Crop & Pasture Science, 2011, **62**, 765–775 http://dx.doi.org/10.1071/CP11046

Diversity of seed protein among the Australian narrow-leafed lupin (*Lupinus angustifolius* L.) cultivars

Shahidul Islam^A, Wujun Ma^{B,C}, Junhong Ma^B, Bevan J. Buirchell^B, Rudi Appels^C, and Guijun Yan^{A,D}

^ASchool of Plant Biology, Faculty of Natural and Agricultural Sciences and The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

^BDepartment of Agriculture and Food Western Australia, 3 Baron-Hay Court, South Perth, WA 6151, Australia.

^CCentre for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.

^DCorresponding author. Email: guijun.yan@uwa.edu.au

Abstract. Narrow-leafed lupin (NLL) is one of the major legume crops in Australian farming systems which is largely used as animal feed. Several modern cultivars have been developed through breeding making NLL feasible for use as human food. Significant health benefits have been recognised for NLL. The current study characterised protein polymorphism among 25 Australian cultivars through mass spectrometry (MALDI-TOF) with the aim of developing molecular breeding strategies to improve protein quality and content. A total of 364 seed protein mass peaks were clearly identified by MALDI-TOF and 50 protein mass peaks were cultivar specific. In addition, 9 protein mass peaks were found present in all cultivars and 61 protein mass peaks present in 2–3 cultivars only. Phylogenic analysis based on the protein profile categorised the cultivars into 2 major groups, which are broadly supported by pedigree information. The low proportion (2.4%) of common protein mass peaks among the cultivars suggested a high level of diversity in seed protein of NLL.

Additional keywords: breeding, diversity, MALDI-TOF, phylogeny, protein profiling.

Received 24 February 2011, accepted 24 September 2011, published online 10 November 2011

Introduction

Lupin is one of the major legume crops in Australian farming systems because of its high nutritional value and adaptability to marginal soils (Dervas *et al.* 1999; Howieson *et al.* 2000; Guemes-Vera *et al.* 2008). The lupin grain is widely used as animal feed due to its high protein content (~32%) and low antinutritional factors (Hill 1986; Petterson 1998). In addition, the high dietary fibre, low fat content and negligible amount of starch features of lupin flour dictate its suitability as human health food. One of the major cultivated species, *Lupinus angustifolius*, known as narrow-leafed lupin (NLL), is commonly cultivated as a rotation crop especially under Mediterranean climatic environment (Gladstones 1994; Siddique and Sykes 1997). To date, a total of 25 commercial cultivars of *L. angustifolius* have been released in Australia since 1968.

Understanding genetic diversity is the foundation for crop improvement (Talhinhas *et al.* 2006). Many beneficial genes were discovered in the last 50 years (Gladstones 1994; Cowling *et al.* 1998) and several genetic diversity studies have been conducted on *L. angustifolius* based on DNA technologies (Yang *et al.* 2004; Yuan *et al.* 2005), which showed a high level of genetic variation among cultivars. These studies have assisted lupin breeding programs in increasing yield, overcoming major diseases and contributing to the agronomic success of the crop (Buirchell 2008). Considerable research on seed proteins has been conducted in different crops (Aly *et al.* 2000; Ma *et al.* 2005) including lupin and its legume relatives such as soybean for the purpose of improving protein content and quality (Stejskal and Griga 1995; Hsieh *et al.* 2001; Fahmy and Salama 2002). However, proteome diversity based on seed protein of *L. angustifolius* has not been reported. Seed protein profiling will be helpful for breeders to develop cultivars enriched for specific proteins. The information can also be used for constructing phylogenetic relationships among cultivars and for fingerprinting cultivars and subsequently assist cultivar identification, breeding line selection, and quality prediction during breeding.

Matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) has been proved to be a powerful tool for seed protein analysis (Cunsolo *et al.* 2004; Alberghina *et al.* 2005; Muccilli *et al.* 2005; Chen *et al.* 2007; Liu *et al.* 2009) with high throughput capability. The MALDI-TOF-MS technique provides accurate results; requires very small amounts of sample (normally less than 1 pmol), and is relatively fast (requiring only a few minutes per sample) compared with other common separation methods. Moreover, it may facilitate the analysis of proteins from complex mixtures without purification and separation (Kussmann *et al.* 1997).

Thus the technique is particularly suitable for protein analysis of large number of individuals within a short time. Compared with the traditional one and two dimensional gel electrophoreses for seed protein identification (Fahmy and Salama 2002; Yahata *et al.* 2005; Magni *et al.* 2007) this approach is more time and cost efficient (Barakat 2004). However, MALDI-TOF mass spectrometry has not been widely used to produce the protein profiles of lupin cultivars.

The current study investigated the feasibility of MALDI-TOF mass spectrometry to profiling lupin seed proteins in order to study the diversity and to deduce the relationships among the Australian cultivars.

Materials and methods

In total 25 cultivars of *L. angustifolius* released in Australia were supplied by the Department of Agriculture and Food, Western Australia (DAFWA). All the cultivars were grown in the same year at the same experimental station of DAFWA (Wongan Hills, WA) under the same environmental conditions. Thirty grams of seeds containing more than 100 seeds from each cultivar were taken as a working sample and ground in the 'Retsch 2M 200' and sieved with 750 μ M. The details of the cultivars are listed in Table 1.

Protein was extracted from lupin flour based on Duranti *et al.* (2008) and Lampart-Szczapa (1996). Lupin flour samples were defatted by Hexane at 20:1 ratio (Santos *et al.* 1997) and extraction buffer (0.5 M NaCl) was added at the ratio of 15 ml/g. Protein was extracted by stirring at 4°C for 4 h and the supernatant was collected by centrifugation at 10000g for 10 min. The extract was mixed with matrix (sinapinic acid dissolved in 0.05% TFA and 50% ACN) at 1:9 ratio and 1 μ l of mixture was spotted on MALDI-TOF plate and left at room temperature to dry. Spotting was repeated once when the previous spots were completely dry. The sinapinic acid was purchased from Sigma-Aldrich, St. Louis, MO, USA. Three separate extractions were made for MALDI-TOF protein analysis to make sure of reproducibility.

The experiment was carried out on a Voyager DE PRO Biospectrometry Workstation from PerSeptive Biosystems, Framingham, MA, USA, operated in linear mode (Lou *et al.*

 Table 1.
 List of narrow-leafed lupin (Lupinus angustifolius L) cultivars used in this study

Series No.	Name of cultivar	Year of release	Series No.	Name of cultivar	Year of release
1	Uniwhite	1967	14	Myallie	1995
2	Uniharvest	1971	15	Kalya	1996
3	Unicrop	1973	16	Wonga	1996
4	Marri	1976	17	Belara	1997
5	Illyarrie	1979	18	Tallerack	1997
6	Yandee	1980	19	Tanjil	1998
7	Chittick	1982	20	Moonah	1998
8	Danja	1986	21	Quilinock	1999
9	Geebung	1987	22	Jindalee	2000
10	Gungurru	1988	23	Mandelup	2004
11	Yorrel	1989	24	Coromup	2006
12	Warrah	1989	25	Jenabillup	2007
13	Merrit	1991	_	-	

2010). Final mass spectrum for each sample was obtained by averaging 500 shots on a protein spot over random locations. The machine was calibrated by using 'Sequazyme Peptide Mass Standards Kit' from Applied Biosystems, Foster City, CA, USA following sinapinic acid matrix-calibration mixture 3 as suggested by the supplier. To get the best resolution, the molecular weight range of 2000–32 000 Dalton was split into 3000-Dalton intervals. High molecular weight proteins of 30 000–75 000 Dalton were also analysed.

Data analysis

The results from MALDI-TOF were analysed using the Voyage machine companion software, Data Explorer, to produce the protein mass peak profiles (Liu et al. 2009). The mass spectrometric data were then analysed by using software 'Progenesis PG 600' from Nonlinear Dynamics, Durham, NC, USA. The mass peak profiles were manually checked and the identified polymorphic mass peaks were scored visually for absence and presence. Mass peaks clearly detected in all three replicates were scored to ensure reproducibility. A binary dataset was constructed for multivariate analysis using the software PAUP (Phylogenetic Analysis Using Parsimony) (Swofford 1998). A distance matrix based on total character difference was constructed and the UPGMA (unweighted pair-group method with arithmetic averages) procedure was followed to produce a dendrogram. Bootstrap analysis was carried out with 10 000 replications to assess the reliability of groupings.

Results

MALDI-TOF mass peaks of the seed protein of NLL were clear and easy to score (Fig. 1). The analysis obtained 364 mass peaks including 355 polymorphic protein peaks ranging from 2 to 60 KDa among the 25 cultivars of NLL. The number of mass peaks identified for each cultivar varied from 88 to 186, demonstrating a high level of proteomic diversity. In total, 58 mass peaks were categorised as very commonly observed in more than 20 cultivars (Table 2), accounting for 15.9% of the total mass peaks. Nine mass peaks with molecular weight of 3058, 3103, 4030, 4427, 4575, 4673, 4975, 5850 and 14 642 Da were found to be common to all 25 cultivars, comprising 2.4% of the total profiled mass peaks observed. A total of 50 mass peaks were cultivar specific (Table 3). Eighteen cultivars out of 25 had cultivar-specific mass peaks ranging from 1 to 8. The largest number (8) of cultivar-specific mass peaks was found in the cultivars Coromup and Geebung followed by the cultivars Wonga and Uniharvest. A few (2-3) cultivar-specific mass peaks were observed in the cultivars Chittick, Gungurru, Mandelup, Tallerack, Danja, Moonah, Marri and Uniwhite. In cultivars Illyarrie, Merrit, Unicrop, Tanjil, Warrah and Yorrel, only one cultivar-specific mass peak was observed. Cultivars Yandee, Myallie, Kalya, Belara, Quilinock, Jindalee and Jenabillup did not show any cultivar-specific mass peaks.

Another 96 mass peaks were specific to a small number (2–5) of cultivars (Table 4). The molecular weight of most of these mass peaks ranged from 2 to 15 KDa. Among these 96 peaks 33 were specific to only 2 cultivars. Similarly, the other 28, 25 and 10 mass peaks were specific to 3, 4 and 5 cultivars, respectively. Pairwise differences in mass peaks among the

Fig. 1. MALDI-TOF outputs of narrow-leafed lupin protein profiles demonstrating easily visible and identifiable polymorphism of protein mass peaks among different cultivars. The numbers on the protein peaks indicate the molecular weight of the corresponding protein in Daltons. Two sister cultivars Illyarrie and Yandee showed very similar protein profiles. The other cultivar Jenabillup showed many common proteins to them (arrowed) but apparently missing some of the proteins.

cultivars were analysed by the distance matrix calculated by PAUP (Table 5). The pairwise difference ranged from 56 to 186 mass peaks.

The dendrogram produced from the distance matrix showed that there is a considerable level of diversity among the cultivars (Fig. 2). The dendrogram separated the cultivars into two major groups. The largest group, supported by 88% bootstraps, consisted of 12 cultivars at the upper side of the dendrogram and includes Uniwhite, Illyariie, Yandee, Danja, Marri, Uniharvest, Unicrop, Chittick, Gungurru, Warrah, Merrit and Yorrel. Similarly, cultivars Myallie, Wonga, Kalya, Tallerack, Jenabillup and Tanjil clustered together in the middle part of the

Protein mass peaks (molecular weight in Dalton)	No. of cultivars having the mass peak	Name of the cultivars missing the mass peak								
2115	22	Marri, Geebung, Wonga								
2635	22	Uniharvest, Marri, Coromup								
2767	22	Gungurru, Myallie, Coromup								
2936	20	Gungurru, Myallie, Wonga, Coromup, Jenabillup								
3058	25	_								
3086	22	Marri, Geebung, Coromup								
3103	25	_								
3349	20	Gungurru, Wonga, Jindalee								
3440	21	Illyarrie, Wonga, Yorrel, Coromup								
3625	23	Geebung, Coromup								
3640	20	Marri, Myallie, Kalya, Tallerack, Coromup								
3731	20	Marri, Illyarrie, Yandee, Yorrel, Coromup								
3931	23	Kalya, Wonga								
4030	25	-								
4129	24	Coromup								
4427	25	-								
4575	25	-								
46/3	25									
4821	20	Kalya, Wonga, Quilinock, Mandelup, Coromup								
4975	25	Marrie Claittiala Marrite Warran								
5198	21	Marri, Chittick, Merrit, Wonga								
5225	20	Muallie Kelve Wonge Lindelee								
5305	21	Mandelun, Coromun, Jenahillun								
5414	22	Chittick Geebung Mandelun Coromun								
5556	20	Geehung Vorrel Belara Mandelun Coromun								
5850	25	–								
5917	22	Taniil, Coromup, Geebung								
6036	21	Mvallie, Kalva, Wonga, Coromup								
6096	23	Quilinock, Jenabillup								
6199	22	Myallie, Kalya, Wonga								
6484	20	Myallie, Kalya, Wonga, Belara, Tanjil								
6545	24	Coromup								
6667	24	Coromup								
6713	20	Yorrel, Belara, Moonah, Jindalee, Coromup								
6868	21	Yorrel, Myallie, Geebung, Coromup								
7346	20	Warrah, Myallie, Kalya, Wonga, Tallerack								
7408	23	Myallie, Kalya								
7656	20	Yorrel, Kalya, Belara								
8116	21	Geebung, Kalya, Mandelup, Coromup								
81/5	22	Kalya, Coromup, Jenabiliup,								
8280	21	Kalya, Tallerack, Tanjii, Coromup								
8703	25	Kalya, Coromup Tanjil								
0377	20	Illyarria Kalva Balara Mandalun Coromun								
13 127	20	Chittick Coromun								
13 926	23	Unibaryest Illyarrie Chittick Geebung								
14 092	23	Yandee Coromun								
14 459	21	Chittick, Gungurru, Kalva, Belara								
14 642	25	_								
15 024	24	Chittick								
15 182	24	Chittick								
15 332	21	Unicrop, Marri, Illyarrie, Tallerack								
15 393	24	Wonga								
15 495	24	Illyarrie								
15 694	23	Uniwhite, Warrah								
16 242	23	Kalya, Moonah								
21 350	20	Gungurru, Yorrel, Warrah, Merrit, Mandelup								

Table 2. List of the very common mass peaks^A for seed protein of narrow-leafed lupin (*Lupinus angustifolius* L.) cultivars as identified by mass spectrometry

^AVery common mass peaks are those found in 20 or more cultivars among the 25 studied.

Name of cultivars	Number of cultivar-specific mass peaks	Molecular weight of the protein mass peaks (Dalton)
Coromup	8	8661, 11 962, 12 132, 12 965, 13 652, 16 320, 18 841, 19 813
Geebung	8	2258, 2603, 3402, 3536, 3740, 6562, 7640, 13 593
Wonga	5	5488, 10728, 16450, 16904, 28603
Uniharvest	4	2462, 40 000, 53 000, 60 000
Chittick	3	2420, 9498, 14878
Gungurru	3	3665, 21 121, 22 008
Mandelup	3	7524, 13 322, 14 690
Tallerack	2	4993, 10 682
Danja	2	4611, 28 436
Moonah	2	17 774, 17 922
Marri	2	5932, 20 002
Uniwhite	2	10 632, 28 639
Illyarrie	1	3200
Merrit	1	3284
Unicrop	1	24 521
Tanjil	1	14 055
Warrah	1	17 245
Yorrel	1	10 423
Yandee	0	_
Myallie	0	_
Kalya	0	_
Belara	0	_
Quilinock	0	_
Jindalee	0	_
Jenabillup	0	_

 Table 3.
 List of cultivar-specific mass peaks^A for seed protein of narrow-leafed lupin (*Lupinus angustifolius* L.) cultivars as revealed by mass spectrometry

^ACultivar-specific mass peaks are those specific to a single cultivar.

dendrogram. Likewise, Belara, Moonah, Jindalee, Quilinock and Mandelup were placed closely. These 11 cultivars formed a large group with 51% bootstrap supports. In contrast, cultivars Coromup and Geebung were isolated from the two major groups.

Discussion

MALDI-TOF-MS has been shown to be very useful in detecting protein mass peak profiles effectively in NLL. The reproducibility of repeated extraction and detection of the same sample is generally very good. From the three replicated experiments for each sample, almost all the detected peaks are present in all the replicates. Only a very small number of weak peaks were not reproducible, which were not included in the analysis. In total, 364 protein mass peaks have been revealed in this study. Visible differences among the protein mass peak profiles made the scoring easy and accurate (Fig. 1). High throughput results suggested that the method is suitable to study a large number of genotypes within a short period of time.

All the mass peaks identified through MALDI-TOF may not represent intact proteins as the molecular weights of intact proteins of lupin are relatively high (Duranti *et al.* 2008). Mass peaks above 10 KDa might represent subunits of NLL seed proteins (conglutins) or polypeptides (fragment of proteins), as identified by 2D gel electrophoresis in another study by our research group (Islam *et al.* 2011). Identified subunits of seed proteins (conglutins) of *Lupinus albus* also have been reported with a molecular weight of 9 KDa or above (Duranti *et al.* 2008). These subunits generally arise from the proteolytic cleavages of native protein molecules (Derbyshire *et al.* 1976; Muntz *et al.* 2002). Likewise the mass peaks having lower molecular weights are assumed as representing polypeptides derived from post-translational biochemical processes that lead to proteolysis of NLL seed proteins (Cerletti *et al.* 1978). To avoid any confusion, we used the term 'mass peak' that represent the intact protein or a fragment of protein, which are useful for fingerprinting (Horneffer *et al.* 2007). Theoretically, the detected mass peaks are confounded outcome of cultivar and cultivar-by-site interactions as all the samples were from the same site, same year and same growing condition although we envisage that most of the variation was due to difference among cultivars.

The study revealed that the seed storage protein mass peaks of NLL are highly polymorphic. Over 97% mass peaks were found to be polymorphic as only 2.4% of the observed peaks were common to every genotype. This polymorphism is attributed to heterogeneity of polypeptides due to the multigenic origin of seed proteins and very distinct post-translational proteolysis of the core protein molecules (Cerletti *et al.* 1978). Among the polymorphic mass peaks, 15.9% (of total) was common to a minimum of 20 genotypes, which can be considered as generally common seed protein mass peaks of NLL. Thus 81% of NLL seed mass peaks were highly polymorphic, which might be useful for cultivar identification based on protein profiling.

A total of 50 cultivar-specific mass peaks have been identified among the 25 NLL cultivars. Out of the 18 cultivars having

Protein mass peaks (molecular weight in Dalton)	Number of cultivars with the mass peak	Name of the specific lupin cultivars with the mass peak									
2193	2	Unicrop. Taniil									
2451	3	Kalva, Belara, Moonah									
2535	5	Geebung, Kalva, Moonah, Jenabillup, Taniil									
2653	2	Geebung Ouilinock									
2838	3	Geebung, Kalva Moonah									
2010	2	Unicron Illvarrie									
3122	4	Vorrel Mvallie Belara Jindalee									
3326	4	Geehung Merrit Gungurru Vorrel									
3412	2	Marri Vorrel									
3459	2	lindalee Taniil Jenabillun									
3700	5	Dania Gungurru Wonga Taniil Unicron									
3700	5	University Vorrel Polara Lindalaa Wanga									
2840	2	Universe Toriil Indolog									
28(0	3	Unitativest, Tanjin, Jindalee									
2802	2	Jindalee, Woonan									
3895	2	Uninarvest, Jindalee									
3906	5	Uninarvest, Geebung, Illyarrie, Warran, Tallerack									
3943	4	Myallie, Quilinock, Jindalee, Wonga									
4015	3	Unicrop, Illyarrie, Merrit									
4057	4	Illyarrie, Chittick, Merrit, Marri									
4169	4	Chittick, Merrit, Kalya, Jenabillup									
4195	3	Marri, Chittick, Danja									
4291	2	Geebung, Mandelup									
4642	3	Geebung, Kalya, Myallie									
4708	3	Belara, Warrah, Merrit									
4736	2	Kalya, Wonga									
4798	2	Myallie, Tallerack									
4891	4	Belara, Quilinock, Mandelup, Jenabillup									
4918	2	Quilinock, Mandelup									
5285	3	Geebung, Uniwhite, Tallerack									
5535	3	Kalya, Quilinock, Jenabillup									
5710	4	Geebung, Gungurru, Belara, Quilinock									
5823	2	Myallie, Tanjil									
5945	2	Uniharvest, Kalya									
6082	2	Quilinock, Jenabillup									
6348	2	Unicrop, Jenabillup									
6425	2	Chittick, Tanjil									
6496	4	Uniharvest, Unicrop, Wonga, Jindalee									
6634	4	Illyarrie, Belara, Tanjil, Coromup									
6900	3	Uniharvest, Marri, Geebung									
7167	5	Mandelup, Coromup, Belara, Moonah, Geebung									
7255	3	Uniwhite, Unicrop, Jenabillup									
7584	2	Belara. Mandelun									
7687	5	Uniwhite Uniharvest Taniil Ouilinock Iindalee									
7839	2	Geehung Mvallie									
8026	2	Geebung Moonah Quilinock Taniil									
8087	3	Marri Moonah Jindalee									
8165	3	Quilinock Uniwhite Dania									
8221	3	Moonah Geebung Belara									
8302	3	Warrah Merrit Taniil									
8302	2	Valua Muallia									
8340	<u>ک</u> ۸	Geebung Quilingek Mandalum Caromun									
034U 9452	4	Geobung, Quinnock, Mandelup, Coromup									
04 <i>33</i>	5	Martlin Tariil Maarch J. 1									
84/3	4	Nyallie, Tanjii, Moonan, Jindalee									
8/32	3	Uninarvest, Unicrop, Geebung									
9008	2	Uniharvest, Yorrel									
9438	3	Marri, Chittick, Danja									
9590	5	Belara, Jenabillup, Myallie, Wonga, Marri									
10 061	2	Yorrel, Belara									

 Table 4.
 List of rare mass peaks^A for seed protein of narrow-leafed lupin (Lupinus angustifolius L.) cultivars as observed by mass spectrometry

Protein mass peaks (molecular weight in Dalton)	Number of cultivars with the mass peak	Name of the specific lupin cultivars with the mass peak								
10.521	2	Mvallia Taniil								
10 521	2	Mandelup, Vorrel, Merrit								
10.555	3	Warrah Belara Moonah Coromun								
11 214	2	Taniil Coromun								
11 562	2	Mandelun Coromun Marri Geebung								
11 797	4	Uniharvest Marri Illvarrie Chittick								
11 898	4	Illyarrie Vorrel Warrah Coromun								
12 468	4	Dania Moonah Quilinock Jenahillun								
12 561	5	Myallie Taniil Gungurru Jindalee Mandelun								
12 834	4	Uniharvest Tallerack Myallie Wonga								
12 858	2	Taniil Coromun								
13 106	2	Unicron Chittick								
13 794		Kalva Quilinock Coromun								
13 975	5	Chittick Dania Geebung Gungurru Warrah								
13 997	2	Jindalee, Taniil								
15 068	3	Taniil Uniharvest Chittick								
15 349	4	Illvarrie, Unicrop, Marri, Tallerack								
15 542	3	Unicrop, Tallerack, Uniharvest								
16 181	2	Jindalee, Moonah								
17 082	4	Geebung, Ouilinock, Mandelup, Jenabillup								
17213	3	Geebung, Quilinock, Mandelup								
18 396	4	Uniharvest, Marri, Yandee, Mandelup								
18 496	3	Belara, Uniharvest, Chittick								
19 177	4	Uniwhite, Uniharvest, Danja, Geebung								
19471	2	Geebung, Mandelup								
19750	4	Chittick, Wonga, Illyarrie, Belara								
21 010	3	Marri, Tallerack, Jenabillup								
21 330	4	Yorrel, Warrah, Gungurru, Mandelup								
21 565	4	Unicrop, Illyarrie, Yandee, Mandelup								
23 000	2	Uniwhite, Uniharvest								
23 777	2	Yorrel, Uniharvest								
24 289	5	Uniharvest, Unicrop, Yandee, Geebung, Kalya								
28 378	2	Warrah, Uniharvest								
28 523	3	Illyarrie, Chittick, Geebung								
28 698	2	Kalya, Myallie								
28 803	2	Kalya, Wonga								
31 000	3	Yandee, Chittick, Merrit								
35 000	2	Merrit, Yorrel								

 Table 4. (continued)

^ARare mass peaks are those specific to 2–5 cultivars.

cultivar-specific mass peaks, 12 had multiple cultivar-specific mass peaks. These cultivar-specific mass peaks can be used for the identification of corresponding cultivars (Table 3). To identify the 7 cultivars without any cultivar-specific mass peaks, the set of mass peaks specific to very few cultivars (2–5) can be used (Table 4). Among the observed 96 rare mass peaks, 61 were specific to only 2–3 cultivars. Thus the combined information is useful for the identification of all 25 NLL cultivars.

Existence of most of the rare mass peaks in the cultivars is generally in agreement with their pedigree. For example one of the early cultivars Illyarrie had four rare mass peaks common to one parent Unicrop and three common to another parent Marri. Likewise the latest cultivar Jenabillup had five mass peaks common to its one parental cultivar Quilinock. On the other hand, few mass peak profiles were not in agreement with the pedigree links suggesting the protein components came through hybridisation. Geebung showed seven rare mass peaks common to Mandelup although their pedigree showed a far distant relationship. Cultivar Illyarrie had one cultivar-specific mass peak at 3200 Da (Table 3) and another five rare mass peaks at 3906, 6634, 11 898, 19 750 and 28 523 Da (Table 4), which were not present in either of its parental cultivars Unicrop or Marri.

Mass peak profiling of NLL seed protein demonstrated extensive diversity among the studied cultivars. The number of mass peaks identified for each cultivar varied from 88 to 186 indicating noteworthy qualitative differences among the cultivars. Likewise, the pairwise distance analysis showed the highest 51% distance (mean character difference) between one of the earliest cultivars Uniharvest and one of the latest cultivars Coromup (Table 5). The lowest 15% distance was between the cultivars Yandee and Danja originating from the same parent Unicrop. However, most of the pairwise distances ranged from 25 to 40% (Table 5), suggesting a considerable seed protein variation. The significant genetic diversity among the cultivars of *L. angustifolius* has previously been revealed by DNA

	25																									1
	24																								Ι	147
	23																							I	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	22																						Quilinock 105 124 115 104 102 97 80 - Jindalee 118 131 125 118 124 104 120 111 115 92 110 102 97 86 69 79 - Jindalee 118 131 125 118 129 98 124 106 135 97 110 103 99 97 86 69 79 - Mandelup 133 150 142 133 121 104 112 107 116 120 131 125 140 100 114 123 90 98 87 - Coromup 153 186 180 137 148 133 158 160 135 123 146 108 125 125 104 -			
	21																					I	79	98	136	91
PAUP	20																				Ι	80	69	90	122	105
sed by	19																			I	95	97	86	123	125	92
s analy	18																		I	89	104	102	97	114	128	81
us L.) a nined	17																	Ι	106	97	92	104	66	100	108	115
ustifolii aks exaı	16																I	112	86	101	122	108	103	140	146	87
<i>uus ang</i> nass pea	15															Ι	81	123	85	104	115	111	110	125	123	90
ı (<i>Lupir</i> rotein r	14														I	80	75	119	83	98	113	109	92	131	135	88
ed lupin e 364 p	13													I	127	127	124	116	114	129	114	100	115	120	160	66
w-leafe	12												Ι	60	121	125	122	126	96	127	118	104	111	116	158	101
f narro nown ai	11											I	77	87	132	144	137	66	117	136	109	129	120	107	133	128
tivars o es are sl	10										Ι	76	74	80	111	123	128	120	104	119	118	104	76	112	144	105
ent cul fference	6									I	124	139	128	130	137	129	146	138	132	145	124	124	135	104	130	139
n differ racter di	8								Ι	131	81	84	71	83	116	130	123	111	97	120	115	103	106	121	155	94
betwee otal chai	7							Ι	76	135	95	102	87	77	142	136	135	123	109	132	123	115	124	133	161	112
istance The to	9						Ĩ	88	56	143	85	86	75	77	118	130	121	109	97	122	115	105	98	115	135	104
rwise di	5					I	63	85	81	150	106	89	84	80	133	147	134	120	112	137	118	112	129	132	148	119
i. Pai	4				I	83	62	100	84	141	107	112	66	66	124	136	129	125	101	138	127	125	118	133	137	114
Table 5	3			Ι	95	80	67	66	75	144	88	66	80	82	125	137	118	134	106	131	134	116	125	142	180	107
	2		Ι	68	109	90	81	105	89	148	104	105	90	98	145	155	130	142	118	145	136	124	131	150	186	125
	1	Ι	85	71	86	75	74	88	72	137	91	82	71	81	126	136	123	117	93	126	119	105	118	133	153	108
		Uniwhite	Uniharvest	Unicrop	Marri	Illyarrie	Yandee	Chittick	Danja	Geebung	Gungurru	Yorrel	Warrah	Merrit	Myallie	Kalya	Wonga	Belara	Tallerack	Tanjil	Moonah	Quilinock	Jindalee	Mandelup	Coromup	Jenabillup
		1	7	б	4	5	9	2	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Fig. 2. Dendrogram showing relationship among 25 narrow-leafed lupin (Lupinus angustifolius) cultivars by unweighted pair-group method with arithmetic averages based on total character differences. Numbers above branches are branch length and those under the branches are bootstrap values based on 10000 reiterations.

marker-based studies (Yang et al. 2001, 2004; Yuan et al. 2005; Talhinhas et al. 2006).

The constructed phylogenetic tree (Fig. 2) based on the polymorphic seed protein mass peaks is in broad agreement with the pedigree information and DNA marker-based studies (Yuan et al. 2005; Talhinhas et al. 2006) of the NLL cultivars. Cultivars having common parental lines were grouped together as the seed proteins are generally genetically inherited (Timmerman-Vaughan et al. 2005; Bolon et al. 2010). Cultivars Warrah and Merrit derived from the cross of Ilyarrie with wild types from Spain were placed together closely with 80% bootstrap support. Likewise, cultivars Yandee and Danja sharing the same parent Unicrop were placed together with 59% bootstrap support. One of the earliest cultivars Unicrop released by the University of Western Australia clustered with its parental cultivar Uniharvest with 57% bootstrap support, which is in agreement with the findings of Yuan et al. (2005). Including the abovementioned cultivars, a total of 12 cultivars of NLL originating from a series of early crosses (until1991) were clustered together in a group with 88% bootstrap support. This finding is generally supported by the randomly amplified

microsatellite polymorphism (RAMP)-based fingerprinting (Yuan et al. 2005) and by an amplified fragment length polymorphism (AFLP) and inter-simple sequence repeat (ISSR) marker-based study (Talhinhas et al. 2006).

Likewise, cvv. Moonah and Quilinock sharing the wild type from Italy were placed in a group with 73% bootstrap support. The other cultivar of this group Jindalee paired with Moonah with 76% bootstrap support in agreement with their pedigree as shared parental line from Gungurru. Four cultivars Myallie, Tallerack, Wonga and Kalya originating from a series of complex crosses incorporating the cultivar Illyarrie and different wild types from Spain and Morocco were clustered together with 67% bootstrap support. The abovementioned 7 cultivars of NLL along with the cultivars Tanjil, Belera, Jenabillup and Mandelup formed the other cluster with 51% bootstrap support. This finding is generally in agreement with the result of DNA-based fingerprinting of NLL by Yuan et al. (2005).

Some exceptions in grouping in relation to the pedigree links suggest that the seed protein diversity among the cultivars might be introduced beyond their pedigree relationship. The latest (2007) cultivar Jenabillup was placed in the group of Myallie, Tallerack, Wonga and Kalya with 67% bootstrap support but it shares a very different pedigree relationship with other cultivars. Geebung was not placed closely with parental cultivars Uniwhite and Uniharvest and the case was similar in the DNA-based study (Yuan et al. 2005). These exceptional placements might be due to heterogeneity of polypeptides (Cerletti et al. 1978) and also suggest that new proteins different from the parents might be formed in hybrids through hybridisation. The isolated position of the cultivar Coromup (Fig. 2) suggests further investigation of this cultivar is warranted using alternative proteomic approaches.

For further comparison of groupings of NLL based on protein mass peak profiles with pedigree consequence, a most parsimonious tree was constructed (not presented here) taking the earliest cultivar Uniwhite as outgroup. The groupings were very similar to the UPGMA tree and also broadly support the pedigree relationships as demonstrated by Cowling (1999). However, the limitation of this method is that it is based on qualitative approach (Dekker et al. 2005; Szajli et al. 2008). Thus where the protein quantity is a major concern, this method has to be used in combination with other quantitative methodologies such as NIR, Kjeldahl, Biuret, and Combustion etc. (Moore et al. 2010).

Acknowledgement

The authors are grateful to Sophie Sipsas for providing lupin seed materials.

References

Coromup

- Alberghina G, Cozzolino R, Fisichell S, Garozzo D, Savarino A (2005) Proteomics of gluten: mapping of the 1Bx7 glutenin subunit in Chinese Spring cultivar by matrix-assisted laser desorption/ionization. Rapid Communications in Mass Spectrometry 19, 2069-2074. doi:10.1002/ rcm.2032
- Aly MA, Rashed NAK, Hassan HZ (2000) Genetic variability and assessment of relationships among some Egyptian rice (Oryza sativa L.) cultivars as revealed by SDS-protein and PCR-RAPD analyses. Egyptian Journal of Genetics and Cytology 29, 71-87.

- Barakat H (2004) Genetic fingerprinting and relationships of six soybeans (*Glycine max* L.) cultivars based on protein and DNA polymorphism. International Journal of Agriculture and Biology 6, 877–883.
- Bolon YT, Joseph B, Cannon S, Graham M, Diers B, Farmer A, May G, Muehlbauer G, Specht J, Tu Z, Weeks N, Xu W, Shoemaker R, Vance C (2010) Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. *BMC Plant Biology* 10, 41. doi:10.1186/1471-2229-10-41
- Buirchell BJ (2008) Narrow-leafed lupin breeding in Australia where to from here? In 'Lupin for health and wealth: 12th International Lupin Conference'. (Eds JA Palta, JB Berger) pp. 226–230. (International Lupin Association: Fremantle)
- Cerletti P, Fumagalli A, Venturin D (1978) Protein composition of seeds of Lupinus albus. Journal of Food Science 43, 1409–1411. doi:10.1111/ j.1365-2621.1978.tb02504.x
- Chen J, Lan P, Tarr A, Yan YM, Francki M, Appels R, Ma W (2007) Matrixassisted laser desorption/ionization time-of-flight based wheat gliadin protein peaks are useful molecular markers for wheat genetic study. *Rapid Communications in Mass Spectrometry* 21, 2913–2917. doi:10.1002/ rcm.3151
- Cowling WA (1999) Pedigrees and characteristics of narrow-leafed lupin cultivars released in Australia from 1967 to 1998. In 'Lupin breeding bulletin'. 1–11. (Agriculture Western Australia: Perth)
- Cowling WA, Huyghe C, Swiecicki W (1998) Lupin breeding. In 'Lupins as crop plants: biology, production and utilization'. (Eds JS Gladstones, CA Atkins, J Hamblin) pp. 93–120 (CAB International: London)
- Cunsolo V, Foti S, Saletti R, Gilberts S, Tatham AS, Shewry PR (2004) Structural studies of the allelic wheat glutenin subunits 1Bx7 and 1Bx20 by matrix-assisted laser desorption/ionization mass spectrometry and high-performance liquid chromatography/electrospray ionization mass spectrometry. *Journal of Mass Spectrometry* **39**, 66–78. doi:10.1002/ jms.558
- Dekker LJ, Dalebout JC, Siccama I, Jenster G, Sillevis Smitt PA, Luider TM (2005) A new method to analyze matrix-assisted laser desorption/ ionization time-of-flight peptide profiling mass spectra. *Rapid Communications in Mass Spectrometry* **19**, 865–870. doi:10.1002/ rcm.1864
- Derbyshire E, Wright DJ, Boulter D (1976) Legumin and vicilin, storage proteins of legume seeds. *Phytochemistry* **15**, 3–24. doi:10.1016/S0031-9422(00)89046-9
- Dervas G, Doxastakis G, Hadjisarva-Zinoviadi S, Triantafilakos N (1999) Lupin flour addition to wheat flour doughs and effect on rheological properties. *Food Chemistry* 66, 67–73. doi:10.1016/S0308-8146(98) 00234-9
- Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A (2008) The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients. *Trends in Food Science & Technology* 19, 624–633. doi:10.1016/j.tifs.2008.07.002
- Fahmy KH, Salama SI (2002) Biochemical and genetic finger prints for some soybean [*Glycin max* (L.) Merr.] cultivars resistant to *Etiella* zinekenlla (Triet.). Egyptian Journal of Genetics **31**, 309–329.
- Gladstones JS (1994) A historical view of lupins in Australia. In 'Proceedings of the First Australian Lupin Technical Symposium'. (Eds M Dracup, J Palta) pp. 1–38. (Department of Agriculture Western Australia: Perth)
- Güémes-Vera N, Pena BRJ, Jimenez MC, Davila OG, Calderon DG (2008) Effective detoxification and decoloration of *Lupinus mutabilis* seed derivatives, and effect of these derivatives on bread quality and acceptance. *Journal of the Science of Food and Agriculture* 88, 1135–1143. doi:10.1002/jsfa.3152
- Hill GD (1986) Recent developments in the use of lupins in animal and human nutrition. In '4th International Lupin Conference'. Geraldton, Australia. pp. 40–63. (Department of Agriculture for The International Lupin Association: Perth)

- Horneffer V, Foster TJ, Velikov KP (2007) Fast characterization of industrial soy protein isolates by direct analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry. *Journal of Agricultural and Food Chemistry* 55, 10505–10508. doi:10.1021/ jf071321y
- Howieson JG, O'Hara GW, Carr SJ (2000) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. *Field Crops Research* 65, 107–122. doi:10.1016/S0378-4290(99)00081-7
- Hsieh JS, Hsieh KL, Tsai YC, Hsingl YI (2001) Each species of *Glycin* collected in Taiwan has a unique seed protein pattern. *Euphytica* 118, 67–73. doi:10.1023/A:1004075516984
- Islam S, Ma W, Yan G, Gao L, Appels R (2011) Differential recovery of lupin proteins from the gluten matrix in lupin–wheat bread as revealed by mass spectrometry and two-dimensional electrophoresis. *Journal of Agricultural and Food Chemistry* 59, 6696–6704. doi:10.1021/jf201293p
- Kussmann M, Nordhoff E, Rahbek NH, Haebel S, Rossel LM, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll KA, Palm L, Roepstorff P (1997) MALDI-MS sample preparation techniques designed for various peptide and protein analytes. *Journal of Mass Spectrometry* **32**, 593–601. doi:10.1002/(SICI)1096-9888(199706)32:6<593::AID-JMS511>3.0. CO:2-D
- Lampart-Szczapa E (1996) Preparation of protein from lupin seeds. Die Nahrung 40, 71–74. doi:10.1002/food.19960400205
- Liu L, Wang A, Appels R, Ma J, Xia X, Lan P, He Z, Bekes F, Yan Y, Ma W (2009) A MALDI-TOF based analysis of high molecular weight glutenin subunits for wheat breeding. *Journal of Cereal Science* 50, 295–301. doi:10.1016/j.jcs.2009.05.006
- Lou X, van Dongen JLJ, Meijer EW (2010) Generation of CsI cluster ions for mass calibration in matrix-assisted laser desorption/ionization mass spectrometry. *Journal of the American Society for Mass Spectrometry* 21, 1223–1226. doi:10.1016/j.jasms.2010.02.029
- Ma W, Appels R, Bekes F, Larroque O, Morell MK, Gale KR (2005) Genetic characterisation of dough rheological properties in a wheat doubled haploid population: additive genetic effects and epistatic interactions. *Theoretical and Applied Genetics* 111, 410–422. doi:10.1007/s00122-005-2001-0
- Magni C, Scarafoni A, Herndl A, Sessa F, Prinsi B, Espen L, Duranti M (2007) Combined 2D electrophoretic approaches for the study of white lupin mature seed storage proteome. *Phytochemistry* 68, 997–1007. doi:10.1016/j.phytochem.2007.01.003
- Moore JC, DeVries JW, Lipp M, Griffiths JC, Abernethy DR (2010) Total protein methods and their potential utility to reduce the risk of food protein adulteration. *Comprehensive Reviews in Food Science and Food Safety* **9**, 330–357. doi:10.1111/j.1541-4337.2010.00114.x
- Muccilli V, Cunsolo V, Saletti R, Foti S, Masci S, Lafiandra D (2005) Characterization of B- and C-type low molecular weight glutenin subunits by electrospray ionization mass spectrometry and matrixassisted laser desorption/ionization mass spectrometry. *Proteomics* 5, 719–728. doi:10.1002/pmic.200401029
- Müntz K, Blattner FR, Shutov AD (2002) Legumains, a family of asparaginespecific cysteine endopeptidases involved in propolypeptide processing and protein breakdown in plants. *Journal of Plant Physiology* 159, 1281–1293. doi:10.1078/0176-1617-00853
- Petterson DS (1998) Composition and food uses of lupins. In 'Lupins as crop plants: biology, production, and utilization'. (Eds Gladstones JS, Atkins CA, Hamblin J) pp. 353–384(CAB International: London)
- Santos CN, Ferreira RB, Teixeira AR (1997) Seed proteins of Lupinus mutabilis. Journal of Agricultural and Food Chemistry 45, 3821–3825. doi:10.1021/jf970075v
- Siddique KHM, Sykes J (1997) Pulse production in Australia past, present and future. Australian Journal of Experimental Agriculture 37, 103–111. doi:10.1071/EA96068

- Stejskal J, Griga M (1995) Comparative analysis of some isozymes and proteins in somatic and zygotic embryos of soybean [*Glycin max* (L.) Merr.]. *Journal of Plant Physiology* 146, 497–502.
- Swofford DL (1998) 'PAUP: phylogenetic analysis using parsimony.' (Illinois Natural History Survey: Champaign, IL)
- Szajli E, Feher T, Medzihradszky KF (2008) Investigating the quantitative nature of MALDI-TOF MS. *Molecular & Cellular Proteomics* 7, 2410–2418. doi:10.1074/mcp.M800108-MCP200
- Talhinhas P, Leitão J, Neves-Martins J (2006) Collection of *Lupinus angustifolius* L. germplasm and characterisation of morphological and molecular diversity. *Genetic Resources and Crop Evolution* 53, 563–578. doi:10.1007/s10722-004-2684-0
- Timmerman-Vaughan G, Mills A, Whitfield C, Frew T, Butler R, Murray S, Lakeman M, McCallum J, Russell A, Wilson D (2005) Linkage mapping of QTL for seed yield, yield components, and developmental traits in pea. *Crop Science* 45, 1336–1344. doi:10.2135/cropsci2004.0436
- Yahata E, Funatsuki WM, Nishio Z, Tabiki T, Takata K, Yamamoto Y, Tanida M, Saruyama H (2005) Wheat cultivar-specific proteins in grain revealed by 2-DE and their application to cultivar identification of flour. *Proteomics* 5, 3942–3953. doi:10.1002/pmic.200402103

- Yang H, Sweetingham MW, Cowling WA, Smith PMC (2001) DNA fingerprinting based on microsatellite-anchored fragment length polymorphisms, and islolation of sequence-specific PCR markers in Lupin (*Lupinus angustifolius* L.). *Molecular Breeding* 7, 203–209. doi:10.1023/A:1011363205557
- Yang H, Boersma JG, You M, Buirchell BJ, Sweetingham MW (2004) Development and implementation of a sequence-specific PCR marker linked to a gene conferring resistance to Anthracnose disease in narrowleafed lupin (*Lupinus angustifolius* L.). *Molecular Breeding* 14, 145–151. doi:10.1023/B:MOLB.0000038003.49638.97
- Yuan H, Yan G, Siddique KHM, Yang H (2005) RAMP based fingerprinting and assessment of relationships among Australian narrow-leafed lupin (*Lupinus angustifolius* L.) cultivars. *Australian Journal of Agricultural Research* 56, 1339–1346. doi:10.1071/AR05188