1) = 0, i.e. gR ∈ E . It is easy to see that gR is strictly increasing at 0 and strictly decreasing
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at 1 as R > max{−ϕ′(0)/π, ϕ′(1)/π}. So there exist two sufficiently small numbers δ1, δ2 > 0
such that gR(t) > 0 for t ∈ (0, δ1) and (δ2, 1). For t ∈ [δ1 − ε, δ2 − ε], gR(t) > 0 as
R > M2 = maxt∈[δ1−ε,δ2−ε] | ϕ(t)sinπ t |, where ε is a sufficiently small positive number. Therefore,

gR(t) > 0 for t ∈ (0, 1) as R > M3 = max

{
M2,−ϕ

′(0)
π

,
ϕ′(1)
π

}
.

Thus, if R > M3, then h R(0) � ϕ � ψ , i.e. h R(0) ∈ D1\D2. In a similar way, h R(1) ∈ D2\D1
as R is sufficiently large. Defining ν = 1/μ > 2, from (H3.4), we have

ν

u
≤ f (t, u)

F(t, u)
for all t ∈ [0, 1] and u ≥ M,

ν

u
≥ f (t, u)

F(t, u)
for all t ∈ [0, 1] and u ≤ −M.

Integrating the above two inequalities on [M, u] and [u,−M] respectively, we have

ν ln
u

M
≤ ln

F(t, u)

F(t,M)
for all t ∈ [0, 1] and u ≥ M,

ν ln
−M

u
≥ ln

F(t,−M)

F(t, u)
for all t ∈ [0, 1] and u ≤ −M,

that is,

F(t, u) ≥ F(t,M)
( u

M

)ν
for all t ∈ [0, 1] and u ≥ M,

F(t, u) ≥ F(t,−M)

(−u

M

)ν
for all t ∈ [0, 1] and u ≤ −M.

Combining the above two inequalities, we get

F(t, u) ≥ C1|u|ν for all t ∈ [0, 1] and |u| ≥ M, (15)

where C1 = M−ν ·min
{
mint∈[0,1] F(t,M),mint∈[0,1] F(t,−M)

}
> 0. Since F(t, u) is bounded

on [0, 1] × [−M,M], there exists C2 > 0 such that

F(t, u) ≥ −C2 ≥ −C2 + C1|u|ν − C1 Mν for all (t, u) ∈ [0, 1] × [−M,M]. (16)

It follows from (15) and (16) that

F(t, u) ≥ C1|u|ν − C3 for all (t, u) ∈ [0, 1] × R
1, (17)

where C3 = C1 Mν + C2 > 0. Since ν > 2, Lν[0, 1] ↪→ H , i.e., there exists C4 > 0 such that
‖ · ‖ ≤ C4‖ · ‖Lν [0,1]. Thus, from (17), a direct computation shows that

J (h R(s)) = 1

2
‖h R(s)‖2 −

∫ 1

0
F(t, K h R(s))dt

≤ 1

4
R2 −

∫ 1

0

(
C1|K h R(s)|ν − C3

)
dt

= 1

4
R2 − C1‖K h R(s)‖νLν [0,1] + C3

≤ 1

4
R2 − C1C−ν

4 ‖K h R(s)‖ν + C3
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= 1

4
R2 − C1C−ν

4 π−2ν
(

1

32
+ 15

32
cos2((1 − s)π)

)ν/2
Rν + C3

≤ 1

4
R2 − C5 Rν + C3,

where C5 = C1C−ν
4 π−2ν mins∈[0,1]

(
1

32 + 15
32 cos2((1 − s)π)

)ν/2
> 0. As a result,

lim
R→+∞ sup

s∈[0,1]
J (h R(s)) = −∞.

Therefore,

inf
u∈D

E
1 ∩D

E
2

J (u) > sup
s∈[0,1]

J (h R(s))

as R is sufficiently large.
Up to now, all the conditions of Theorem 3 are satisfied and we get the result by Theorem 3.

The proof is completed. �

It seems that the hypothesis (H3.2) is rather restrictive. However, by means of a simple
technique it is possible to replace this hypothesis by the following weaker one:

(H3.2′) there exists a constant m > 0 such that

f (t, ξ)− f (t, η) > −m(ξ − η)

for all t ∈ [0, 1] and ξ, η ∈ R
1 satisfying ξ > η.

Clearly, BVP (1.1) is equivalent to⎧⎨
⎩

u(4) + mu = f1(t, u(t)), t ∈ [0, 1]
u(0) = u(1) = 0,
u′′(0) = u′′(1) = 0,

(1′)

where f1(t, u) = f (t, u)+ mu for all (t, u) ∈ [0, 1] × R
1. Let G1(t, s) be the Green’s function

for the linear boundary value problem

−u′′ + mu = f1(t, u(t)), u(0) = u(1) = 0,

which is explicitly given by

G1(t, s) =
{
(ω sinhω)−1 · sinhωs · sinhω(1 − t), 0 ≤ s ≤ t ≤ 1,
(ω sinhω)−1 · sinhωt · sinhω(1 − s), 0 ≤ t ≤ s ≤ 1,

where ω = √
m, sinh x = (ex − e−x )/2 is the hyperbolic sine function. It is easy to verify that

G1(t, s) > 0 for all t, s ∈ [0, 1]. Define operators K1, f1 : C[0, 1] → C[0, 1], respectively, by

K1u(t) =
∫ 1

0
G1(t, s)u(s)ds, t ∈ [0, 1],∀u ∈ C[0, 1], K 2

1 = K1 ◦ K1,

f1u(t) = f1(t, u(t)), t ∈ [0, 1],∀u ∈ C[0, 1].
(3′)

Then BVP (1′) is equivalent to the following operator equation in C0[0, 1]:
u = K 2

1 f1u. (4′)
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Obviously, K1, f1 have the same properties as K and f in Lemmas 7, 9 and 10. Replacing (H3.2)
by (H3.2′), Lemmas 13 and 14 still hold for the operator A1 = K1f1 K1. Therefore, we have the
following theorem, which is an improvement of Theorem 15.

Theorem 16. Assume that (H3.1),(H3.2′),(H3.3) and (H3.4) hold. Then BVP (1) has at least
four solutions.

Remark 17. The conditions of Theorems 15 and 16 permit the possibility that f (t, 0) 	= 0,
therefore it is possible that the four solutions guaranteed by these two theorems are all nontrivial
solutions.

Corollary 18. In addition to the conditions in Theorem 15 (or 16), if f (t, 0) = 0 for all
t ∈ [0, 1], α < 0 and β > 0, then BVP (1) possesses at least a positive solution, a negative
solution, and a sign-changing solution.

Proof. According to Lemma 14, there exist ϕ and ψ ∈ E with

ϕ � ψ, ϕ � Aϕ, Aψ � ψ.

Besides this, from the conditions, we have ϕ � 0 and ψ � 0.
Let

D1 = {u ∈ E : u � ψ} and D2 = {u ∈ E : u � 0}.
Then it is easy to verify that D1 and D2 satisfy all the conditions of Theorem 3. According

to Theorem 3, J has a critical point v1 ∈ D2 \ D
E
1 . Clearly, v1 � 0. By [9, Lemma 3.1],

u1 = Kv � 0 is a positive solution of BVP (1). Similarly, if we define

D1 = {u ∈ E : u � 0} and D2 = {u ∈ E : u � ϕ},
then BVP (1) has a negative solution u2 by Theorem 3.

Define D1 and D2 as in the proof of Theorem 15, then J has a critical point v3 ∈ E \ (DE
1 ∪

D
E
2 ). By the structures of D1 and D2, we know that v3 is sign-changing. So u3 = Kv3 is a

sign-changing solution of BVP (1). The proof is done. �
By combining Theorem 2.1 and Amann’s three-solution theorem (see [1, Theorem 14.2]), we

can get more solutions of BVP (1).

Theorem 19. Assume that (H3.2) (or (H3.2′)),(H3.3), (H3.4) and (H3.5) hold. Then BVP (1)
has at least six solutions.

Proof. Suppose that (H3.2) holds. Let ϕi = K fαi and ψi = K fβi , i = 1, 2. Then according to
the proof of Lemma 14, we have

ϕ1 � ψ1 � ϕ2 � ψ2 (18)

ϕ1 � Aϕ1, Aψ1 � ψ1, ϕ2 � Aϕ2, Aψ2 � ψ2. (19)

Define D1 = {u ∈ E : u � ψ2} and D2 = {u ∈ E : u � ϕ1}. Then by the proof of Theorem 15,
the functional J has at least four critical points v1, v2, v3 and v4 such that v1 ∈ D1 ∩ D2,

v2 ∈ D1 \ D
E
2 , v3 ∈ D2 \ D

E
1 and v4 ∈ E \ (DE

1 ∩ D
E
2 ).

Since P is a normal solid cone in E and (18) and (19) hold, Amann’s three-solution theorem
guarantees that J has at least three critical points v5, v6 and v7 in the ordered interval [ϕ1, ψ2]
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with v5 � v6 � v7. Observing the locations of these seven critical points, J has at least six
critical points. Consequently, BVP (1) has at least six solutions. The case of (H3.2′) holding can
be proved in a similar way. �

The following corollary is obvious.

Corollary 20. In addition to the conditions in Theorem 19, if f (t, 0) = 0 for all t ∈ [0, 1],
β1 < 0 and α2 > 0, then BVP (1) possesses at least two positive solutions, two negative solutions,
and a sign-changing solution.

At the end of this paper, we present two simple examples to which Corollaries 18 and 20 can
be applied respectively.

Example 21. Let

f (t, u) =
{

eu − 1, (t, u) ∈ [0, 1] × [0,+∞),

u3, (t, u) ∈ [0, 1] × (−∞, 0]. (20)

It is easy to verify that all conditions of Corollary 18 are satisfied. So Corollary 18 ensures that
BVP (1) has at least one positive solution, one negative solution, and one sign-changing solution.

Example 22. The following nonlinearity is a sum of a sublinear function and a superlinear
function.

f (t, u) =
{

u
1
2 + u2, (t, u) ∈ [0, 1] × [0,+∞),

u
1
3 + u3, (t, u) ∈ [0, 1] × (−∞, 0]. (21)

For suitable positive numbers M and δ, it is easy to see that α1 = −Me < −δ sinπ t = β1 and
α2 = δ sinπ t < Me = β2 are two pairs of strict subsolutions and strict supersolutions, where
e(t) is the solution of the following linear problem⎧⎨

⎩
e(4)(t) = 1, t ∈ [0, 1]
e(0) = e(1) = 0,
e′′(0) = e′′(1) = 0.

Corollary 20 guarantees that BVP (1) has at least two positive solutions, two negative solutions
and one sign-changing solution.
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