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Dynamics of vibrational chaos and entanglement in

triatomic molecules: Lie algebraic model∗
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In this paper, the dynamics of chaos and the entanglement in triatomic molecular vibrations are investigated. On

the classical aspect, we study the chaotic trajectories in the phase space. We employ the linear entropy to examine the

dynamical entanglement of the two bonds on the quantum aspect. The correspondence between the classical chaos and

the quantum dynamical entanglement is also investigated. As an example, we apply our algebraic model to molecule

H2O.
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1. Introduction

As a potential quantum resource for applications

in quantum computation and quantum information,

entanglement has triggered enormous efforts to under-

stand its dynamical properties in various systems.[1−3]

Besides those theoretical models, the dynamical en-

tanglement of realistic polyatomic molecular systems

has emerged as an exciting research topic recently.[4−7]

It is suggested that the vibrational states of poly-

atomic molecules can be used to represent the qubits,

and the shaped femtosecond laser pulses in the infared

(IR) regime can be used to implement the quantum

logic operation.[8,9] The number of available qubits

is proportional to the number of vibrational degrees

of freedom when the molecular vibrational states are

used as the qubit base, and it is demonstrated that

a quite high quantum gate fidelity can be realized.[9]

Since the entanglement plays an important role in

quantum information and quantum computation, the

study of the dynamical entanglement in a realistic

molecular system is interesting.

On the other hand, decoding the dynamical in-

formation hidden in the frequency domain spectrum

can be traditionally studied via the classical–quantum

approach,[10−15] which provides us with a vivid picture

of the intramolecular motion. A natural way for this is

probably to study the classical phase structures,[16−19]

and there is sufficient evidence that the information

from the classical analysis is comparable with the

corresponding quantum phenomena.[20−22] Using this

method, some interesting questions have been well

studied, such as the bottleneck of intramolecular vi-

brational energy redistribution (IVR)[23] and the in-

tramolecular chaos of high excited molecules.[24−27]

Meanwhile, it is demonstrated that the intramolec-

ular vibration is chaotic when the system is in the

highly excited state, even for the simple triatomic

systems.[14−16] And the studies of the intramolecu-

lar chaos have shown that the chaos plays an im-

portant role in IVR,[28] assigning the vibrational

spectra,[20] and the coherent control of the intramolec-

ular process.[29] The Poincaré section and the Lya-

punov exponent are two useful tools in such investi-

gations. The Poincaré section technique is used to re-

duce the dimensions of the system, by means of which

one can observe the classical phase structure directly.

And the Lyapunov exponent is a parameter to detect

whether the system is chaotic or not.

The classical–quantum correspondence in molecu-

lar systems has been investigated via many pathways,

such as the shape of the eigenfunction,[30] the EBK

method,[31] and the dynamics in the quantum phase

space.[20] Recently, the quantum dynamical entangle-

ment has also been studied to investigate the classical–

quantum correspondence. Studies on many systems

have shown that the dynamical entanglement produc-
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tion can be an indication of the underlying classical

chaos.[32−34] One of the important properties obtained

in those studies illustrates that the dynamical entan-

glement is the largest when the initial state lies at the

edges of the regular islands or in the chaotic sea.[35]

The correspondence between the (dynamical) entan-

glement and the vibration provides us with a new way

to explore the intramolecular dynamics, and helps us

to understand the mysteries of the dynamical entan-

glement. The triatomic systems, as the most simple

polyatomic molecules, serve as the prototype to de-

velop theories and to understand new phenomena of

the intramolecular dynamics, such as the normal and

the local mode behaviors of H2O molecule and the

transition between them,[16] the dynamics of energy

transfer between bonds both from the classical and

the quantum viewpoints for the ABA molecule,[36,37]

and the chaos.[13−17] In this paper, we focus our at-

tention on the classical dynamics of molecular vibra-

tions and the dynamical entanglement in the triatomic

molecule. We use the Lie algebraic model. We also

analyze the correspondence between the classical dy-

namics of molecular vibrations and the dynamical en-

tanglement. We expect that this work can be helpful

to understand the dynamical entanglement in molecu-

lar systems and provide a new viewpoint for quantum

computation using the molecular vibrations.

The Lie algebraic theory of molecules is an effec-

tive approach to describe the molecular vibrations and

rotations in polyatomic molecules.[38−43] This method

has a simple form in the description of a molecular

Hamiltonian, and the anharmonicity of each mode

and the resonances between different modes are in-

troduced automatically by the matrix elements of the

corresponding group operators.[44] Because of these

advantages, the algebraic method has extensive ap-

plications in small molecules and molecular chains

to study many questions,[45] such as vibrational en-

ergy levels, potential energy surfaces, dynamical en-

tanglement of vibrations, and multiphoton selective

excitation.[38−41,46,47] Meanwhile, the classical limit of

the Lie algebraic Hamiltonian can be directly obtained

by calculating the expectation value of the quantum

Hamiltonian over the coherent state[39] or using the

intensive boson operators introduced by Gilmore.[48]

This is helpful for the discussion of the quantum–

classical correspondence in the framework of the Lie

algebraic model.

The organization of this paper is as follows. In

Section 2, the U(4) algebraic Hamiltonian for the tri-

atomic molecules and the theoretical framework of dy-

namical entanglement are reviewed. And, the classical

limit of the U(4) algebraic Hamiltonian is deduced by

using the intensive boson operators. In Section 3, the

classical phase structures of H2O are depicted in the

Poincaré sections, and the mean Lyapunov exponents

are calculated to identify the chaotic degrees of energy

levels of H2O. The dynamical entanglement with the

initial states of the Fock and the coherent states is

studied using the linear entropy, and the correspon-

dence between the vibrations and the dynamical en-

tanglement is also discussed in this section. A brief

summary and outlook are presented in Section 4.

2. Dynamical entanglement and

chaos of triatomic molecules

For completeness, we first concisely review the

U(4) algebraic model of triatomic molecules. The

detail description can be found in Refs. [39] and

[42]. The dynamical symmetric chains for a triatomic

molecule are expressed as[39]

U1(4)⊗U2(4) ⊃ U12(4) ⊃ O12(4),

U1(4)⊗U2(4) ⊃ O1(4)⊗O2(4) ⊃ O12(4). (1)

The quantum Hamiltonian, in terms of linear Casimir

and Majorana operators of subgroups, for group

chains (1) is written as

H = A1C1 +A2C2 +A12C
(1)
12 +A′

12C
(2)
12 + λM12, (2)

where A1, A2, A12, A′
12, and λ are the expan-

sion coefficients, which are determined by fitting

the spectroscopic data; C1 and C2 are Casimir op-

erators of groups O1(4) and O2(4), respectively;

C
(1)
12 and C

(2)
12 are two Casimir operators of O12(4);

and M12 is the Majorana operator denoting the

coupling between two bonds. In the local basis

|[N1][N2](ω1, 0)(ω2, 0)(τ1, τ2)⟩, the matrices of the

Casimir operators are diagonal, but the matrix of

the Majorana operator has both diagonal and non-

diagonal elements. The explicit forms of the matrix

elements can be found in Ref. [49].

The algebraic Hamiltonian (2) has been used

to investigate the vibrational levels of the triatomic

molecules, and it represents the realistic situations

of the triatomic molecules. Based on the quantum

Hamiltonian of Eq. (2), we investigate the dynamics

of dynamical entanglement and chaotic dynamics (in
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its classical limits) of the molecules. There are several

measures of dynamical entanglement, such as the rel-

ative entropy, the entanglement of formation, and the

linear entropy. Among them, the linear entropy[4,5] is

a simple but widely-used measure of entanglement. It

is defined by

Sl = 1− Tr1[ρ1(t)]
2, (3)

where Tri denotes the trace over subsystem i (i =

1, 2), and

ρ1(t) = Tr2|ψ(t)⟩⟨ψ(t)|, (4)

is the reduced-density matrix, and indexes 1 and 2

represent bonds 1 and 2, respectively. Here |ψ(t)⟩ is

the state of the molecular system. Its evolution in

time under the action of the Hamiltonian of Eq. (2) is

obtained by

|ψ(t)⟩ = e−iHt|ψ(0)⟩, (5)

where the reduced Planck constant ~ has been set to

1, and |ψ(0)⟩ is the initial state, which can be selected

to be the Fock states or the continuous-variable-type

states, such as the coherent states. The detail calcu-

lation of dynamical entanglement in molecules can be

found in Refs. [4] and [5].

In the coset space of the algebraic structure, we

are able to get the classical limit of the quantum alge-

braic Hamiltonian of Eq. (2). Following the approach

using the intensive boson operators, the classical limit

of algebraic Hamiltonian (2) is obtained as[39]

Hcl = H(z, z†), (6)

where z is a complex quantity, and z† is its corre-

sponding complex conjugate.

A more familiar form of this Hamiltonian is

obtained by considering the canonical coordinates

through the canonical transformation[39]

zα =
1√
2
(qα + ipα),

z†α =
1√
2
(qα − ipα), (i =

√
−1), (7)

where (qα, pα) (α = 1, 2) are the canonical variables

in the phase space.

With the above transformation, the classical limit

of the algebraic Hamiltonian is of the form

Hcl = Hcl(q1, p1; q2, p2). (8)

To describe the chaotic dynamics of molecular vibra-

tions, we need to extract the kinetic and the poten-

tial energy contributions from the classical limits of

Eq. (8).

The potential energy surface is defined as[39]

V (q1, q2) = Hcl(q1, p1 = 0, q2, p2 = 0). (9)

For the sake of our description, we need to trans-

form coordinates qα to the intramolecular coordinates

rα. This transformation is suggested by the following

equation:[39]

q2α = e−βα(rα−rα e ), (α = 1, 2), (10)

where rα e is the equilibrium bond length of the bond,

and βα is the spectroscopic parameter. In terms

of intramolecular coordinates, the potential function

V (r1, r2) in the case of bond angle frozen at its equi-

librium position is written as[38,39]

V (r1, r2)

= (A1 +A12)N
2
1 [2− e−β1(r1−r1e)] e−β1(r1−r1e)

+ (A2 +A12)N
2
2 [2− e−β2(r2−r2e)] e−β2(r2−r2e)

+2A12N1N2

{
[2− e−β1(r1−r1e)] e−β1(r1−r1e)

× [2− e−β2(r2−r2e)] e−β2(r2−r2e)
}1/2

+
1

4
λN1N2{2 e−β1(r1−r1e) + 2 e−β2(r2−r2e)

− 2 e−β1(r1−r1e)−β2(r2−r2e)

− 2[(2− e−β1(r1−r1e)) e−β1(r1−r1e)

× (2− e−β2(r2−r2e)) e−β2(r2−r2e)]1/2}. (11)

The general properties of the potential energy of

Eq. (11) were studied in Refs. [38] and [39], and they

have been successfully applied to determine the po-

tential energy surfaces for both linear and nonlinear

triatomic molecules.[38,39,49−52]

However, it is tricky to extract the kinetic contri-

butions from the classical limit of the algebraic Hamil-

tonian of Eq. (8). We suggest here that under the

Born–Oppenheimer approximation, the kinetics of the

triatomic molecules in the internal coordinate system

read

T =
∑
i,j

Gi,jpipj , (i, j = 1, 2, 3), (12)

where p1 and p2 are the momenta corresponding to the

stretching vibrations of the two bonds, and p3 is the

momentum of the bending vibration. In this paper,

we assume that the bond angle is frozen at its equilib-

rium position. For the triatomic molecules, following

Wilson et. al.,[53] we obtain the kinetic matrix

G11 =
1

2
(µ1 + µ2), G12 =

1

2
µ3 cosϕ0,

070503-3
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G21 =
1

2
µ3 cosϕ0, G22 =

1

2
(µ2 + µ3), (13)

where µ1 = 1/m1, µ2 = 1/m2, m1 and m2 are the

masses of the atoms at the two ends of the bonds;

µ3 = 1/M , and M is the mass of the central atom;

and ϕ0 is the equilibrium bond angle. The kinetic

energy (12) is rewritten as

T (p1, p2) =
1

2
[(µ1 + µ3)p

2
1 + (µ2 + µ3)p

2
2]

+µ3(cosϕ0)p1p2. (14)

The classical Hamiltonian in the case of frozen

bond angle, by adding Eqs. (11) and (14), is written

as

Hcl(r1, r2, p1, p2) = T (p1, p2) + V (r1, r2). (15)

The canonical coordinates (r1, r2) and momenta

(p1, p2) satisfy Hamilton’s canonical equations[16]

drα
dt

=
∂Hcl

∂pα
,

dpα
dt

= −∂Hcl

∂rα
, (α = 1, 2). (16)

In order to obtain the chaotic dynamics in the molec-

ular vibrations of Hamiltonian in Eq. (15), we numer-

ically integrate Hamiltonian Eq. (16).

3. Results and discussion

In this section, the dynamics of vibrational chaos

and the dynamical entanglement of the typical tri-

atomic molecule H2O are studied using the theoretical

framework developed in the previous section. The pa-

rameters in Eqs. (2) and (15) for molecule H2O taken

from Refs. [38] and [39] are listed in Table 1. Parame-

ters Ni, Ai, rei, and βi describe the vibrations in bond

i of the molecule, and A12, λ are the parameters rep-

resenting the interacting term between two bonds in

the molecule. The ϕ0 is the bond angle at the equi-

librium. The parameters in Table 1 can represent the

vibrational natures of triatomic molecule H2O, since

they have been testified in the study of vibrational

levels, potentials, etc.[38−40]

Table 1. Parameters for triatomic H2O, where i = 1 and

2 indicate the two bonds in the molecule.

Molecule Ni βi/Å
−1 Ai/cm

−1 A12/cm−1 λ/cm−1 rei/Å

H2O 42 2.354 −18.2219 −2.85 1.0571 0.9706

3.1.Chaotic dynamics of H2O

The Poincaré sections in this paper are defined

as the surfaces upon bond 2 at its equilibrium po-

sition with a positive momentum. Our calculations

show that the vibrations of molecule H2O are (quasi-)

periodic when the total vibrational energy (TVE) is

lower than 33000 cm−1. The corresponding Poincaré

sections are plotted in Fig. 1. Panel (a) of Fig. 1

shows the section of TVE = 3660.1 cm−1, and the

corresponding quantum state is |0, 1⟩. This section

is composed of two tori bundles of regular motions:

the lower region represents the antisymmetric normal

mode and the quasi-periodic motion around it; the up-

per bundle is composed of two jointed islands, which

represent the local mode motions and the invariant

tori around them. For the normal mode vibration, the

energy freely exchanges between the two bonds. How-

ever, for the local mode vibration, once one bond is

excited, the energy of the bond remains in that bond.

Thus, the island close to the center of the section rep-

resents the local motion in which the energy of bond

1 is lower than that of bond 2, and the other island

is the local mode vibration in which the energy of

bond 1 is larger than that of bond 2. We name the

latter local mode 1, meanwhile the former is named

local mode 2. Besides these local mode islands, the

invariant tori around the two islands have the char-

acter of symmetric normal mode motion, where TVE

is almost averaged to those of the OH bonds. Due to

the weak coupling between these two OH bonds, it is

not surprising that the local mode tori appear in this

section.

With the increase of TVE, the local mode regions

occupy more and more space in the Poincaré section.

In panel (b) of Fig. 1, we show the Poincaré section

of TVE = 7204.40 cm−1. Its corresponding quantum

state is |0, 2⟩. In this case, the region of local mode

1 deforms into the shell part of the section. Mean-

while, the region of local mode 2 shrinks into the yolk

part. In addition, the energy discrepancies for the lo-

cal mode tori are also increasing with the TVE. Based

on our calculation, we also find that the two OH bonds

vibrate in the domain of (1:1) resonance. Such a phe-

nomenon means that the energy discrepancy of the

local mode motion is not high enough to cause a fre-

quency discrepancy. Thus, a normal mode description

is suitable for H2O in this low TVE range.
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Fig. 1. (colour online) Poincaré sections of H2O molecule. Panels (a), (b), (c), and (d) show the Poincaré sections of

TVE = 3660.0 cm−1, 16901.1 cm−1, 27700.4 cm−1, and 33752.0 cm−1, respectively. In panel (c), the resonance islands

of (2 : 3) ((3 : 2)), (3 : 4) ((4 : 3)), (4 : 5) ((5 : 4)) and (5 : 6) ((6 : 5)) are labeled using green, blue, yellow, and violet

colours, respectively. The chaotic trajectories in panel (d) are labeled using red colour.

The normal mode vibrations are not the whole

story of the H2O molecule. The breakdown of this

description arises with the appearance of resonance

zones in the Poincaré section. A resonance zone is eas-

ily detected as a chain of islands.[54] The tori bundle

in the islands is an (n : m) periodic torus and quasi-

periodic tori around it, where (n : m) is used to de-

note the ratio of the bond vibrational frequencies. The

resonance zones firstly appear in the Poincaré section

when TVE is around 20000 cm−1, and the correspond-

ing total vibrational quantum number is about 6. We

display one typical section of TVE = 27700.4 cm−1

with quantum state |8, 0⟩ in Fig. 1(c). There are eight

distinct resonance zones labeled with different colours

in the figure: (3 : 2), (4 : 3), (5 : 4), and (5 : 6) reso-

nance zones locate in the yolk part; and the resonance

zones of (6 : 5), (4 : 5), (3 : 4), and (2 : 3) belong to

the shell. Due to the symmetry of the molecule, res-

onances (n : m) and (m : n) have the same physical

properties, and they are labeled with the same colour

in the section. Moreover, the classical nonlinear reso-

nance is an important phenomenon in the intramolec-

ular dynamics, and the recent studies[28] show that

the resonance could be a resource of the dynamical

tunneling.

Since the number of the resonance islands grows

with TVE, we can not always study the single reso-

nance behavior, especially in the high excited states.

According to the conjecture of Chirikov,[55] the over-

lapping of resonances could be a route to the chaotic

motion. In Fig. 1(d), we give the surface of TVE =

33752.00 cm−1 of quantum state |10, 0⟩. We find that

the irregular motion appears firstly in the boundaries

of the normal mode and the resonance zones of (2 : 3)

and (3 : 2) (labeled with red colour). Because the res-

onance overlapping is not very strong at this TVE, the

soft chaotic trajectories only occur in the slim regions

close to the separatrix. However, with TVE increasing

further, a single resonance zone as well as the overlap-

ping resonance zone expands its area, which leads to

the appearance of strong chaotic trajectories.

To describe the chaotic dynamics, the Lyapunov

exponent (LE) is widely used. For one trajectory in

the n-dimensional space, the corresponding LE is de-

fined as the average exponential rate of the divergence

from its initially nearby trajectories. One trajectory

in the n-dimensional space possesses n LEs, and the

maximum one is usually taken as an indicator to de-

tect whether the trajectory is chaotic or not. The

chaotic degree of a fixed TVE is signed by the mean

value of LEs (MLE) of the classical trajectories. To

present these characters of molecule H2O, we calcu-
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late the MLE of 100 tori for a fixed TVE. The MLE

as a function of TVE is shown in Fig. 2. The figure

shows that the chaotic degree obtains its maximum

value when TVE is around the dissociation energy of

single bond Dei (i = 1, 2). In the algebraic model, Dei

is expressed as

Dei = −(Ai +A12)N
2
i , (i = 1, 2). (17)

For H2O molecule, Dei = 47225.6 cm−1.

1 2 3 4 5
0

0.5

1.0

1.5

TVE/104 cm-1

M
L
E
/
p
s-

1

 

 

Fig. 2. The MLE as a function of TVE for H2O.

The Poincaré section of TVE = 46123 cm−1 is

plotted in Fig. 3(a). Although the surface is domi-

nated by the chaotic trajectories, the chaotic trajec-

tories are always confined by the resonance islands and

the invariant tori. The most chaotic trajectories are

located at both the inner part of the yolk and the bor-

der of the shell. These trajectories correspond to the

vibrations of the H2O molecule with the most part

of the TVE located in one bond. Due to the abun-

dant resonance zones in such regions, these chaotic

trajectories are in the most chaotic state. The chaos

is another way to enhance the dynamical tunneling

besides the resonance, and it does have the function

to enhance the energy exchange between the bonds.

When TVE transcends the bond’s dissociation

limit Dei, the inner part of the yolk and the border

of the shell of the Poincaré section will have no torus.

The blank space (i.e., no torus) is due to that the tori

in such regions correspond to the molecular vibrations

with one of the OH bonds possessing the energy bigger

than its dissociation limit, which causes the dissocia-

tion of the H2Omolecule. Figure 3(b) gives the section

of TVE = 49671 cm−1, which shows the typical sur-

face of the section with TVE transcending Dei. The

most chaotic tori, as shown in Fig. 3(a), are disap-

peared, correspondingly, the MLE is decreased, which

means that with the TVE grows even higher, the vi-

bration draws back to regular.
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Fig. 3. Poincaré sections of H2O for (a) TVE = 46123 cm−1

and (b) TVE = 49671 cm−1.

3.2.Dynamics of entanglement and its

correspondence to chaotic dynamics

A direct method to explore the connections be-

tween the dynamical entanglement and the underlying

chaotic tori is through preparing an initial coherent

state which centers precisely on a point of the Poincaré

section. In this paper, however, we employ another

viewpoint to describe this. That is, the classical dy-

namics is employed to understand the characters of

the dynamical entanglement of molecule H2O.

The Fock state has an obvious physical meaning

in quantum computation, moreover, the dynamical en-

tanglement of the Fock state is meaningful to under-

stand the intramolecular dynamics. Here, the Fock

state is written as

|ψ(0)⟩ = |N1, va⟩ ⊗ |N2, N − va⟩ ≡ |va, N − va⟩, (18)

where N is the total quantum vibrational number of

the two OH bonds, and va is the quantum vibrational

number of bond 1. When the Fock state is selected as
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the initial state, N is the polyad number during the

evolution of the molecular system. Thus, all the states

with the same N (namely, states |0, N⟩, |1, N − 1⟩,
|2, N − 2⟩, . . ., |N − 1, 1⟩, and |N, 0⟩) have their con-

tributions to the evolution of the states considered.

The Sls of the symmetrical initial Fock states, such as

|va, N − va⟩ and |N − va, va⟩, have an identical shape

of evolution.

Figure 4 shows the Sls for three Fock sates |0, 1⟩,
|0, 2⟩, and |1, 1⟩. In this low energy regime, the clas-

sical calculation shows that the bonds are vibrating

in the (1 : 1) resonance, thus the Sls vibrate in the

stable range and show a neat periodicity. But, as

the local mode reflection in the evolution of Sl, the

period of state |0, 2⟩ is about twice of that of state

|1, 1⟩. It should be noticed that the Sls of these three

Fock states are all oscillating from the disentangle-

ment to their maximum values periodically. Such fea-

tures make the states usable, since the disentangle-

ment is also necessary for the quantum computation.
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Fig. 4. (colour online) Linear entropies Sl as a function

of time for different initial states.
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Fig. 5. The Sls each as a function of time for the initial states with N being ((a)–(d)) 6, ((e)–(h)) 8, and ((i)–(l)) 10.

The packets in the early time are shown in the insets.

Two dynamical features of the local mode

molecules are that the local mode vibration exists in

various TVE levels and the affection of the local mode

will be sustainingly enhanced with the growth of TVE.

The enhancement is demonstrated by the increasing

energy discrepancy of the two bonds. Correspond-

ingly, the evolution of Sl in the case of the initial lo-

cal mode states shows neat beats. For example, the

cases with the initial states of |0, 6⟩, |0, 8⟩, and |0, 10⟩

are displayed in the first column of Fig. 5. All these
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time-dependent Sls for the initial local mode states

are composed of two grades of beats: the packets in

the early time (illustrated in the insets of the first col-

umn of Fig. 5) and the neat sine wave made up of the

packets. The packets can be seen as the impact from

the states near the local mode states. The impact

from the states far away from the local mode states

arises only after a long time evolution. With N grow-

ing, the distance between the far away states grows as

well, thus the periods of Sls for the initial local mode

states increase as well. The growing periods of Sls are

considered as the symbols of the energy discrepancy of

the local mode vibration in the classical calculation, in

other words, the increasing period of Sl is correspond-

ing to the sustaining enhancement of the local mode.

The growing periods of these Sls for the initial local

mode states indicate that the entanglement can last

for a long time. The long time sustained entanglement

for the local mode state could, therefore, be applied

to quantum computation and quantum information.

The Fock states with the same N can be classified

into one series to discuss the behavior of the dynamical

entanglement when the initial states are varying from

local to normal mode states. Every row of Fig. 5, from

left to right, displays the Sls of the initial local to nor-

mal states. When the initial states are changed from

local to normal mode states, the beats become incon-

spicuous, and their corresponding periods decrease as

well (notice that the time scales of the panels in Fig. 5

are not the same). Such phenomena are due to the

loss of the local mode character, which is analog to

the shrinking of energy discrepancy when the classi-

cal tori change form local to normal mode regions in

the classical mechanical. Furthermore, the maximum

values of Sl (Slmax) are also examined in Fig. 6. It is

interesting that the maximum value of Slmaxs of one

series of states is located at the transition states from

the local mode to the normal one. The results verify

the previous conclusion that the entanglement is the

largest when the initial states lie at the junctions of

different regions of vibrational modes in the Poincaré

section.

Since the classical nonlinear resonances and chaos

play an important role in the dynamical tunneling and

the elimination of the local mode,[28] we therefore ex-

pect that they have influences on the evolutions of

Sls. We will discuss the detailed functions of the sin-

gle resonance island and the chaotic trajectory on the

entanglement elsewhere, since we need to find the di-

rect correspondence between the initial Fock states,

the chaotic trajectories, and the resonance islands ex-

actly. Alternatively, here we explore the global effects

of the nonlinear resonances and chaos by employing

the following coherent state:

|ψ(0)⟩ = e−|α|2/2
N∑
n

αn

√
n!
|n,N − n⟩, (19)

where α is a parameter denoting the amplitude of the

coherent state. Here, we set α to be the maximum

real number satisfying ⟨ψ(0)|ψ(0)⟩ ≈ 1. The N varies

from 1 to 18 (with TVE lower than 50000 cm−1).

For a fixed value of N , the coherent state is viewed

as the superposition of a series of Fock states. In

the TVE range confined by N , this state can be the

bridge connecting the quantum and the classical dy-

namics. The long time-averaged entanglement is an

efficient quantity (characteristic parameter) to eval-

uate the comprehensive effect of the classical local

mode vibration, normal mode vibration, resonances,

and chaos.[32] Here, we define the long time-averaged

entanglement as the average linear entropy ⟨Sl⟩

⟨Sl⟩ =
1

T

∫ T

0

Sl(t)dt, (20)

where the evolution time T is set to be 108 a.u. Com-

paring to the relaxation of the molecular vibration,

this time is long enough, and many operations can be

applied. The variation of ⟨Sl⟩ with the growing N is

plotted in Fig. 7.
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Fig. 6. (colour online) The Slmaxs of the Fock states with

N = 6, 8, and 10.

The ⟨Sl⟩ obtains its first peak at N = 3, where

the local mode tori begin to occupy a significant pro-

portion of the Poincaré section. Then as N grows,

the local mode tori occupy more and more area in the

Poincaré section, meanwhile ⟨Sl⟩ decreases, the corre-
spondence indicates that the local mode vibration is
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the main factor that reduces the entanglement. The

⟨Sl⟩ starts to grow again when N > 6, and the res-

onance islands and the chaotic trajectories begin to

appear in the Poincaré section. Despite that the lo-

cal mode vibration is reinforced, ⟨Sl⟩ still grows with
the increasing N , which shows that the resonances as

well as the chaos have the function of enhancing the

entanglement between the two stretching bonds.
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<S
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Fig. 7. The ⟨Sl⟩ of the coherent state as a function of N .

4. Conclusion and outlook

In this paper, the dynamics of H2O in the case of a

frozen bond angle are investigated with the Poincaré

section, the LE, and the quantum dynamical entan-

glement by employing the U(4) algebraic model. Our

study shows that when TVE is lower than 33000 cm−1

(its corresponding quantum vibrational number is

about 10), the vibrations are (quasi-)periodic, and the

most chaotic vibration appears when TVE is around

the single bond’s dissociation limit. In the quantum

aspects, we find that the linear entropies show beat

phenomena, and their periods increase with the in-

crease of the local mode affection when the Fock states

are chosen as the initial states. The largest linear en-

tropies appear when the initial states are chosen to

be the transition states from local to normal. When

the coherent states are chosen as the initial states, the

turning points of the curve of ⟨Sl⟩ versusN correspond

to the changes of the classical vibrational states, i.e.,

the appearance of resonance. By comparing the clas-

sical and the quantum results, we draw the conclusion

that the beats in the quantum dynamical entangle-

ment indicate the classical local mode vibration, and

the resonance and chaos have the function of enhanc-

ing the entanglement production.

The H2O is a typical local mode molecule, and

recent studies have shown that its dynamical behav-

ior is quite different from the normal mode molecules

both from the classical[30] and the quantum[4] aspects.

Classically, for the normal mode molecules, the nor-

mal modes of vibrations are the main modes of their

vibrations. This makes the differences in the phase

space structure. From the quantum aspects, the dy-

namical entanglement also shows different characters

from that of the local mode molecules.[5] A meaning-

ful work is therefore to investigate the dynamical dif-

ference and the relationship between these two types

of triatomic molecules, and the study could give us

an entire picture of the intramolecular dynamics of

the small molecules. The bend vibration in a tri-

atomic system is also important, which has a sig-

nificant influence on the IVR and the intramolecu-

lar chaos. The U(4) algebraic Hamiltonian can also

be employed to discuss the influence of the molecular

bending vibrations. On the other hand, the classi-

cal potential energy surface and the force constants

of the tetratomic molecules have also been studied

under the U(4) algebraic framework,[56] which means

that the method in this paper can be expanded to the

tetratomic molecules. These studies are in process.
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