Algebraic Properties and Panconnectivity of Folded Hypercubes*

Meijie $\mathrm{Ma}^{a \dagger}$ Jun-Ming Xu ${ }^{b}$
${ }^{a}$ School of Mathematics and System Science, Shandong University
Jinan, 250100, China
${ }^{b}$ Department of Mathematics, University of Science and Technology of China
Hefei, 230026, China

Abstract

This paper considers the folded hypercube $F Q_{n}$, as an enhancement on the hypercube, and obtain some algebraic properties of $F Q_{n}$. Using these properties the authors show that for any two vertices x and y in $F Q_{n}$ with distance d and any integers $h \in\{d, n+1-d\}$ and l with $h \leq l \leq 2^{n}-1, F Q_{n}$ contains an $x y$-path of length l and no $x y$-paths of other length provided that l and h have the same parity.

Keywords: Path, Folded hypercube, Transitivity, Panconnectivity
MR Subject Classification: 05C38 90B10

1 Introduction

It is well-known that a topological structure for an interconnection network can be modelled by a connected graph $G=(V, E)$ [14]. As a topology for an interconnection network of a multiprocessor system, the hypercube structure is a widely used and well-known interconnection model since it possesses many attractive properties $[8,14]$. The n-dimensional hypercube Q_{n} is a graph with 2^{n} vertices, each vertex with a distinct binary string $x_{1} x_{2} \cdots x_{n}$ of length n on the set $\{0,1\}$, and two vertices being linked by an edge if and only if their strings differ in exactly one bit.

As a variant of the hypercube, the n-dimensional folded hypercube $F Q_{n}$, proposed first by El-Amawy and Latifi [3], is a graph obtained from

[^0]the hypercube Q_{n} by adding an edge between any two complementary vertices $x=\left(x_{1} x_{2} \cdots x_{n}\right)$ and $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}, \cdots, \bar{x}_{n}\right)$, where $\bar{x}_{i}=1-x_{i}$. We call these added edges complementary edges, to distinguish them from the edges, called regular edges, in Q_{n}.

From definitions, Q_{n} is a proper spanning subgraph of $F Q_{n}$, and so $F Q_{n}$ has 2^{n} vertices. It has been shown that $F Q_{n}$ is $(n+1)$-regular $(n+$ $1)$-connected, and has diameter $\left\lceil\frac{n}{2}\right\rceil$, about half the diameter of Q_{n} [3]. Thus, the folded hypercube $F Q_{n}$ is an enhancement on the hypercube Q_{n} and has recently attracted many researchers' attention $[2,4,5,7,10,12]$. In this paper, we further investigate other topological properties of $F Q_{n}$, transitivity and panconnectivity.

A graph G is called to be vertex-transitive if for any $x, y \in V(G)$ there is some $\sigma \in \operatorname{Aut}(G)$, the automorphism group of G, such that $\sigma(x)=y$; and edge-transitive if for any $x y, u v \in E(G)$ there is some $\phi \in \operatorname{Aut}(G)$ such that $\{\phi(x), \phi(y)\}=\{u, v\}$. It has been known that Q_{n} is both vertextransitive and edge-transitive [1]. However, the transitivity of $F Q_{n}$ has not been proved straightforwardly in the literature. In this paper, we will study some algebraic properties of $F Q_{n}$. Using these properties, we give another proof of a known result that $F Q_{n}$ is vertex and edge-transitive.

A graph G is panconnected if for any two different vertices x and y in G and any integer l with $d_{G}(x, y) \leq l \leq|V(G)|-1$ there exists an $x y$-path of length l, where $d_{G}(x, y)$ is the distance between x and y in G [11]. It is easy to see that any bipartite graph with at least three vertices is not panconnected. For this reason, Li et al [6] suggested the concept of bipanconnected bipartite graphs. A bipartite graph G is called to be bipanconnected if for any two different vertices x and y in G and any integer l with $d_{G}(x, y) \leq l \leq|V(G)|-1$ such that l and $d_{G}(x, y)$ have the same parity there exists an $x y$-path of length l. Li et al [6] have shown that Q_{n} is bipanconnected. In this paper, we show that for any two vertices x and y in $F Q_{n}$ with distance $d, F Q_{n}$ contains an $x y$-path of length l with $h \leq l \leq 2^{n}-1$ such that l and h have the same parity, where $h \in$ $\{d, n+1-d\}$. Hence, $F Q_{n}$ is bipanconnected if n is odd.

The proofs of our results are in Section 2 and Section3, respectively.

2 Algebraic Properties

In this section, we study some algebraic properties of $F Q_{n}$, and as applications, show that $F Q_{n}$ is vertex and edge-transitive.

The following notations will be used in the proofs of our main results. The symbol $H(x, y)$ denotes the Hamming distance between two vertices x and y in Q_{n}, that is, the number of different bits in the corresponding strings of both vertices. Clearly, $H(x, y)=d_{Q_{n}}(x, y)$. It is also clear that
$d_{F Q_{n}}(x, y)=i$ if and only if $H(x, y)=i$ or $n+1-i$. Let $x=0 u$ and $y=1 v$ be two vertices in $F Q_{n}$. It is easy to count that

$$
\begin{align*}
H(0 u, 1 \bar{v}) & =H(0 u, 1 u)+H(1 u, 1 \bar{v}) \\
& =1+[(n-1)-H(1 u, 1 v)] \tag{1}\\
& =n+1-H(0 u, 1 v) .
\end{align*}
$$

Let Γ be a non-trivial finite group, S be a non-empty subset of Γ without the identity of Γ and with $S^{-1}=S$. The Cayley graph $C_{\Gamma}(S)$ of Γ with respect to S is defined as follows.

$$
V=\Gamma ; \quad(x, y) \in E \Leftrightarrow x^{-1} y \in S, \text { for any } x, y \in \Gamma
$$

It has been proved that any Cayley graph is vertex-transitive (see, for example, Theorem 2.2.15 in [14]).

As we have known that the hypercube Q_{n} is the Cayley graph $C_{Z_{2}^{n}}(S)$, where Z_{2} denotes the additive group of residue classes modulo 2 on the set $\{0,1\}, Z_{2}^{n}=Z_{2} \times Z_{2} \times \cdots \times Z_{2}$, and $S=\{(10 \cdots 0),(010 \cdots 0), \cdots,(0 \cdots$ $010 \cdots 0), \cdots,(0 \cdots 01)\}$ (see, for example, Example 2 in p89 in [14]). The following theorem shows that $F Q_{n}$ is also a Cayley graph.

Theorem 2.1 The folded hypercube $F Q_{n} \cong C_{Z_{2}^{n}}(S \cup\{(11 \cdots 1)\})$.
Proof Clearly, $V\left(F Q_{n}\right)=Z_{2}^{n}$. Define a natural mapping

$$
\begin{aligned}
\varphi: \quad V\left(F Q_{n}\right) & \rightarrow Z_{2}^{n} \\
x & \mapsto \varphi(x)=x
\end{aligned}
$$

Let x and y be any two vertices in $F Q_{n}$. Since $(x, y) \in E\left(F Q_{n}\right)$ if and only if $H(x, y)=1$ or n. Note that $x^{-1}=x$ for any $x \in Z_{2}^{n}$. It follows that $H(x, y)=1$ if and only if $x^{-1} y \in S$; and $H(x, y)=n$ if and only if $x^{-1} y=$ $(11 \cdots 1)$, whereby $(x, y) \in E\left(C_{Z_{2}^{n}}(S \cup\{(11 \cdots 1)\})\right)$. Thus, φ preserves the adjacency of vertices, which implies that φ is an isomorphism between $F Q_{n}$ and $C_{Z_{2}^{n}}(S \cup\{(11 \cdots 1)\})$, and so $F Q_{n} \cong C_{Z_{2}^{n}}(S \cup\{(11 \cdots 1)\})$.

Corollary 2.2 The folded hypercube $F Q_{n}$ is vertex-transitive.
For convenience, we express $F Q_{n}$ as $F Q_{n}=L \otimes R$, where L and R are the two ($n-1$)-dimensional subcubes of Q_{n} induced by the vertices with the leftmost bit is 0 and 1 , respectively. A vertex in L will be denoted by $0 u$ and a vertex in R denoted by $1 v$, where u and v are any two vertices in Q_{n-1}. Between L and R, apart from the regular edges, there exists a complementary edge joining $0 u$ and $1 \bar{u} \in R$ for any $0 u \in L$.

Theorem 2.3 Let σ be a mapping from $V\left(F Q_{n}\right)$ to itself defined by

$$
\left\{\begin{array}{l}
\sigma(0 u)=0 u \tag{2}\\
\sigma(1 u)=1 \bar{u}
\end{array} \quad \text { for any } u \in V\left(Q_{n-1}\right) .\right.
$$

Then $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$. Moreover, for an edge (x, y) between L and R in $F Q_{n},(\sigma(x), \sigma(y))$ is complementary if and only if (x, y) is regular.

Proof Clearly, σ is a permutation on $V\left(F Q_{n}\right)$. To show $\sigma \in$ Aut $\left(F Q_{n}\right)$, it is sufficient to show that σ preserves adjacency of vertices in $F Q_{n}$, that is, to show that any pair of vertices x and y in $F Q_{n}$ satisfies the following condition.

$$
\begin{equation*}
(x, y) \in E\left(F Q_{n}\right) \Leftrightarrow(\sigma(x), \sigma(y)) \in E\left(F Q_{n}\right) \tag{3}
\end{equation*}
$$

Let $F Q_{n}=L \otimes R, u$ and v be any two distinct vertices in Q_{n-1}. Because of vertex-transitivity of $F Q_{n}$ by Theorem 2.1, without loss of generality, suppose $x=0 u \in L$. We consider two cases according to the location of y.

Case $1 y \in L$. In this case, let $y=0 v$. Since σ is the identical permutation on $L \cong Q_{n-1}$, it is clear that

$$
(0 u, 0 v) \in E\left(F Q_{n}\right) \Leftrightarrow(\sigma(0 u), \sigma(0 v))=(0 u, 0 v) \in E\left(F Q_{n}\right)
$$

Case 2 $y \in R$. In this case, let $y=1 v$. By the definition of $F Q_{n}$, $(0 u, 1 v) \in E\left(F Q_{n}\right) \Leftrightarrow v=u$ or \bar{u}. Since $(0 u, 1 u),(0 u, 1 \bar{u}) \in E\left(F Q_{n}\right)$ by the definition of $F Q_{n}$, it follows that

$$
\begin{array}{ll}
(0 u, 1 u) \in E\left(F Q_{n}\right) \Leftrightarrow(\sigma(0 u), \sigma(1 u))=(0 u, 1 \bar{u}) \in E\left(F Q_{n}\right) & \text { if } v=u \\
(0 u, 1 \bar{u}) \in E\left(F Q_{n}\right) \Leftrightarrow(\sigma(0 u), \sigma(1 \bar{u}))=(0 u, 1 u) \in E\left(F Q_{n}\right) & \text { if } v=\bar{u} .
\end{array}
$$

From the above arguments, we have shown $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$.
We now show the remaining part of the theorem. Without loss of generality, we may suppose $x=0 u$ since $F Q_{n}$ is vertex-transitive. By (2), we have $\sigma(x)=\sigma(0 u)=0 u$.

Suppose that (x, y) is a regular edge between L and R in $F Q_{n}$. Then $y=1 u$ and $\sigma(y)=\sigma(1 u)=1 \bar{u}$ by (2). By $(3)(0 u, 1 \bar{u}) \in E\left(F Q_{n}\right)$, which is a complementary edge.

Conversely, suppose that (x, y) is a complementary edge in $F Q_{n}$. Then $y=1 \bar{u}$ and $\sigma(1 \bar{u})=1 u$ by (2), and $(0 u, 1 u) \in E\left(F Q_{n}\right)$ by (3), which is a regular edge.

The lemma follows.
Theorem 2.4 $\operatorname{Aut}\left(Q_{n}\right)$ is a proper subgroup of $\operatorname{Aut}\left(F Q_{n}\right)$. Moreover, for any $\sigma \in \operatorname{Aut}\left(Q_{n}\right),(x, y)$ is a complementary edge if and only if $(\sigma(x), \sigma(y))$ is also a complementary edge in $F Q_{n}$.

Proof For any element $\sigma \in \operatorname{Aut}\left(Q_{n}\right)$, we will prove $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$.
It is clear that σ is a permutation on $V\left(F Q_{n}\right)$ since Q_{n} is a spanning subgraph of $F Q_{n}$. We only need to show that σ preserves adjacency of vertices in $F Q_{n}$, that is, to check that (3) holds for any pair of vertices x and y in $F Q_{n}$. In fact, since

$$
H(x, y)=d_{Q_{n}}(x, y)=d_{Q_{n}}(\sigma(x), \sigma(y))=H(\sigma(x), \sigma(y))
$$

and

$$
(x, y) \in E\left(F Q_{n}\right) \Leftrightarrow H(x, y)=1 \text { or } n
$$

we have

$$
\begin{aligned}
(x, y) \in E\left(F Q_{n}\right) & \Leftrightarrow H(x, y)=1 \text { or } n \\
& \Leftrightarrow H(\sigma(x), \sigma(y))=1 \text { or } n \\
& \Leftrightarrow(\sigma(x), \sigma(y)) \in E\left(F Q_{n}\right)
\end{aligned}
$$

Thus, $\operatorname{Aut}\left(Q_{n}\right) \subseteq \operatorname{Aut}\left(F Q_{n}\right)$. It is clear that the automorphism σ defined by (2) is not in Aut $\left(Q_{n}\right)$ by Theorem 2.3. Therefore, Aut $\left(Q_{n}\right)$ is a proper subgraph of $\operatorname{Aut}\left(F Q_{n}\right)$.

By the definition of $F Q_{n}$, for any $\sigma \in$ Aut $\left(Q_{n}\right)$, it is clear that (x, y) is a complementary edge in $F Q_{n}$ if and only if $n=H(x, y)=H(\sigma(x), \sigma(y))$, if and only if $\sigma(x, y)=(\sigma(x), \sigma(y))$ is a complementary edge in $F Q_{n}$.

The theorem follows.
Corollary 2.5 The folded hypercube $F Q_{n}$ is edge-transitive.
Proof For any two edges (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in $F Q_{n}$, we will show there is an element $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$ such that $\{\sigma(x), \sigma(y)\}=\left\{x^{\prime}, y^{\prime}\right\}$. Since $F Q_{n}$ is vertex-transitive, we may assume $x=x^{\prime}$. We only need to find $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$ that takes y to y^{\prime} and fixes x. Since for any two vertices z and t in $F Q_{n},(z, t) \in E\left(F Q_{n}\right)$ if and only if $H(z, t)=1$ or n. Without loss of generality, we may suppose that $H(x, y)=1$, that is, (x, y) is a regular edge in $F Q_{n}$.

If $H\left(x, y^{\prime}\right)=1$, then $\left(x, y^{\prime}\right)$ is a regular edge. Since Q_{n} is edge-transitive, there is an element $\sigma \in \operatorname{Aut}\left(Q_{n}\right)$ such that $\{\sigma(x), \sigma(y)\}=\left\{x, y^{\prime}\right\}$. By Theorem 2.4, $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$, which satisfies our requirement.

If $H\left(x, y^{\prime}\right)=n$, then $y^{\prime}=\bar{x}$ and $\left(x, y^{\prime}\right)$ is a complementary edge in $F Q_{n}$. Without loss of generality, we may suppose that $x=0 u$. Then $y^{\prime}=1 \bar{u}$. Let $z=1 u$. Then the automorphism σ defined in (2) can take z to y^{\prime} and fixes x. If $y=z$, then the σ satisfies our requirement. If $y \neq z$, then there is $\phi \in \operatorname{Aut}\left(Q_{n}\right) \subset \operatorname{Aut}\left(F Q_{n}\right)$ such that ϕ takes y to z and fixes x. Thus, $\sigma \phi(y)=\sigma(\phi(y))=\sigma(z)=y^{\prime}$ and $\sigma \phi(x)=\sigma(\phi(x))=\sigma(x)=x$, and so $\sigma \phi$ satisfies our requirement.

The corollary follows.

3 Panconnectivity

In this section, we investigate the panconnectivity of $F Q_{n}$. The proof of the main theorem in this section is strongly dependent on the following lemmas.

Lemma 3.1 [6] If $n \geq 2$, then Q_{n} is bipanconnected, that is, for any two vertices x and y in Q_{n} there exists an $x y$-path of length l with $H(x, y) \leq l \leq 2^{n}-1$ such that l and $H(x, y)$ have the same parity.

Lemma 3.2 [13] $F Q_{n}$ is a bipartite graph if and only if n is odd. Moreover, if n is even, then the length of the shortest odd cycle in $F Q_{n}$ is $n+1$.

Theorem 3.3 For any two distinct vertices x and y in $F Q_{n}$ with distance $d, F Q_{n}$ contains an $x y$-path of length l with $h \leq l \leq 2^{n}-1$ such that l and h have the same parity, where $h \in\{d, n+1-d\}$.

Proof If $n=1$, the theorem is true clearly since $F Q_{1}=K_{2}$. Assume $n \geq 2$ below. Without loss of generality, we may assume $x=0 u, y=1 v$ since $d \geq 1$ and $F Q_{n}$ is vertex-transitive by Corollary 2.2. We first deduce two conclusions from Lemma 3.2 and Theorem 2.3.
(a) By Lemma 3.1, Q_{n} contains an $x y$-path P of length l with $H(x, y) \leq$ $l \leq 2^{n}-1$ such that l and $H(x, y)$ have the same parity. Since Q_{n} is a spanning subgraph of $F Q_{n}, P$ is an $x y$-path of length l in $F Q_{n}$.
(b) Consider the vertex $z=1 \bar{v}$. By Lemma 3.1, Q_{n} contains an $x z$-path R of length l^{\prime} with $H(x, z) \leq l^{\prime} \leq 2^{n}-1$ such that l^{\prime} and $H(x, z)$ have the same parity. Since $H(x, z)=n+1-H(x, y)$ by (1), l^{\prime} and $n+1-H(x, y)$ have the same parity. Let $\sigma \in \operatorname{Aut}\left(F Q_{n}\right)$ defined in (2). Then $P^{\prime}=\sigma(R)$ is an $x y$-path of length l^{\prime} with $n+1-H(x, y) \leq l^{\prime} \leq 2^{n}-1$ such that l^{\prime} and $n+1-H(x, y)$ have the same parity.

To prove the theorem, it is sufficient to check that $H(x, y)=d$ or $n+1-d$. In fact, it is clear that if $H(x, y) \leq\left\lceil\frac{n}{2}\right\rceil$ then $d=H(x, y)$; if $H(x, y)>\left\lceil\frac{n}{2}\right\rceil$ then $H(x, y)=n-d+1$. The theorem is proved.

Corollary 3.4 If n is odd, then $F Q_{n}$ is bipanconncted.
Proof If n is odd, then $F Q_{n}$ is a bipartite graph by Lemma 3.2. Let x and y be any two vertices in $F Q_{n}$ with distance d. Since n is odd, the condition that l and $n+1-d$ have the same parity implies that l and d have the same parity. Note that $d \leq n+1-d$ since $d \leq\left\lceil\frac{n}{2}\right\rceil$. By Theorem 3.3, $F Q_{n}$ contains an $x y$-path of length l with $d \leq l \leq 2^{n}-1$ such that l and d have the same parity, and so $F Q_{n}$ is bipanconncted.

Corollary 3.5 If n is even then for any two different vertices x and y with $d_{F Q_{n}}(x, y)=d$ in $F Q_{n}$, there is an $x y$-path of length l for each l satisfying $n-d+1 \leq l \leq 2^{n}-1$ and there is also an $x y$-path of length l^{\prime} for each l^{\prime} satisfying $d \leq l^{\prime} \leq n-d$ such that l^{\prime} and d have the same parity; there is no $x y$-path of other length.

Proof If n is even, then d and $n-d+1$ have different parity. Thus, for any integer l, either l and d have the same parity, or l and $n-d+1$
have the same parity. Since $d \leq \frac{n}{2}, d<n-d+1$. By Theorem 3.3, there is an $x y$-path of length l with $n-d+1 \leq l \leq 2^{n}-1$ in $F Q_{n}$.

Since the length of the shortest odd cycle in $F Q_{n}$ is $n+1$ by Lemma 3.2, $F Q_{n}$ contains no $x y$-path of length l with $d<l \leq n-d$ if l and d have different parity. In other words, the length l of the second shortest path between x and y with distance d is certainly $n-d+1$ if l and d have different parity. It follows from Theorem 3.3 that there is an $x y$-path of length l^{\prime} with $d \leq l^{\prime} \leq n-d$ provided l^{\prime} and d have the same parity.

The corollary is proved.
A graph is called to be hamiltonian connected if there is a hamiltonian path between any two vertices. It is easy to see that any bipartite graph with at least three vertices is not hamiltonian connected. For this reason, Simmons [9] introduces the concept of hamiltonian laceable for hamiltonian bipartite graphs. A hamiltonian bipartite graph is hamiltonian laceable if there is a hamiltonian path between any two vertices in different bipartite sets. It is clear that if a bipartite graph is bipanconnected then it is certainly hamiltonian laceable. It follows from Corollary 3.4 and Corollary 3.5 that the following result is true clearly.

Corollary 3.6 $F Q_{n}$ is hamiltonian laceable if n is odd, and hamiltonian connected if n is even.

References

[1] A.E. Brower, A.M. Cohen and A. Neumaier, Distance Regular Graphs, Springer, Berlin, 1989.
[2] D. R. Duh, G. H. Chen and J. F. Fang, Algorithms and properties of a new two-level network with folded hypercubes as basic modules, IEEE Trans. Parallel and Distributed Systems, 6(7) (1995), 714-723.
[3] A. El-Amawy and S. Latifi, Properties and performance of folded hypercubes, IEEE Trans. Parallel and Distrib. Syst., 2 (1991), 31-42.
[4] X. Hou, M. Xu and J.-M. Xu, Forwarding indices of folded n-cubes, Discrete Applied Mathematics, 145 (2005), 490-492.
[5] C. N. Lai, G. H. Chen and D. R. Duh, Constructing one-to-many disjoint paths in folded hypercubes, IEEE Trans. Comput., 51 (1) (2002), 33-45.
[6] L. K. Li, C. H. Tsai, J. M. Tan and L. H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, Information Processing Letters, 87 (2003), 107-110.
[7] S. C. Liaw and G. J. Chang, Generalized diameters and Rabin numbers of networks, Journal of Combinatorial Optimization, 2 (1998), 371-384.
[8] Y. Saad and M. H. Schultz, Topological properties of hypercubes, IEEE Trans. Comput., 37(7) (1988), 867-872.
[9] G. Simmons, Almost all n-dimensional rectangular lattices are hamilton laceable. Congr. Numer., 21 (1978), 103-108.
[10] E. Simó and J. L. A. Yebra, The vulnerability of the diameter of folded n-cubes, Discrete Math., 174 (1997), 317-322.
[11] Z. M. Song and Y. S. Qin, A new sufficient condition for panconnected graphs, Ars Combin., 34 (1992), 161-166.
[12] D. Wang, Embedding hamiltonian cycles into folded hypercubes with faulty links, J. Parallel and Distrib. Comput., 61 (2001), 545-564.
[13] J. M. Xu and M. Ma, Cycles in folded hypercubes, Applied Mathematics Letters, 19 (2006), 140-145.
[14] Junming Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.

[^0]: *The work was supported by NNSF of China (No.10271114).
 \dagger Corresponding author: mameij@math.sdu.edu.cn

