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Abstract

This paper studies an inventory routing problem (IRP) with split delivery and vehicle fleet size constraint. Due to the
complexity of the IRP, it is very difficult to develop an exact algorithm that can solve large scale problems in a reasonable
computation time. As an alternative, an approximate approach that can quickly and near-optimally solve the problem is
developed based on an approximate model of the problem and Lagrangian relaxation. In the approach, the model is solved
by using a Lagrangian relaxation method in which the relaxed problem is decomposed into an inventory problem and a
routing problem that are solved by a linear programming algorithm and a minimum cost flow algorithm, respectively, and
the dual problem is solved by using the surrogate subgradient method. The solution of the model obtained by the Lagrang-
ian relaxation method is used to construct a near-optimal solution of the IRP by solving a series of assignment problems.
Numerical experiments show that the proposed hybrid approach can find a high quality near-optimal solution for the IRP
with up to 200 customers in a reasonable computation time.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The inventory routing problem (IRP) is concerned with the distribution of a single product from a single
facility (depot) to a set of geographically dispersed customers over a given planning horizon (Campbell et al.,
2002; Campbell and Savelsbergh, 2004). It is to determine the delivery quantity for each customer and a set of
feasible vehicle routes for the delivery of the quantities in each period, subject to the vehicle capacity con-
straints and the customers’ product requirements and inventory capacity constraints, so that a total inventory
and transportation cost is minimized. The problem arises in many distribution systems, especially in vendor-
managed inventory systems.
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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The coordination of inventory and transportation decisions in multiple periods is the key for the optimi-
zation of the IRP, because: 1) Inventory costs and transportation costs are at odds. It is usually cheaper in
terms of transportation cost to ship a full truckload of a product to customers. However, the customer
demand of the product may be far less than a full truckload. When the product is delivered in a full truckload,
it may be stocked for a long time before it is consumed, leading to a higher inventory cost. Thus, a good trade-
off between inventory and transportation costs should be made in order to minimize the total cost. This can be
achieved by coordinating inventory and transportation decisions in multiple periods. 2) The utilization of the
vehicle resource can be well balanced by delivering more than the demand of a product to customers in some
periods with lower demand.

The IRP has found its applications in many industrial sectors, including oil and gas delivery (Adelman,
2004; Reiman, 1999). It has been attracting the attention of many researchers in academic communities. In
the literature, the IRP has been presented with different time horizons and assumptions about the nature of
demand. Single-period deterministic, multiple period deterministic, single-period stochastic, and multiple
period stochastic models and solution methods have been proposed.

The single-period IRP with deterministic demand is actually a classical vehicle routing problem (VRP).
Dror and Trudeau (1989) first introduced the split delivery VRP (SDVRP) by relaxing a constraint of the
VRP that every customer is served by only one vehicle. They showed how this relaxation could lead to impor-
tant savings, both in the total distance traveled and in the number of vehicles used. The SDVRP remains NP-
hard despite this relaxation (Dror and Trudeau, 1990). This leads to further studies in the development of
approximate approaches for the problem (Belenguer et al., 2000; Ho and Haugland, 2004; Lee et al., 2006).

For the multiple period IRP with deterministic demand, Campbell et al. (2002) and Campbell and Savels-
bergh (2004) developed a two-phase approach, where a delivery schedule is first created by solving an integer
programming problem, followed by the construction of a set of delivery routes by using heuristics. For the
IRP with constant demand, Anily and Bramel (2004) proposed a fixed partition policy, where all customers
are partitioned into disjoint and collectively exhaustive sets and the customers in each set are served indepen-
dently of the customers in the other sets. They derived a lower bound on the cost of an optimal fixed partition
policy. A probabilistic analysis of this bound demonstrates that the policy is asymptotically 98.5%-effective.
The same problem was also studied by Aghezzaf et al. (2006) and Zhao et al. (2007). The former proposed
a column generation-based approximation method with the resulted routing sub-problems solved by using
a savings-based heuristic, whereas the latter used a tabu search method to find the customers’ optimal parti-
tion regions for the fixed partition policy. For other work on deterministic multiple period IRP, readers can
refer to Campbell et al. (2002), Campbell and Savelsbergh (2004) and Schwarz et al. (2004).

Federgruen and Zipkin (1984) first studied the single-period inventory routing problem with stochastic
demand. They showed how some well-known heuristics for the deterministic VRP can be modified to handle
the problem modeled as a stochastic nonlinear integer program. Federgruen et al. (1986) studied the problem
in the distribution of perishable products and showed that significant cost savings can be achieved by using an
integrated inventory planning and routing approach. Since more opportunities may be generated by coordi-
nating deliveries in multiple periods (Campbell and Savelsbergh, 2004), the multiple period IRP with stochas-
tic demand was studied by Adelman (2004), Dror and Ball (1987), Dror et al. (1985), Jaillet et al. (2002),
Kleywegt et al. (2002, 2004), Kumar et al. (1995) and Trudeau and Dror (1992). Despite the previous research
efforts, the stochastic IRP remains notoriously intractable and the structure of an optimal policy is not known
even for the problem with a single-customer (Adelman, 2004; Reiman, 1999). The readers who want to know
more about the stochastic IRP please refer to the literature reviews given in Campbell et al. (2002), Campbell
and Savelsbergh (2004) and Kleywegt et al. (2002, 2004).

In this paper, we consider the multiple period deterministic inventory routing problem with split delivery
(IRPSD) where the demand of each customer in each period over a given planning horizon is assumed to
be known and must be satisfied without backorder. The delivery of each customer in each period can be split
and performed by multiple vehicles. Allowing split delivery increases the flexibility of distribution, which may
further reduce transportation costs (Dror and Trudeau, 1989). However, due to the complexity of the IRP, the
split delivery was not considered in the pervious literature (Campbell et al., 2002; Campbell and Savelsbergh,
2004; Kleywegt et al., 2002, 2004) except for Chandra and Fisher (1994), Fumero and Vercellis (1999), and Yu
et al. (2005).
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We use a deterministic model rather than a stochastic model for the IRP because of the high complexity
of the stochastic IRP mentioned above. In practice, future customer demands may be estimated (fore-
casted) with allowable errors, especially for near future demands. These demand estimates can be used
as inputs of our model. Our planning approach also adopts a rolling horizon framework as in Jaillet
et al. (2002). That is, although in each period, the inventory and routing plans are generated for the whole
time horizon, only the plans for the current period are really implemented. As time progresses, the time
horizon is moved forward and the unimplemented plans for future periods will be updated using new
demand forecast data.

The previous work directly relating to our present research includes Chandra and Fisher (1994), Fumero
and Vercellis (1999), and Yu et al. (2005). Chandra and Fisher (1994) proposed an integrated multi-period
multi-product production and distribution system model based on a multi-stop routing problem formulation
with additional setup constraints and split delivery relaxation. They presented a two-phase solution procedure:
the multi-item lot-sizing sub-problem is first solved, and the distribution plan is then generated by using a heu-
ristic algorithm. However, Yu et al. (2007) found that a feasible solution of their model might not define a
feasible solution for the original production and distribution problem they considered. In fact their model only
offers a lower bound for the original problem. Moreover, the subtour elimination constraints in their model
are quite complex, which makes it difficult to cope with large scale problems. Fumero and Vercellis (1999)
developed a multi-period integrated model for a single plant logistical system, in which multiple items are
manufactured and delivered to customers. Production, inventory, and routing decisions are considered in
the same model, which is solved by using Lagrangian relaxation. However, although the vehicles considered
are homogeneous, they introduced in their model decision variables for each specific vehicle, which makes the
number of decision variables increase considerably as the problem size increases. Another problem of their
model is that the transportation cost for any empty vehicle traveling from one customer to another is zero
so that some vehicle routes in an optimal solution of the model may contain a partial route in which an empty
vehicle first goes to a customer with minimum direct return cost to the depot rather than directly returns to the
depot. The same problem exists in our previous work (Yu et al., 2005), which adopted the same transportation
cost structure of Fumero and Vercellis (1999). The model to be proposed in the present paper will eliminate
such partial routes.

In order to solve large scale IRPSD, instead of providing an exact model for the problem, we propose an
approximate model, whose solution only defines the quantity delivered to each customer, the quantity trans-
ported through each directed arc and the number of times that each directed arc is visited by vehicles, where a
directed arc connects two customers or a customer and the central depot in the corresponding transportation
network. The approximate model makes the formulation of a much larger problem with the same number of
variables as used in other models possible. For example, to formulate the IRPSD problem with 100 customers
and 30 vehicles per period, the model of Fumero and Vercellis (1999) requires nearly 6 · 105 variables, whereas
with the same number of variables our model can formulate the problem with almost 500 customers. In addi-
tion, new subtour elimination constraints for the vehicle routing sub-problem in each period are introduced in
our model. Compared with that of Chandra and Fisher (1994), our model uses much fewer but tighter subtour
elimination constraints. If N customers are considered, only N subtour elimination constraints are required in
our model, whereas 2N constraints are required in their model.

The present work also improves our previous model presented in Yu et al. (2005) by introducing a set of
constraints to avoid empty partial routes and other valid constraints to reduce the solution space. However,
with the new constraints, the Lagrangian relaxation approach developed in Yu et al. (2005) becomes sen-
sitive to problem parameters. To overcome this difficulty, we develop a new and more robust Lagrangian
relaxation approach by constraint reformulation and by using a different constraint relaxation framework.
Since the model’s solution obtained by the Lagrangian relaxation may be not feasible for the original
IRPSD problem, a procedure based on sequentially solving a set of assignment problems is proposed to
transform it into a feasible solution of the IRPSD. The assignment problems assign the quantity trans-
ported through each directed arc and the number of times that each directed arc is visited by vehicles
in the corresponding transportation network to a set of feasible vehicle routes. Finally, a simple local
search is used to further improve the quality of the routes, leading to a near-optimal solution of the
IRPSD.
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The remainder of the paper is organized as follows: Section 2 describes the problem and outlines our solu-
tion methodology. Section 3 presents an approximate model of the IRPSD and its properties. Section 4 is ded-
icated to the Lagrangian relaxation approach for the model. The construction of a feasible solution of the
model and its transformation to a near-optimal solution of the IRPSD are presented in Section 5. Computa-
tional results are given in Section 6. Section 7 concludes the paper with some remarks.

2. Problem description and solution methodology outline

We study the multiple period IRPSD with a set of customers, a central depot, and a fleet of homoge-
neous vehicles with limited capacity, for which in each period the depot has to deliver sufficient units of
a product to each customer to completely fulfill its demand, which is deterministically known. No backorder
is allowed at each customer but each customer may hold a local inventory used to meet future demands
with a holding cost. The delivery to each customer in each period can be performed by multiple vehicles.
The objective is to minimize over a given time horizon the total inventory holding and transportation cost,
which is the sum of the inventory holding costs of all customers and the transportation costs for all deliv-
eries to the customers.

The inventory cost of each customer linearly depends on its inventory level at the end of each period. The
transportation cost includes not only fixed usage costs, which are related to vehicle insurance, depreciation,
and drivers’ rewards, but also variable shipping costs depending on both transported quantity and traveled
distance. This transportation cost structure, first adopted by Fumero and Vercellis (1999), not only can
approximately model purely distance proportional cost components in classical VRP but also reflects the
transportation pricing in practice.

The solution methodology for finding a near-optimal solution of the IRPSD is outlined in Fig. 1. 1) An
approximate model of the IRPSD is developed based on some important properties of the problem. 2)
Lagrangian relaxation is used to decompose the model into an inventory sub-problem and a routing sub-prob-
lem which are solved by a linear programming algorithm and a minimum cost flow (MCF) algorithm,
respectively. 3) A feasible solution of the model is constructed based on the results of the Lagrangian relax-
ation. 4) The solution, which may be not feasible for the original IRPSD, is transformed into a feasible one by
solving a series of assignment problems. 5) The feasible solution is further improved by a simple local search to
obtain a near-optimal solution of the IRPSD. 6) In order to evaluate the quality of the final solution,
another Lagrangian relaxation approach with exact decomposition is used to calculate a lower bound of
the IRPSD.
Fig. 1. The solution methodology for IRPSD.
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3. Model

The notation used in the model is given as follows.

Indices

t = 1, . . . ,T period index
i, j = 0,1, . . . ,N customer or depot index, where i, j = 1, . . . ,N represent N customers, and 0 represents the cen-

tral depot
Parameters

C vehicle capacity
cij shipping cost per unit of product along arc (i, j) where cij = cji and the triangle inequality,

cik + ckj P cij, holds for any i, j, k with k 5 i, k 5 j

cb
i0 cost of traveling with an empty vehicle from customer i back to the depot in period t

ft fixed vehicle cost per tour in period t

hit holding cost per unit of product at customer i in period t

Ii0 initial inventory level of customer i at the beginning of period 1
M size of the vehicle fleet (number of available vehicles)
rit demand of customer i in period t

Vi inventory capacity of customer i
Variables

dit delivery quantity to customer i in period t

Iit inventory level of customer i at the end of period t

qijt quantity transported through the directed arc (i, j) in period t

xijt number of times that the directed arc (i, j) is visited by vehicles in period t

With the notation, an approximate model of the IRPSD, denoted by P, is given as
Model P:
Z ¼ min
XT

t¼1

XN

i¼1

hitI it þ
XT

t¼1

XN

j¼0;j 6¼i

XN

i¼0

cijqijt þ
XT

t¼1

XN

i¼1

ftxi0t þ
XT

t¼1

XN

i¼1

cb
i0xi0t ð1Þ
subject to
I it ¼ I i;t�1 þ dit � rit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð2Þ
I i;t�1 þ dit 6 V i; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð3ÞXN

j¼0;j 6¼i

xijt ¼
XN

j¼0;j 6¼i

xjit; i ¼ 0; . . . ;N ; t ¼ 1; . . . ; T ; ð4Þ

XN

j¼0;j 6¼i

qjit �
XN

j¼0;j 6¼i

qijt ¼ dit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð5Þ

XN

i¼1

q0it ¼
XN

i¼1

dit; t ¼ 1; . . . ; T ; ð6Þ

XN

i¼1

xi0t 6 M ; t ¼ 1; . . . ; T ; ð7Þ

qijt 6 C � xijt; i; j ¼ 0; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T ; ð8Þ
I it P 0; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð9Þ
xijt P 0 and integer i ¼ 0; . . . ;N ; j ¼ 0; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T ; ð10Þ
dit P 0; i ¼ 1; . . . ;N ; qijt P 0; i ¼ 0; . . . ;N j ¼ 1; . . . ;N ; j 6¼ i; t ¼ 1; . . . ; T : ð11Þ
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The objective function (1) includes both inventory costs of each customer and transportation costs (fixed and
variable costs). Constraints (2) are the inventory balance constraints of each customer. Constraints (3) are the
inventory capacity constraints of each customer. Constraints (4) ensure that the number of vehicles leaving
from a customer or the depot is equal to the number of its arrival vehicles. Constraints (5) are the product
flow conservation equations, assuring the flow balance at each customer and eliminating all subtours. Con-
straints (6) assure the collection of accumulative delivery quantity at the depot. Constraints (7) assure that
the number of vehicles used for delivery in each period does not exceed the size of the vehicle fleet. Constraints
(8) model the vehicle capacity and logical relationship between qijt and xijt. Constraints (9) ensure that each
customer’s demand is completely fulfilled without backorder.

Theorem 1. Consider the SDVRP with N customers for which a positive quantity di must be delivered to

customer i. Let xij and qij be the number of times that the directed arc (i, j) is visited by vehicles and the quantity

transported through the directed arc (i, j), respectively, i, j = 0,1, . . . ,N, i 5 j, then the following constraints (12)

and (13)
XN

j¼0;j 6¼i
qji �

XN

j¼0;j 6¼i

qij ¼ di; i ¼ 1; . . . ;N ; ð12Þ

qij 6 C � xij; i ¼ 0; . . . ;N ; j ¼ 1; . . . ;N ; i 6¼ j; ð13Þ
1) are tighter than the constraints (14):
X
j2U0nS

X
i2S

xji P
X
i2S

di=C 8S � f1; . . . ;Ng ð14Þ
proposed by Chandra and Fisher (1994), where U0 = {0,1, . . . ,N};

2) give a necessary condition for defining a feasible solution of the SDVRP;

3) eliminate all subtours of the SDVRP.
Proof. 1) For "S � {1, . . . ,N},
P

i2Sð
PN

j¼0;j 6¼iqji �
PN

j¼0;j 6¼iqijÞ ¼
P

j2U0nS
P

i2Sqji �
P

j2U0nS
P

i2Sqij 6
P

j2U0nSP
i2Sqji.
Considering constraints (12), we have
X
j2U0nS

X
i2S

qji �
X

j2U0nS

X
i2S

qij ¼
X
i2S

di and
X

j2U0nS

X
i2S

qji P
X
i2S

di:
From constraints (13) and qij 6 C Æ xij, we have
P

j2U0nS
P

i2Sqji 6 C �
P

j2U0nS
P

i2Sxji.
So C �
X

j2U0nS

X
i2S

xji P
X
i2S

di; that is;
X

j2U0nS

X
i2S

xji P
X
i2S

di=C:
2) The result is obvious and its proof is omitted.
3) (by contradiction) subtours are the tours that do not depart from and return to the depot. The subtours

can be traced by the arcs with xij > 0. If there is a subtour satisfying the condition (12), select all customers in
the subtour to compose a set S. For this subtour, xji = xij = qji = qij = 0 j 2 U0 n S, i 2 S and $xji > 0 i, j 2 S.
According to constraints (12), we have

P
j2U0nS

P
i2Sqji �

P
j2U0nS

P
i2Sqij ¼

P
i2Sdi and

P
j2U0nS

P
i2Sqji ¼P

j2U0nS
P

i2Sqij ¼ 0, thus
P

i2Sdi ¼0. That is, di = 0, "i 2 S. Since the SDVRP is a minimum problem, we
have xij = qij = 0 "i, j 2 S according to constraints (13). This contradicts the existence of a subtour defined by
S. h

Note: Constraints (12) and (13) together are neither a sufficient condition for defining a feasible solution of
the SDVRP, nor a necessary condition for its subtour elimination. However the model P provides a lower
bound for the IRPSD since any solution of the IRPSD is also a solution of the model.

The following theorem and property will be used for deriving a tighter model P 0 of the IRPSD with a
reduced solution space containing an optimal solution of P.
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Theorem 2. If cij i, j = 1, . . . ,N, i 5 j satisfy the triangle inequality and model P is feasible, then

1) P has an optimal solution with no two routes having more than one common customer.
2Þ xijt 2 f0; 1g; xi0t; x0it P 0 and integer i; j ¼ 1; . . . ;N ; i 6¼ j: ð15Þ

This theorem was proved by Dror and Trudeau (1990) for the SDVRP with standard VRP cost structure. It is
also applicable to our model P. The proof of the theorem is thus omitted here.

Property 1. For model P, if the same conditions of Theorem 2 hold, then, 1) x0it P dq0it/Cei = 1, . . . ,N for any

feasible solution of P; 2) At least one optimal solution (x*, q*) of P satisfies x�0it ¼ dq�0it=Ce i ¼ 1; . . . ;N ; and
3Þ ðx�0it � 1ÞC 6 q�0it; i ¼ 1; . . . ;N : ð16Þ
Proof. 1) From vehicle capacity constraints q0it 6 x0itC, i = 1, . . . ,N, we have x0it P C/q0it. Because x0it

i = 1, . . . ,N are integers, x0it PdC/q0ite holds.
2) If in an optimal solution (x*,q*) of model P there is a customer i, i 2 {1, . . . ,N} and a period t,

t 2 {1, . . . ,T} not satisfying x�0it ¼ q�0it=C
� �

, then x�0it P q�0it=C
� �

þ 1, because x0it P dq0it/Ce according to 1).
Consequently, according to constraints (4) there is a customer k, k 2 {1, . . . ,N} k 5 i with x�ikt ¼ 1, and
q0it P qikt since model P is feasible. Modifying the solution with xikt = 1 � 1 = 0, x0it ¼ x�0it � 1; x0kt ¼ x�0ktþ
1, q0it ¼ q�0it � q�ikt; qikt ¼ 0 q0kt ¼ q�0kt þ q�ikt and with no change of other variables, we obtain a new solution
(x,q) satisfying all constraints of P, which is also a feasible solution of the model. According to the triangle
inequality of cij, i, j = 1, . . . ,N, the transportation cost of the new solution is reduced by ðc0i þ cik � c0kÞq�ikt P 0.
At the same time, the total number of times that all arcs are visited by vehicles in the corresponding
transportation network is reduced by 1, i.e.,

PN
j¼0;j6¼i

PN
i¼0xijt ¼

PN
j¼0:j6¼i

PN
i¼0x�ijt � 1. The above procedure can

be repeated if there is still a customer and a period not satisfying x0it = dq0it/Ce. Since
PN

j¼0;j6¼i

PN
i¼0x�ijt is finite,

this procedure cannot be repeated infinitely. It implies that an optimal solution of P with no customer violating
the condition x�0it ¼ q�0it=C

� �
will be finally obtained when the procedure terminates.

3) Since x�0it ¼ q�0it=C
� �

, we have x�0it 6 q�0it=C þ 1. The condition ðx�0it � 1ÞC 6 q�0it is thus satisfied. h

More valid constraints can be identified under a mild assumption to eliminate all routes with an empty vehi-
cle traveling from one customer to another in any solution of model P. For this purpose, suppose that in
model P all quantity related parameters, such as Ii0, rit, C and Vi, are integers. With this assumption, it is very
rare that in an optimal solution the quantity transported on each arc qijt < 1. Without loss of optimality, we
assume that either qijt = 0 with xijt = 0, or qijt P 1 with xijt P 1. It follows that
xijt 6 ðqijt � 1Þ=C þ 1; i ¼ 0; 1; . . . ; N ; j ¼ 1; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T : ð17Þ

With constraints (17), xijt must be 0 when qijt = 0. This eliminates a potential problem that empty vehicles may
travel between two customers in an optimal solution.

With the above theorem and property, we can obtain a tighter model of the IRPSD with additional con-
straints (15) to replace (10), constraints (16) and (17). However, in the model, xi0t and x0it are integers. In order
to effectively solve the model by using a Lagrangian relaxation approach described in the next section, we
introduce a tighter model P 0 after transforming x0it from integer variables into binary variables by introducing
the following additional parameters and variables.
Mi maximal number of vehicles left from the depot to customer i. These vehicles are indexed by

m = 1, . . . ,Mi, Mi 6 M

pmit quantity transported by the mth vehicle on directed arc (0, i) in period t, with
PMi

m¼1pmit ¼ q0it

ymit ymit = 1 if the mth vehicle left from the depot to customer i, 0 otherwise;
PMi

m¼1ymit ¼ x0it

The model P 0 can now be formulated as follows:

Model P 0:  !  !

Z ¼min

XT

t¼1

XN

i¼1

hitI itþ
XT

t¼1

XN

j¼1;j 6¼i

XN

i¼1

cijqijtþ
XT

t¼1

XN

i¼1

c0i

XMi

m¼1

pmit þ
XT

t¼1

XN

i¼1

ft

XMi

m¼1

ymit þ
XT

t¼1

XN

i¼1

cb
i0xi0t

ð18Þ
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subject to constraints (2), (3), (7), (9), (17) and
XN

j¼0;j 6¼i

xijt ¼
XMi

m¼1

ymit þ
XN

j¼1;j 6¼i

xjit i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ðfor customersÞ; ð19aÞ

XN

i¼1

xi0t ¼
XN

i¼1

XMi

m¼1

ymit; t ¼ 1; . . . ; T ðfor the depotÞ; ð19bÞ

XMi

m¼1

pmit þ
XN

j¼1;j6¼i

qjit �
XN

j¼0;j 6¼i

qijt ¼ dit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð20Þ

XN

i¼1

XMi

m¼1

pmit ¼
XN

i¼1

dit; t ¼ 1; . . . ; T ; ð21Þ

qijt 6 xijtC; i; j ¼ 1; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T ðfor customersÞ; ð22aÞ

XMi

m¼1

pmit 6 C �
XMi

m¼1

ymit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ðfor the depotÞ; ð22bÞ

C �
XMi

m¼1

ymit � 1

 !
6

XMi

m¼1

pmit; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð23Þ

ymit; xijt 2 f0; 1g; xi0t P 0 and integer i; j ¼ 1; . . . ;N ; i 6¼ j; m ¼ 1; . . . ;Mi; t ¼ 1; . . . ; T ; ð24Þ

dit; pmit; qijt P 0; i ¼ 1; . . . ;N ; j ¼ 0; . . . ;N ; j 6¼ i; m ¼ 1; . . . ;Mi; t ¼ 1; . . . ; T ; ð25Þ
where constraints (19a) and (19b) are the reformulation of constraints (4); constraints (20) and (21) are the
reformulations of constraints (5) and (6), respectively; constraints (22a) and (22b) are the reformulation of
constraints (8); constraints (23) are the reformulation of constraints (16); constraints (24) and (25) are the
reformulations of constraints (10) and (11), respectively. Note that in model P 0, vehicle specific variables
are introduced only for the directed arcs from the depot to a customer, the number of vehicle specific variables
in the model is thus much less than that of Fumero and Vercellis (1999) especially when the vehicle fleet size M
is large. The number of integral variables in model P 0 is
N � ðN � 1Þ � T þ
XN

i¼1

Mi

 !
� T þ N � T 6 N � N � T þM � N � T ;
whereas the number of integral variables in their model is M · (N + 1) · N · T. For example, if N = 100,
T = 10, and M = 40, model P 0 has less than 140,000 integral variables, whereas their model has 4,040,000 inte-
gral variables which can be used to model a problem of more than N = 500 customers with our model P 0.

4. Lagrangian relaxation approach

4.1. Relaxation framework

Model P 0 is NP-hard since it is more difficult than general SDVRP. This inspires us to seek an approximate
approach to solve the model. In this section we present a Lagrangian relaxation (LR) approach for finding a
near-optimal solution of model P 0.

The constraints that complicate the resolution of this model are constraints (17), (22a), (22b) and (23),
which couple qijt, pmit with integral variables xijt and ymit. They can be relaxed by introducing non-negative
Lagrange multipliers. However, this kind of relaxation can not lead to a relaxed problem whose solution
contains useful information for constructing a satisfactory feasible solution of the model. In order to
have an effective relaxed problem, the constraints (22a) and (22b) are substituted by the following equivalent
ones.
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qijtð1� xijtÞ ¼ 0; i; j ¼ 1; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T ; ð26aÞ
qijt 6 C; i; j ¼ 1; . . . ;N ; i 6¼ j; t ¼ 1; . . . ; T ; ð26bÞ

pmitð1� ymitÞ ¼ 0; m ¼ 1; . . . ;Mi; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð27aÞ
pmit 6 C; i ¼ 1; . . . ;N ; m ¼ 1; . . . ;Mi; t ¼ 1; . . . ; T : ð27bÞ
Without loss of optimality, the following constraints similar to (17) are also considered
ymit 6 ðpmit � 1Þ=C þ 1; i ¼ 1; . . . ;N ; m ¼ 1; . . . ;Mi; t ¼ 1; . . . ; T : ð28Þ

By introducing Lagrange multipliers k ¼ fkijtgN�ðN�1Þ�T , a ¼ faitgN�T , �a ¼ f�aitgMi�N�T , c ¼ fcijtgN�ðN�1Þ�T and
�c ¼ f�cijtgMi�N�T to relax constraints (17), (23), (28), (26a) and (27a), respectively, we obtain the relaxed prob-
lem of P 0, denoted by RP, as

Model RP:
Zk;a;�a;c;�cðq; p; x; yÞ ¼ min Z þ kT g1 þ aT g2 þ �aT g3 þ cT g4 þ �cT g5; ð29Þ

subject to constraints (2), (3), (7), (9), (19a),(19b),(20), (21), (24), (25), (26b) and (27b), where
g1ðq; xÞ ¼ fxijt � ðqijt � 1Þ=C � 1g; g2ðp; yÞ ¼ C
XMi

m¼1

ymit � 1

 !
�
XMi

m¼1

pmit

( )
;

g3ðp; yÞ ¼ fymit � ðpmit � 1Þ=C � 1g; g4ðq; xÞ ¼ fqijtð1� xijtÞg; g5ðp; yÞ ¼ fpmitð1� ymitÞg:
The relaxed problem, however, cannot be exactly decomposed into sub-problems because of the coupling
terms qijtxijt and pmitymit in its objective function. Nevertheless, it can be approximately solved by alternatively
solving its two sub-problems, one with given {qijt,pmit} and the other with given {xijt,ymit}.

The sub-problem with (x,y) given by ðx_; y
_Þ ¼ ðfx

_
ijtg; fy

_
mitgÞ, denoted by INVðx_; y

_Þ determines the q, p val-
ues and can be formulated as
Z1
k;a;�a;c;�cðq; p; x

_
; y
_Þ ¼ min

XT

t¼1

XN

i¼1

hitI it þ
XT

t¼1

XN

j¼1
j 6¼i

XN

i¼1

cij �
kijt

C
þ cijtð1� x

_
ijtÞ

� �
qijt

þ
XT

t¼1

XN

i¼1

XMi

m¼1

ðc0i � ait �
�amit

C
þ ð1� y

_
mitÞ�cmitÞpmit; ð30Þ
subject to constraints (2), (3), (9), (20), (21), (25), (26b) and (27b). In the sub-problem, x
_

ijt and y
_

mit are the
predetermined values of variables xijt and ymit, respectively.

From constraints (2), we have I it ¼ I i0 þ
Pt

s¼1ðdis � risÞ. The sub-problem INV can then be reformulated as
Z1
k;a;�a;c;�cðq; p; x

_
; y
_Þ ¼ min

XT

t¼1

XN

i¼1

hit I i0 þ
Xt

s¼1

ðdis � risÞ
 !

þ
XT

t¼1

XN

j¼1
j 6¼i

XN

i¼1

cij �
kijt

C
þ cijtð1� x

_
ijtÞ

� �
qijt

þ
XT

t¼1

XN

i¼1

XMi

m¼1

c0i � ait �
�amit

C
þ ð1� y

_
mitÞc

_

mit

� �
pmit; ð31Þ
subject to constraints (20), (21), (25), (26b), (27b) and
I i0 þ
Xt

s¼1

dis �
Xt�1

s¼1

ris 6 V i; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð32Þ

I i0 þ
Xt

s¼1
ðdis � risÞP 0; i ¼ 1; . . . ;N ; t ¼ 1; . . . ; T ; ð33Þ
where constraints (32) and (33) are the reformulations of constraints (3) and (9), respectively.
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The sub-problem with (q,p) given by ðq_; p
_Þ ¼ ðfq

_
ijtg; fp

_
ijtgÞ, denoted by ROUðq_; p

_Þ, determines the x and
y values and can be formulated as
Z2
k;a;�a;c;�cðq

_
; p
_
; x; yÞ ¼ min

XT

t¼1

XN

i¼1

ðcb
i0 þ ftÞxi0t þ

XT

t¼1

XN

j¼1;j 6¼i

XN

i¼1

ðkijt � cijt q
_

ijtÞxijt

þ
XT

t¼1

XN

i¼1

XM

m¼1

ðaitC þ �amit � �cmit p
_

mitÞymit; ð34Þ
subject to constraints (7), (19a), (19b) and (24). In the sub-problem, q
_

ijt and p
_

mit are the predetermined values
of variables qijt and pmit respectively.

For ROU, it can be further decomposed into T sub-problems, one for each period, given by
Z2t
kðtÞ;aðtÞ;�aðtÞ;cðtÞ;�cðtÞ

ðq_ðtÞ; p
_
ðtÞ; xðtÞ; yðtÞÞ ¼ min

XN

i¼1

ðcb
i0 þ ftÞxi0t þ

XN

j¼1;j6¼i

XN

i¼1

ðkijt � cijt q
_

ijtÞxijt

þ
XN

i¼1

XMi

m¼1

ðaitC þ �amit � �cmit p
_

mitÞymit ð35Þ
subject to
XN

j¼0;j 6¼i
xijt ¼

XMi

m¼1

ymit þ
XN

j¼1;j 6¼i

xjit; i ¼ 1; . . . ;N ðfor customersÞ; ð36aÞ

XN

i¼1
xi0t ¼

XN

i¼1

XMi

m¼1

ymit ðfor the depotÞ; ð36bÞ

XN

i¼1
xi0t 6 M ; ð37Þ

xijt 2 f0; 1g; j 6¼ i; ymit 2 f0; 1g; xi0t P 0 and integer; i ¼ 1; . . . ;N : ð38Þ
Let D(l) be the optimal objective value of RP for any Lagrange multiplier vector l ¼ fk; a; �a; c;�cg. The
Lagrangian dual problem of RP, denoted by DP, can be formulated as

Model DP:
max
lP0

DðlÞ; ð39Þ
where DðlÞ ¼ maxfZlðq; p; x; yÞ ¼ Zk;a;�a;c;�cðq; p; x; yÞ j s.t. (2),(3), (7), (9), (19a), (19b), (20), (21), (24), (25),
(26b) and (27b)}.

4.2. Resolution of the relaxed problem

To solve the Lagrangian dual problem DP, for any given Lagrange multiplier vectors k; a; �a; c;�c, the corre-
sponding sub-problems INV and ROU need to be solved. The sub-problem INV is a linear program, which can
be easily solved by using the simplex algorithm. To improve the performance of the Lagrangian relaxation
approach, one additional technique is adopted. That is, a very small perturbation,

PT
t¼1

PN
i¼1

PMi
m¼1

10�5 � m � pmit, is added to the objective function (31) to distinguish p1it; . . . ; pMiit. This perturbation will make
p1it; . . . ; pMiit in a non-increasing order, i.e., p1it P p2it P � � �P pMiit, in any solution of sub-problem INV at
each iteration of the Lagrangian dual maximization.

The sub-problem ROU can be transformed into a min-cost flow problem using a similar method from
Fumero and Vercellis (1999). In the method, the depot, indexed 0, is duplicated by adding an artificial depot
indexed by 0 0. The two depots are then connected with an arc of capacity equal to the vehicle fleet size M.
Moreover, the original arcs incident to node 0 (i.e. ymit 2 {0,1},xi0t i = 1, . . . ,N) are divided into two groups
which are associated with the two depots respectively so that depot 0 has only entering arcs (i.e. xi0t,
i = 1, . . . ,N) and depot 0 0 has only leaving arcs (i.e. ymit 2 {0,1}, i = 1, . . . ,N), with an exception of the newly
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added arc, denoted by x0,0 0,t, connecting the two depots. In this way, we can obtain a modified model, denoted
by ROU 0, of the above ROU by replacing constraints (36b) and (37) with the following three constraints:
XN

i¼1

xi0t ¼ x0;00;t ðfor the depot 0Þ; ð40Þ

x0;00;t ¼
XN

i¼1

XMi

m¼1

ymit ðfor the depot 00Þ; ð41Þ

x0;00;t 6 M and integer: ð42Þ
Note that the integer requirements of the decision variables of ROU 0 are not necessary since its constraint
matrix is totally unimodular and its all right-hand side constants are integers (Wolsey, 1998). In other words,
solving ROU 0 as a linear program using the simplex method always yields an integral solution. Moreover,
ROU 0 is a minimum cost flow (MCF) problem that can be efficiently solved by using the out-of-kilter algo-
rithm, Klein, Jewell, Busacker & Gowan’s method, etc. (Wolsey, 1998). These algorithms run in polynomial
time and are more efficient than the simplex algorithm. In order to improve the performance of the Lagrangian
relaxation approach, a very small perturbation, such as

PT
t¼1

PN
i¼1

PMi
m¼110�5 � m � ymit, is again added to the

objective function (34) to distinguish y1it; . . . ; yMiit.
4.3. Resolution of the dual problem by surrogate subgradient method

The Lagrangian dual problem is usually solved by using the subgradient (SG) method. However the appli-
cation of the SG method requires that the relaxed problem is optimally solved at each iteration of the dual
optimization. Since the relaxed problem we consider in Section 4.1 is only approximately solved, the SG
method is no longer applicable.

Fortunately, a subgradient-like method called surrogate subgradient (SSG) method was recently developed
to solve the Lagrangian dual problem in case of an approximate resolution of the relaxed problem (Zhao et al.,
1999). When the relaxed problem is approximately solved, the method still ensures the convergence of the dual
problem to its optimal solution under some conditions.

SSG is similar to SG except for the definition of the subgradient and the step sizing scheme for the update
of Lagrange multipliers. For our dual problem DP, the surrogate subgradient is given by
gðq; p; x; yÞ ¼ fg1ðq; xÞ; g2ðp; yÞ; g3ðp; yÞ; g4ðq; xÞ; g5ðp; yÞg;
where (q,p,x,y) is the solution of the relaxed problem RP obtained by using the method described in Sections
4.1 and 4.2.

Using an adaptive step sizing scheme, the procedure of the SSG method is given as follows.

Step 0. Initiation: k = 0, l0 = 0, and h = 1, where k is the iteration index, h is a parameter for step sizing.
Step 1. Solve inventory sub-problem INV(xk�1, yk�1) and routing sub-problem ROU(qk�1,pk�1) with the

Lagrange multipliers lk, where (xk�1,yk�1) and (qk�1,pk�1) are the solution of sub-problem ROU
and the solution of INV obtained at the last iteration (iteration k�1), respectively. At k = 0, neither
of the two sub-problems depends on (xk�1,yk�1) or (qk�1,pk�1) and they can be solved independently.

Step 2. Set step size sk as sk ¼ bðD� � ZkÞ=kgkk2, where b is a step size with 0 < b < 1; Zk ¼ Zlk ðqk; pk; xk; ykÞ is
the surrogate dual at the current iteration k; gk = {g1(qk,xk), g2(pk,yk), g3(pk,yk), g4(qk,xk), g5(pk,yk)}
is the surrogate subgradient at the current iteration k; D* is the optimal objective value of the dual
problem, which is estimated by ð1þ x

hqÞZ ½k�, where Z[k] is the best surrogate dual obtained prior to iter-
ation k, h = max(1,h � 1) if Zk > Z[k] and h = h + 1 otherwise. Parameters x and q are taken as
x 2 [0.1,1.0], q 2 [1.1,1.5].

Step 3. Update the Lagrange multipliers in iteration k + 1: lk+1 = max{lk + skgk, 0}.
Step 4. Check the stopping criterion: 1) Zk is not improved for a given number of iterations, or 2) A given

maximal total iteration number is reached. If the criterion is met, stop and output all required results.
Otherwise, set k = k + 1 and go to Step 1.
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The convergence conditions for SSG are:
Zl0ðq0; p0; x0; y0Þ < D�; ð43Þ
Zlk ðqk; pk; xk; ykÞ < Zlk ðqk�1; pk�1; xk�1; yk�1Þ; ð44Þ
where (qk,pk,xk,yk) is the solution of the relaxed problem at multiplier vector lk. D* is the optimal objective
value of the dual problem.

It is easy to show that the first condition (43) always holds and the second condition (44) holds if we replace
‘‘<’’ by ‘‘6’’ in the inequality. The case ‘‘=’’ rarely happens. If it happens, the relaxed sub-problems INV and
ROU can be solved once again with the updated values of {x,y} and {q,p} obtained respectively from the
resolution of the sub-problems in the last time to improve the current solution (qk,pk,xk,yk) until the second
condition holds.

Since the surrogate dual is not a Lagrangian dual in a strict sense, its value may exceed the minimum objec-
tive value of the original problem P 0. Consequently, the best surrogate dual obtained by SSG in the Lagrang-
ian relaxation approach is not a lower bound of P 0.

5. Construction and evaluation of feasible solutions

5.1. Construction of a feasible solution of model P 0

If we substitute d, q, p in model P 0 by the solution of Lagrangian relaxed problem RP in Section 4.2, we can
obtain a minimal cost flow problem which can be decomposed into T sub-problems, one for each period, as sub-
problem ROU. A feasible solution of model P 0 can then be obtained by solving the minimal cost flow problem.

In order to obtain a better upper bound (a better feasible solution) of P 0, we can construct a feasible solu-
tion in last several iterations or in every iteration of the Lagrangian relaxation approach. The best feasible
solution is selected as the final solution of P 0.

5.2. Transformation of the solution of P 0 into a feasible solution of the IRPSD

The feasible solution d, q, p, x, y of P 0 obtained in Section 5.1 may not define a feasible solution for the
original IRPSD because P 0 is only an approximate model of IRPSD. In order to obtain a feasible solution
of the IRPSD, a transformation procedure is proposed in the following to trace (construct) in every period
a set of feasible routes based on the solution of model P 0. Because the same procedure is applied for the fea-
sible route tracing in each period, we will omit the period index – subscript t – in relevant variables and param-
eters in the following discussion.

Given a solution d, q, p, x, y of model P 0, a directed transportation network (DTN) can be defined for every
period, as illustrated in Fig. 2, where two customer nodes i and j are connected by a directed arc (i, j) if xij = 1,
customer node i and the depot node 0 are connected by a directed arc (i, 0) for xi0 times if xi0 P 1, and the
depot node 0 and customer node i are connected by a directed arc (0, i) for x0i times if x0i P 1, where
x0i ¼

PMi
m¼1ymi. The directed arcs associated with {xjijxji > 0, j = 0,1, . . . ,N} are called incoming arcs of cus-

tomer node i, and the directed arcs associated with {xijjxij > 0, j = 0, . . . ,N} are called outgoing arcs of cus-
tomer node i. In the DTN, the number of vehicles arriving at a customer node i and that departing from
the node are equal according to constraints (36a) and (36b), and {qjijqji > 0, j = 0,1, . . . ,N} (with
q0i ¼

PMi
m¼1pmi) and {qijjxij > 0, j = 0, . . . ,N} forms the inflows and outflows of the node, respectively.

In the DTN, if the number of incoming arcs or the number of outgoing arcs of each customer node is one,
that is, each customer’s delivery is performed by a single vehicle, then a set of feasible routes which constitute a
feasible solution of the IRPSD can be naturally traced from the solution of P 0. Otherwise, there exists at least
one customer node whose number of incoming arcs or number of outgoing arcs is greater than 1, as nodes 2
and 3 in Fig. 2. In this case, some customers are common customers of multiple vehicles and two conditions
must hold for tracing feasible routes: 1) Any incoming arc of each customer node must be matched with one of
its outgoing arc; 2) for each pair of matched arcs, the flow of the incoming arc must be no less than the flow of
the outgoing arc. If 1) or 2) cannot be satisfied, we have to modify the solution of P 0 to obtain a feasible solu-
tion of the IRPSD.



Fig. 2. Directed transportation network.
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In the following, we present a procedure for constructing a feasible solution of the IRPSD from a solution
of P 0. This procedure assigns the arcs of the DTN to a set of routes by solving a series of assignment problems
defined for each customer node on the DTN. Each assignment problem matches the incoming arcs of a cus-
tomer node with its outgoing arcs. Because the order of solving these assignment problems is critical for their
successful resolution, which leads to a feasible solution of the IRPSD, we first number all nodes on the DTN
starting from the depot node and following the directions of the arcs, where the depot node is numbered as 0.
A customer node can be numbered next if and only if its all preceding nodes on the DTN have already num-
bered. The successful numbering of all customer nodes requires that the DTN has no subtour. Although sub-
tours may appear in a solution of P 0 obtained by using the SSG method, but they can be eliminated with the
triangle inequality property of cij.

After numbering the customer nodes, a set of vehicle routes are traced following the order of customers num-
bered. During the route tracing, if a customer node has more than one incoming or outgoing arcs, its incoming
arcs must be matched with its outgoing arcs in order to trace feasible routes. For this purpose, an assignment
problem is solved to determine the matching of the incoming arcs of the customer with its outgoing arcs.

Considering the arc matching of customer node i, if the flow of an incoming arc is no less than the flow of its
matched outgoing arc, the corresponding match is a feasible match. Otherwise, the match is infeasible. The
primary objective of the assignment problem is to minimize the number of infeasible matches by penalizing
them. For the assignment problem of customer node i, if its solution contains infeasible matches, then the val-
ues of some variables of xji, qji, j = 0,1, . . . ,N and xij, qijj = 0, . . . ,N have to be adjusted so that the feasible
route tracing procedure can continue. The secondary objective of the assignment problem is thus to minimize
the number of such variables.

Based on the above analysis, the assignment problem for each customer node can be formally defined. Let
l = 1, . . . ,L be the incoming/outgoing arc index of customer node i where L ¼

PN
j¼0xij is the number of vehicles

arriving at or departing from the customer node; ql
þðiÞ be the flow of the lth incoming arc of customer node i;

ql
�ðiÞ be the flow of the lth outgoing arc of customer node i; �qmin

� ðiÞ be the minimal outflow of customer node i,
that is, �qmin

� ðiÞ ¼ min
l
fql
�ðiÞjl ¼ 1; . . . ; Lg; CA

lm ¼ M if ql
þðiÞ < qm

�ðiÞ where M is a very large positive number,
CA

lm ¼ 0 otherwise; CB
lm ¼ �qmin

� ðkÞ � ql
þðiÞ if ql

þðiÞ < qm
�ðiÞ and �qmin

� ðkÞ � ql
þðiÞ > 0 where k is the immediate suc-

cessor of customer node i connected with its mth outgoing arc, CB
lm ¼ 0 otherwise. Decision variable uln = 1 if

incoming arc l is matched with outgoing arc n,uln = 0 otherwise.
The assignment problem for customer node i (i = 1, . . . ,N) can then be formulated as
Model AP:
min
XL

l¼1

XL

n¼1

ðCA
ln þ CB

lnÞuln; ð45ÞX
l

uln ¼ 1; n ¼ 1; . . . ; L; ð46ÞX
n

uln ¼ 1; l ¼ 1; . . . ; L; ð47Þ

uln 2 f0; 1g; l; n ¼ 1; . . . ; L: ð48Þ



Fig. 3. Adjustment of the solution of P 0 in tracing feasible routes.
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The assignment problem can be easily solved by using a specific algorithm in polynomial time (Dell’Amico
et al., 2001; Martello and Toth, 1987).

Once an optimal solution of the AP is obtained, a match of the incoming arcs and the outgoing arcs of
customer node i is determined. If the minimum objective value of the AP is zero, the incoming arcs of the cus-
tomer node are well matched with its outgoing arcs so that the route tracing procedure can proceed to the next
customer node. Otherwise,

PL
l¼1

PL
n¼1ðCA

ln þ CB
lnÞuln > 0. In this case, the values of some variables in the solu-

tion q, p, x, y of P 0 have to be adjusted to continue tracing feasible routes.
In the following, we give an example to illustrate this solution adjustment. The example is shown in Fig. 3a ,

where the number on each directed arc (i, j) and the number on each node i are qij and di, respectively. The
values of q, p, x, y are adjusted to those in Fig. 3b by replacing a partial path 1! 3! 5 by 1! 4! 5, leading
to a feasible match of the incoming/outgoing arcs of customer node 3. The match of incoming arc 1! 3 with
outgoing arc 3! 5 and the match of incoming arc 2! 3 with outgoing arc 3! 4 are suggested by the solu-
tion of the AP for customer node 3. However, the first match is infeasible because the flow of incoming arc
1! 3 is less than the flow of outgoing arc 3! 5. The two arcs are then deleted and replaced by arcs
1! 4 and 4! 5. After the arc replacement, the corresponding flow values are adjusted accordingly.

The procedure for tracing a set of feasible routes (a feasible solution) of the IRPSD starts from the cus-
tomer node numbered as 1. For each customer examined, an assignment problem is solved to determine a
match of its incoming and outgoing arcs. If the minimum objective value of the AP is zero, the procedure will
proceed to the next customer node (the node numbered just after the current node). Otherwise, the solution of
P 0 is adjusted based on the solution of the AP and in a way such that a feasible match of the incoming and
outgoing arcs of the current node is obtained before the procedure proceeds to the next customer. The pro-
cedure terminates when all customer nodes have been examined, leading to a feasible solution (a set of feasible
routes) of the IRPSD.

5.3. Local search improvement of the feasible solution

In the last subsection, a feasible solution of the IRPSD is constructed from the solution of P 0. In most cases,
the feasible solution is quite close to an optimal solution of the IRPSD. However, in some cases, the feasible
solution can be further improved by local search. Two local search operators are used in our algorithm: one is
to reduce the variable transportation cost by relocating the delivery of a customer served by a vehicle to
another vehicle who serves the same customer; the other is to reduce the fixed transportation cost by merging
two partially loaded routes (vehicles) into one route to reduce the number of routes.

5.4. Evaluation of solution quality

To evaluate the quality of the solution obtained in the last subsection, a lower bound for the objective value
of the IRPSD is required. If such a lower bound is found, the gap between the upper bound provided by the
solution and the lower bound, i.e., (the upper bound � the lower bound)/the upper bound · 100%, can be
used to evaluate the quality of the solution.

To obtain the lower bound, we consider a model, denoted by P1, which is derived from P by adding addi-
tional constraints (15)–(17). It is obvious that any feasible solution of the IRPSD is also a feasible solution of
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model P1, and a lower bound of P1 is also a lower bound of the IRPSD. The lower bound of P1 can also be
computed by using a Lagrangian relaxation approach (called LR2 below). However, this approach is different
from the Lagrangian relaxation approach used for model P 0 (called LR1 below) in Section 4. In the approach
LR2, the constraints (8), (16) and (17) of model P1 are relaxed by introducing non-negative Lagrange multi-
pliers, leading to a decomposable relaxed problem. The relaxed problem can be optimally solved. The corre-
sponding dual problem can then be solved by using the subgradient method, which provides a lower bound of
model P1. If the gap between this lower bound and the upper bound is small, the solution of the IRPSD
obtained in the last subsection is close to its optimal solution.

6. Numerical experiments

In this section, the performance of our proposed approach is evaluated by using randomly generated
instances in different scenarios with different problem sizes, time horizons and other parameters. The parame-
ters of the base scenario are generated in the following way: the total number of customers and the depot is
taken as 100; the length of the time horizon is taken as T = 5, which corresponds to five working days in each
week; C, ft, hit, Ii0, Vi and rit are randomly and uniformly generated from the intervals [100, 300], [400, 700], [0.5,
2], [50, 100], [400, 800], [50, 400] respectively; In order to make the problem feasible, M is uniformly generated
from the interval ½1; 1:5� �maxf

Ps
t¼1

PN
i¼1rit=ðsCÞjs ¼ 1; . . . ; Tg. For cij, to ensure that the triangle inequality

condition is satisfied, the coordinates of all customers and the central depot are first generated from a 10 · 10
square, and cij is then set as the physical distance between different customers i and j. cb

i0 is set to 10 · ci0.
The algorithm is coded in C++ using the callable library of Lingo 6.0. A feasible solution of model P 0 is

constructed based on the solution of its relaxed problem in each iteration. The final feasible solution of the
IRPSD is obtained by transforming the best feasible solution of P 0 into a set of feasible routes. The numerical
test was performed on a Pentium IV 1.73 GHz PC with 1 GB RAM. For each instance the termination con-
ditions for LR2 and LR1 are 300 and 150 iterations, respectively. For LR2, Mi is set to 5. Ten instances are
generated for the base scenario. For each instance model P 0 has 103,455 variables with 51,480 integral vari-
ables. With the notation in Table 1, the results of the instances are given in Table 2.

From Table 2, we can see: 1) the average gap between the upper bound and the lower bound is 6.71% with
the largest gap 8.21%; 2) all instances are solved in a reasonable time, with the average computation time of
Table 1
Notation used in numerical results

CT Computation time (minutes: seconds)
UB Upper bound of the IRPSD found by LR1
LB Lower bound found by LR2
Gap Value of (UB � LB)/UB · 100%
N0 Total number of customers and the depot

Table 2
The results of the instances of the base scenario

Instances LB (105) UB (105) Gap (%) CT

1 9.97 10.78 7.48 15:01
2 10.88 11.48 5.29 16:30
3 9.29 10.12 8.21 16:05
4 8.96 9.55 6.24 15:22
5 9.27 10.10 8.20 14:41
6 11.05 11.74 5.86 13:53
7 11.89 12.69 6.34 15:52
8 11.35 12.04 5.70 14:53
9 9.86 10.52 6.27 14:21
10 9.97 10.78 7.48 13:54

Average 10.25 10.98 6.71 15:03



Y. Yu et al. / European Journal of Operational Research 189 (2008) 1022–1040 1037
15 minutes and 3 seconds. Note that some instances with only 10 customers could not be solved optimally by
using LINGO 6.0 software after 24 hours of computation!

In order to evaluate the performance of our method for different scenarios, we also tested other five scenar-
ios: the problem size is increased from N0 = 100 to N0 = 200; the time horizon is increased from 5 days to 10
days; the fixed vehicle cost per tour ft is generated from the uniform distribution [800,1600] instead of the uni-
form distribution [400,700]; the holding cost hit is generated from the uniform distribution [1, 4] instead of the
uniform distribution [0.5,2]; and the vehicle capacity is generated from the uniform distribution [50,150]
instead of the uniform distribution [100, 300]. For each scenario, 10 instances were randomly generated and
tested. The results for these scenarios are given in Tables 3–7 respectively.

Some important observations can be obtained from the results:

1) From Tables 2–7 , the average gaps between the upper bound and the lower bound for all scenarios are
less than 7% with the largest gap being 8.70% in Table 3 and the lowest gap being 5.15% in Table 6,
which shows that our algorithm not only can obtain a near-optimal solution, but also is robust in the
sense that its results are insensitive to the changes of the problem parameters.

2) All the instances can be solved in a reasonable time, with the average computation time of the base
instances being only 15 minutes and 3 seconds. Even for larger instances tested with N0 = 200 whose
model P 0 contains 408,950 variables with 203,980 integral variables, our algorithm can obtain satisfac-
tory solutions within 100 minutes of computation time on an ordinary computer. Moreover, with the
increase of the problem size from N0 = 100 to 200 or the time horizon from T = 5 to 10, the increase
of the average computation time likely has an approximate linear relationship with the increase of the
number of decision variables.
Table 3
The results of the instances with N0 = 200

Instances LB (105) UB (105) Gap (%) CT

1 21.90 23.53 6.89 92:05
2 18.38 19.62 6.34 82:33
3 19.37 21.10 8.23 80:00
4 25.62 27.39 6.44 75:18
5 20.91 22.25 6.01 78:02
6 17.70 18.94 6.54 81:07
7 17.81 19.51 8.70 74:51
8 20.18 21.53 6.30 74:09
9 16.67 17.97 7.20 80:24
10 19.62 21.00 6.57 74:35

Average 19.82 18.88 6.92 79:19

Table 4
The results of the instances with time horizon of 10 days

Instance LB (105) UB (105) Gap (%) CT

1 18.70 20.10 6.97 40:15
2 25.50 27.14 6.04 45:17
3 21.32 23.16 7.93 39:12
4 18.82 20.12 6.48 39:53
5 21.38 22.79 6.18 38:43
6 18.32 19.62 6.62 38:56
7 19.91 21.23 6.21 42:23
8 23.79 25.42 6.43 43:55
9 22.10 23.79 7.11 42:27
10 22.83 24.26 5.90 46:51

Average 21.27 22.76 6.59 41:31



Table 5
The results of the instances with higher fixed cost

Instance LB (105) UB (105) Gap (%) CT

1 10.79 11.75 8.13 14:44
2 11.23 11.90 5.63 16:52
3 10.92 11.60 5.86 14:17
4 11.66 12.52 6.89 13:41
5 15.58 16.47 5.44 13:30
6 10.34 10.97 5.73 15:19
7 15.42 16.42 6.07 14:44
8 9.75 10.44 6.62 14:47
9 12.58 13.33 5.57 14:03
10 10.53 11.39 7.51 13:31

Average 11.88 12.68 6.35 14:33

Table 6
The results of the instances with higher holding cost

Instance LB (105) UB (105) Gap (%) CT

1 9.96 10.61 6.09 16:43
2 10.21 11.13 8.27 16:49
3 11.08 11.93 7.09 14:55
4 10.92 11.77 7.22 16:04
5 11.86 12.63 6.10 15:16
6 12.03 12.68 5.15 14:55
7 10.87 11.59 6.25 14:20
8 10.18 10.94 6.90 14:22
9 12.40 13.27 6.55 14:05
10 8.69 9.29 6.46 16:21

Average 10.82 11.58 6.61 15:76

Table 7
The results of the instances with lower vehicle capacity

Instance LB (105) UB (105) Gap (%) CT

1 13.03 13.88 6.15 14:22
2 12.21 12.98 5.95 15:43
3 13.25 14.09 5.94 14:51
4 12.96 13.85 6.44 16:01
5 9.64 10.30 6.36 15:34
6 8.99 9.56 5.98 15:03
7 8.94 9.50 5.88 15:51
8 12.75 13.65 6.55 14:46
9 10.38 10.99 5.58 14:06
10 12.96 13.70 5.40 14:40

Average 11.51 12.25 6.02 15:06
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3) With the increase of the problem size from N0 = 100 to 200, the average gap increases slightly. For exam-
ple, the average gap increases 0.21% from 6.71% in Table 2 to 6.92% in Table 3.

4) With the increase of the time horizon from T = 5 to T = 10, the IRPSD may become more flexible to
make a tradeoff between the transportation and inventory costs in multiple periods, the average gap thus
goes down slightly from 6.71% in Table 2 to 6.59% in Table 4.

5) When the fixed vehicle cost per tour ft is increased by being generated from the uniform distribution
[800, 1600] instead of the uniform distribution [400, 700], the Lagrangian relaxation problem, especially
the ROU sub-problem, may provide more useful information for the construction of a good feasible
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solution of the IRPSD. As a result, the Lagrangian relaxation approach LR1 may provide a better upper
bound for model P 0, the average gap is thus reduced by 0.36% from 6.71% to 6.35%.

6) The average gap decreases slightly from 6.71% in Table 2 to 6.61% in Table 6. It may be because with
higher holding costs, the customers tend to hold fewer inventories and the cost savings due to the inven-
tory reduction can offset a possible increase in the transportation costs.

7) With the decrease of the vehicle capacity, the number of direct deliveries tends to increase, which makes
easier to find optimal routes in each period for the IRPSD. As a result, the average gap in Table 7
decreases to 6.02% from 6.71% of the base scenario.
7. Conclusion

The inventory routing problem with split delivery and vehicle fleet size constraint has been studied in this
paper. In order to solve large scale problems, this paper has proposed an approximate model whose solution only
defines in each period the quantity delivered to each customer, the quantity transported through each directed
arc and the number of times that each directed arc is visited by vehicles in the corresponding transportation net-
work. The model was solved by using a Lagrangian relaxation method combined with the surrogate subgradient
method. A heuristic was used to construct a feasible solution of the model based on the solution of the Lagrang-
ian relaxed problem. The model’s solution, which may be infeasible for the original IRPSD, was then trans-
formed into a feasible one by solving a series of assignment problems. The numerical experiments
demonstrated that our proposed approach could obtain high quality solutions with the average relative gap with
a lower bound less than 7%, for randomly generated large problems with 200 customers in a reasonable compu-
tation time on an ordinary personal computer. The approach is therefore promising for real applications.
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