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Abstract This paper considers the folded hypercube FQn, as an en-
hancement on the hypercube, and obtain some algebraic properties of FQn.
Using these properties the authors show that for any two vertices x and
y in FQn with distance d and any integers h ∈ {d, n + 1 − d} and l with
h ≤ l ≤ 2n − 1, FQn contains an xy-path of length l and no xy-paths of
other length provided that l and h have the same parity.
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1 Introduction

It is well-known that a topological structure for an interconnection network
can be modelled by a connected graph G = (V,E) [14]. As a topology
for an interconnection network of a multiprocessor system, the hypercube
structure is a widely used and well-known interconnection model since it
possesses many attractive properties [8, 14]. The n-dimensional hypercube
Qn is a graph with 2n vertices, each vertex with a distinct binary string
x1x2 · · ·xn of length n on the set {0, 1}, and two vertices being linked by
an edge if and only if their strings differ in exactly one bit.

As a variant of the hypercube, the n-dimensional folded hypercube
FQn, proposed first by El-Amawy and Latifi [3], is a graph obtained from
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the hypercube Qn by adding an edge between any two complementary ver-
tices x = (x1x2 · · ·xn) and x̄ = (x̄1, x̄2, · · · , x̄n), where x̄i = 1 − xi. We
call these added edges complementary edges, to distinguish them from the
edges, called regular edges, in Qn.

From definitions, Qn is a proper spanning subgraph of FQn, and so
FQn has 2n vertices. It has been shown that FQn is (n + 1)-regular (n +
1)-connected, and has diameter

⌈
n
2

⌉
, about half the diameter of Qn [3].

Thus, the folded hypercube FQn is an enhancement on the hypercube Qn

and has recently attracted many researchers’ attention [2, 4, 5, 7, 10, 12].
In this paper, we further investigate other topological properties of FQn,
transitivity and panconnectivity.

A graph G is called to be vertex-transitive if for any x, y ∈ V (G) there
is some σ ∈ Aut (G), the automorphism group of G, such that σ(x) = y;
and edge-transitive if for any xy, uv ∈ E(G) there is some φ ∈ Aut (G)
such that {φ(x), φ(y)} = {u, v}. It has been known that Qn is both vertex-
transitive and edge-transitive [1]. However, the transitivity of FQn has
not been proved straightforwardly in the literature. In this paper, we will
study some algebraic properties of FQn. Using these properties, we give
another proof of a known result that FQn is vertex and edge-transitive.

A graph G is panconnected if for any two different vertices x and y
in G and any integer l with dG(x, y) ≤ l ≤ |V (G)| − 1 there exists an
xy-path of length l, where dG(x, y) is the distance between x and y in
G [11]. It is easy to see that any bipartite graph with at least three vertices
is not panconnected. For this reason, Li et al [6] suggested the concept
of bipanconnected bipartite graphs. A bipartite graph G is called to be
bipanconnected if for any two different vertices x and y in G and any
integer l with dG(x, y) ≤ l ≤ |V (G)| − 1 such that l and dG(x, y) have the
same parity there exists an xy-path of length l. Li et al [6] have shown that
Qn is bipanconnected. In this paper, we show that for any two vertices
x and y in FQn with distance d, FQn contains an xy-path of length l
with h ≤ l ≤ 2n − 1 such that l and h have the same parity, where h ∈
{d, n + 1− d}. Hence, FQn is bipanconnected if n is odd.

The proofs of our results are in Section 2 and Section3, respectively.

2 Algebraic Properties

In this section, we study some algebraic properties of FQn, and as appli-
cations, show that FQn is vertex and edge-transitive.

The following notations will be used in the proofs of our main results.
The symbol H(x, y) denotes the Hamming distance between two vertices
x and y in Qn, that is, the number of different bits in the corresponding
strings of both vertices. Clearly, H(x, y) = dQn

(x, y). It is also clear that
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dFQn
(x, y) = i if and only if H(x, y) = i or n + 1 − i. Let x = 0u and

y = 1v be two vertices in FQn. It is easy to count that

H(0u, 1v̄) = H(0u, 1u) + H(1u, 1v̄)
= 1 + [(n− 1)−H(1u, 1v)]
= n + 1−H(0u, 1v).

(1)

Let Γ be a non-trivial finite group, S be a non-empty subset of Γ without
the identity of Γ and with S−1 = S. The Cayley graph CΓ(S) of Γ with
respect to S is defined as follows.

V = Γ; (x, y) ∈ E ⇔ x−1y ∈ S, for any x, y ∈ Γ.

It has been proved that any Cayley graph is vertex-transitive (see, for
example, Theorem 2.2.15 in [14]).

As we have known that the hypercube Qn is the Cayley graph CZn
2
(S),

where Z2 denotes the additive group of residue classes modulo 2 on the set
{0, 1}, Zn

2 = Z2 × Z2 × · · · × Z2, and S = {(10 · · · 0), (010 · · · 0), · · · , (0 · · ·
010 · · · 0), · · · , (0 · · · 01)} (see, for example, Example 2 in p89 in [14]). The
following theorem shows that FQn is also a Cayley graph.

Theorem 2.1 The folded hypercube FQn
∼= CZn

2
(S ∪ {(11 · · · 1)}).

Proof Clearly, V (FQn) = Zn
2 . Define a natural mapping

ϕ : V (FQn) → Zn
2

x 7→ ϕ(x) = x.

Let x and y be any two vertices in FQn. Since (x, y) ∈ E(FQn) if and
only if H(x, y) = 1 or n. Note that x−1 = x for any x ∈ Zn

2 . It follows that
H(x, y) = 1 if and only if x−1y ∈ S; and H(x, y) = n if and only if x−1y =
(11 · · · 1), whereby (x, y) ∈ E(CZn

2
(S ∪ {(11 · · · 1)})). Thus, ϕ preserves

the adjacency of vertices, which implies that ϕ is an isomorphism between
FQn and CZn

2
(S ∪ {(11 · · · 1)}), and so FQn

∼= CZn
2
(S ∪ {(11 · · · 1)}).

Corollary 2.2 The folded hypercube FQn is vertex-transitive.

For convenience, we express FQn as FQn = L⊗R, where L and R are
the two (n − 1)-dimensional subcubes of Qn induced by the vertices with
the leftmost bit is 0 and 1, respectively. A vertex in L will be denoted by
0u and a vertex in R denoted by 1v, where u and v are any two vertices
in Qn−1. Between L and R, apart from the regular edges, there exists a
complementary edge joining 0u and 1ū ∈ R for any 0u ∈ L.

Theorem 2.3 Let σ be a mapping from V (FQn) to itself defined by{
σ(0u) = 0u
σ(1u) = 1ū

for any u ∈ V (Qn−1). (2)

3



Then σ ∈ Aut (FQn). Moreover, for an edge (x, y) between L and R in
FQn, (σ(x), σ(y)) is complementary if and only if (x, y) is regular.

Proof Clearly, σ is a permutation on V (FQn). To show σ ∈ Aut (FQn),
it is sufficient to show that σ preserves adjacency of vertices in FQn, that
is, to show that any pair of vertices x and y in FQn satisfies the following
condition.

(x, y) ∈ E(FQn) ⇔ (σ(x), σ(y)) ∈ E(FQn). (3)

Let FQn = L⊗R, u and v be any two distinct vertices in Qn−1. Because
of vertex-transitivity of FQn by Theorem 2.1, without loss of generality,
suppose x = 0u ∈ L. We consider two cases according to the location of y.

Case 1 y ∈ L. In this case, let y = 0v. Since σ is the identical
permutation on L ∼= Qn−1, it is clear that

(0u, 0v) ∈ E(FQn) ⇔ (σ(0u), σ(0v)) = (0u, 0v) ∈ E(FQn).

Case 2 y ∈ R. In this case, let y = 1v. By the definition of FQn,
(0u, 1v) ∈ E(FQn) ⇔ v = u or ū. Since (0u, 1u), (0u, 1ū) ∈ E(FQn) by
the definition of FQn, it follows that

(0u, 1u) ∈ E(FQn) ⇔ (σ(0u), σ(1u)) = (0u, 1ū) ∈ E(FQn) if v = u
(0u, 1ū) ∈ E(FQn) ⇔ (σ(0u), σ(1ū)) = (0u, 1u) ∈ E(FQn) if v = ū.

From the above arguments, we have shown σ ∈ Aut (FQn).
We now show the remaining part of the theorem. Without loss of gen-

erality, we may suppose x = 0u since FQn is vertex-transitive. By (2), we
have σ(x) = σ(0u) = 0u.

Suppose that (x, y) is a regular edge between L and R in FQn. Then
y = 1u and σ(y) = σ(1u) = 1ū by (2). By (3) (0u, 1ū) ∈ E(FQn), which is
a complementary edge.

Conversely, suppose that (x, y) is a complementary edge in FQn. Then
y = 1ū and σ(1ū) = 1u by (2), and (0u, 1u) ∈ E(FQn) by (3), which is a
regular edge.

The lemma follows.

Theorem 2.4 Aut (Qn) is a proper subgroup of Aut (FQn). More-
over, for any σ ∈ Aut (Qn), (x, y) is a complementary edge if and only if
(σ(x), σ(y)) is also a complementary edge in FQn.

Proof For any element σ ∈ Aut (Qn), we will prove σ ∈ Aut (FQn).
It is clear that σ is a permutation on V (FQn) since Qn is a spanning

subgraph of FQn. We only need to show that σ preserves adjacency of
vertices in FQn, that is, to check that (3) holds for any pair of vertices x
and y in FQn. In fact, since

H(x, y) = dQn
(x, y) = dQn

(σ(x), σ(y)) = H(σ(x), σ(y))
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and
(x, y) ∈ E(FQn) ⇔ H(x, y) = 1 or n,

we have

(x, y) ∈ E(FQn) ⇔ H(x, y) = 1 or n

⇔ H(σ(x), σ(y)) = 1 or n

⇔ (σ(x), σ(y)) ∈ E(FQn).

Thus, Aut (Qn) ⊆ Aut (FQn). It is clear that the automorphism σ defined
by (2) is not in Aut (Qn) by Theorem 2.3. Therefore, Aut (Qn) is a proper
subgraph of Aut (FQn).

By the definition of FQn, for any σ ∈ Aut (Qn), it is clear that (x, y) is
a complementary edge in FQn if and only if n = H(x, y) = H(σ(x), σ(y)),
if and only if σ(x, y) = (σ(x), σ(y)) is a complementary edge in FQn.

The theorem follows.

Corollary 2.5 The folded hypercube FQn is edge-transitive.

Proof For any two edges (x, y) and (x′, y′) in FQn, we will show
there is an element σ ∈ Aut (FQn) such that {σ(x), σ(y)} = {x′, y′}. Since
FQn is vertex-transitive, we may assume x = x′. We only need to find
σ ∈ Aut (FQn) that takes y to y′ and fixes x. Since for any two vertices z
and t in FQn, (z, t) ∈ E(FQn) if and only if H(z, t) = 1 or n. Without loss
of generality, we may suppose that H(x, y) = 1, that is, (x, y) is a regular
edge in FQn.

If H(x, y′) = 1, then (x, y′) is a regular edge. Since Qn is edge-transitive,
there is an element σ ∈ Aut (Qn) such that {σ(x), σ(y)} = {x, y′}. By
Theorem 2.4, σ ∈ Aut (FQn), which satisfies our requirement.

If H(x, y′) = n, then y′ = x̄ and (x, y′) is a complementary edge in
FQn. Without loss of generality, we may suppose that x = 0u. Then
y′ = 1ū. Let z = 1u. Then the automorphism σ defined in (2) can take z
to y′ and fixes x. If y = z, then the σ satisfies our requirement. If y 6= z,
then there is φ ∈ Aut (Qn) ⊂ Aut (FQn) such that φ takes y to z and fixes
x. Thus, σφ(y) = σ(φ(y)) = σ(z) = y′ and σφ(x) = σ(φ(x)) = σ(x) = x,
and so σφ satisfies our requirement.

The corollary follows.

3 Panconnectivity

In this section, we investigate the panconnectivity of FQn. The proof of
the main theorem in this section is strongly dependent on the following
lemmas.
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Lemma 3.1 [6] If n ≥ 2, then Qn is bipanconnected, that is, for
any two vertices x and y in Qn there exists an xy-path of length l with
H(x, y) ≤ l ≤ 2n − 1 such that l and H(x, y) have the same parity.

Lemma 3.2 [13] FQn is a bipartite graph if and only if n is odd.
Moreover, if n is even, then the length of the shortest odd cycle in FQn is
n + 1.

Theorem 3.3 For any two distinct vertices x and y in FQn with
distance d, FQn contains an xy-path of length l with h ≤ l ≤ 2n − 1 such
that l and h have the same parity, where h ∈ {d, n + 1− d}.

Proof If n = 1, the theorem is true clearly since FQ1 = K2. Assume
n ≥ 2 below. Without loss of generality, we may assume x = 0u, y = 1v
since d ≥ 1 and FQn is vertex-transitive by Corollary 2.2. We first deduce
two conclusions from Lemma 3.2 and Theorem 2.3.

(a) By Lemma 3.1, Qn contains an xy-path P of length l with H(x, y) ≤
l ≤ 2n − 1 such that l and H(x, y) have the same parity. Since Qn is a
spanning subgraph of FQn, P is an xy-path of length l in FQn.

(b) Consider the vertex z = 1v̄. By Lemma 3.1, Qn contains an xz-path
R of length l′ with H(x, z) ≤ l′ ≤ 2n − 1 such that l′ and H(x, z) have the
same parity. Since H(x, z) = n + 1−H(x, y) by (1), l′ and n + 1−H(x, y)
have the same parity. Let σ ∈ Aut (FQn) defined in (2). Then P ′ = σ(R)
is an xy-path of length l′ with n + 1 −H(x, y) ≤ l′ ≤ 2n − 1 such that l′

and n + 1−H(x, y) have the same parity.
To prove the theorem, it is sufficient to check that H(x, y) = d or

n + 1 − d. In fact, it is clear that if H(x, y) ≤
⌈

n
2

⌉
then d = H(x, y); if

H(x, y) >
⌈

n
2

⌉
then H(x, y) = n− d + 1. The theorem is proved.

Corollary 3.4 If n is odd, then FQn is bipanconncted.

Proof If n is odd, then FQn is a bipartite graph by Lemma 3.2. Let
x and y be any two vertices in FQn with distance d. Since n is odd, the
condition that l and n + 1 − d have the same parity implies that l and d
have the same parity. Note that d ≤ n + 1− d since d ≤

⌈
n
2

⌉
. By Theorem

3.3, FQn contains an xy-path of length l with d ≤ l ≤ 2n − 1 such that l
and d have the same parity, and so FQn is bipanconncted.

Corollary 3.5 If n is even then for any two different vertices x and
y with dFQn(x, y) = d in FQn, there is an xy-path of length l for each l
satisfying n − d + 1 ≤ l ≤ 2n − 1 and there is also an xy-path of length l′

for each l′ satisfying d ≤ l′ ≤ n−d such that l′ and d have the same parity;
there is no xy-path of other length.

Proof If n is even, then d and n− d + 1 have different parity. Thus,
for any integer l, either l and d have the same parity, or l and n − d + 1
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have the same parity. Since d ≤ n
2 , d < n− d + 1. By Theorem 3.3, there

is an xy-path of length l with n− d + 1 ≤ l ≤ 2n − 1 in FQn.
Since the length of the shortest odd cycle in FQn is n + 1 by Lemma

3.2, FQn contains no xy-path of length l with d < l ≤ n − d if l and d
have different parity. In other words, the length l of the second shortest
path between x and y with distance d is certainly n− d + 1 if l and d have
different parity. It follows from Theorem 3.3 that there is an xy-path of
length l′ with d ≤ l′ ≤ n− d provided l′ and d have the same parity.

The corollary is proved.

A graph is called to be hamiltonian connected if there is a hamiltonian
path between any two vertices. It is easy to see that any bipartite graph
with at least three vertices is not hamiltonian connected. For this reason,
Simmons [9] introduces the concept of hamiltonian laceable for hamiltonian
bipartite graphs. A hamiltonian bipartite graph is hamiltonian laceable if
there is a hamiltonian path between any two vertices in different bipartite
sets. It is clear that if a bipartite graph is bipanconnected then it is certainly
hamiltonian laceable. It follows from Corollary 3.4 and Corollary 3.5 that
the following result is true clearly.

Corollary 3.6 FQn is hamiltonian laceable if n is odd, and hamilto-
nian connected if n is even.
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