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Based on a fourth-order compact difference formula for the spatial discretization, which is currently
proposed for the one-dimensional (1D) steady convection–diffusion problem, and the Crank–Nicolson
scheme for the time discretization, a rational high-order compact alternating direction implicit (ADI)
method is developed for solving two-dimensional (2D) unsteady convection–diffusion problems. The
method is unconditionally stable and second-order accurate in time and fourth-order accurate in space.
The resulting scheme in each ADI computation step corresponds to a tridiagonal matrix equation which
can be solved by the application of the 1D tridiagonal Thomas algorithm with a considerable saving
in computing time. Three examples supporting our theoretical analysis are numerically solved. The
present method not only shows higher accuracy and better phase and amplitude error properties than
the standard second-order Peaceman–Rachford ADI method in Peaceman and Rachford (1959) [4], the
fourth-order ADI method of Karaa and Zhang (2004) [5] and the fourth-order ADI method of Tian and Ge
(2007) [23], but also proves more effective than the fourth-order Padé ADI method of You (2006) [6], in
the aspect of computational cost. The method proposed for the diffusion–convection problems is easy to
implement and can also be used to solve pure diffusion or pure convection problems.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

This paper is devoted to the numerical computation the 2D un-
steady convection–diffusion equation

∂u

∂t
− a

∂2u

∂x2
− b

∂2u

∂ y2
+ p

∂u

∂x
+ q

∂u

∂ y
= 0, (x, y, t) ∈ Ω × (0, T ]

(1)

for unknown function u(x, y, t) in a rectangular domain Ω with
the Dirichlet boundary condition

u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ] (2)

and the initial condition

u(x, y,0) = ϕ(x, y), (x, y) ∈ Ω (3)

where ∂Ω is the boundary of Ω , (0, T ] is the time interval, ϕ and
g are given sufficiently smooth functions. In Eq. (1), the constant
coefficients a and b are nonnegative diffusion coefficients and p
and q are convective velocities in the x- and y-directions, respec-
tively.
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Eq. (1), which may be regarded as a simplified version of the
Navier–Stokes equations and plays an important role in computa-
tional fluid dynamics (CFD), can describe the convection and dif-
fusion of various physical quantities, e.g., mass, momentum and
energy, etc. Eq. (1) is also encountered in many fields of science
and engineering, such as heat transfer, fluid flows, the groundwater
pollution problems and chemical separation processes [1–3,14,15].
Therefore, developing accurate and stable difference methods for
approximating the convection–diffusion equations is of vital im-
portance.

A great deal of effort has been devoted to the development
of finite difference (FD) methods for the numerical approxima-
tion of transport problems involving convective and diffusive pro-
cesses [4–9,11,12,17–23]. It is well known that the standard al-
ternating direction implicit (ADI) method developed by Peaceman
and Rachford [4] has been popular due to its computational cost-
effectiveness. However, the Peaceman and Rachford ADI (PR-ADI)
scheme, which is second-order in space and often produces sig-
nificant dissipation and phase errors [5,6], is not ideally suited to
deal with the spatial discretization of convection-dominated trans-
port problems. To obtain accurate solution, it is desirable to use
higher order spatial methods.

In the last few years, higher order compact (HOC) schemes,
which feature high-order accuracy and smaller stencils, have been
utilized for spatial approximations. For 2D unsteady convection–
diffusion problems, Hirsh [7] and Ciment et al. [8] have discussed
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the compact FD schemes which are spatially fourth order and tem-
porally second order and conditionally stable. In [24], Noye and
Tan developed a third-order nine-point HOC implicit scheme for
the 2D unsteady problem with constant coefficients. The scheme
is spatially third-order accurate and temporally second-order accu-
rate, and has a large stability region. Based on the time-splitting
difference techniques, Dehghan [16] developed and discussed sev-
eral different computational LOD procedures for the 2D transport
equation. The LOD procedure is simple to implement and econom-
ical to use. In [13], based on the modified equivalent partial differ-
ential equation as described by Warming and Hyett [30], Dehghan
also developed several numerical techniques for the 3D unsteady
convection–diffusion equation. The proposed numerical schemes
solved their model quite satisfactory. Based on Spotz and Carey’s
work [25], Kalita et al. [19] derived an implicit HOC scheme for the
2D unsteady problem with variable convection coefficients. In [5],
Karra and Zhang developed a high-order compact ADI (HOC-ADI)
method for the solution of 2D unsteady convection diffusion prob-
lems. The method, in which the high-order accuracy of the HOC
scheme and computational efficiency of the ADI approach were
combined, is unconditionally stable and spatially order 4 and tem-
porally order 2. Based on an exponential fourth-order compact
difference formula for the spatial discretization and the Crank–
Nicolson scheme for the time discretization, Tian and Ge [23]
proposed a fourth-order compact ADI (EHOC-ADI) method for 2D
unsteady convection–diffusion problems. The method is uncondi-
tionally stable and of second-order in time and of fourth-order in
space. Recently, You [6] proposed a high-order Padé ADI (PDE-ADI)
method for unsteady convection–diffusion equations. The method
not only is second order accurate in temporal and fourth order ac-
curate in spatial and unconditionally stable, but also shows higher
accuracy and better phase and amplitude error characteristics than
the standard PR-ADI method in [4] and the HOC-ADI method in [5].
However, a disadvantage of the PDE-ADI scheme is the higher com-
putational cost due to the increased number of factorizations of
the governing equation.

The main advantage of the ADI methods is their high efficiency
for solving parabolic and hyperbolic initial–boundary value prob-
lems [4,5,10,12,23,26] and elliptic boundary value problems [22].
The efficiency of the ADI methods, as was shown in [26], is based
on reducing problems in several space variables to the collections
of one-dimensional problems and only requiring to solve tridiag-
onal matrices. In addition, many full implicit and semi-implicit
algorithms for the solution of the Navier–Stokes equations also uti-
lize the computational efficiency of ADI-type technique (e.g., [6]).
Therefore, the solutions of the Navier–Stokes equations will be one
of the most promising applications of the ADI methods with high-
order spatial accuracy [6].

In this paper, we first develop a new HOC scheme for the 1D
steady convection–diffusion equation. The scheme is measured us-
ing wave number analysis and shows its superiority over the exist-
ing HOC schemes [5,23]. A new HOC scheme-based ADI method is
then proposed for solving 2D unsteady convection–diffusion equa-
tions. The derivation of the present HOC-ADI method is based on
the proposed fourth-order compact difference operator for the spa-
tial approximation and an exponential difference operator for the
temporal approximation.

The rest of this paper is organized into three sections. In Sec-
tion 2, we outline the HOC-ADI scheme and issues related to it.
And, the linear of Fourier (or von Neumann) stability of the pro-
posed HOC-ADI method is also analyzed. We present some numer-
ical results and comparisons in Section 3. Concluding remarks are
included in Section 4.
2. The new HOC-ADI method

2.1. Development of the RHOC scheme for steady 1D case

To describe the new HOC-ADI method, we will start from the
elementary 1D steady convection diffusion equation

−auxx + pux = f (4)

where a is the nonnegative constant conductivity, p the constant
convective velocity, and f a sufficiently smooth function of x. Sup-
pose that the starting second-order finite difference scheme for
Eq. (4) with constant convection coefficient at a grid point xi is

−aδ2
x ui + pδxui = f i (5)

where δ2
x and δx are the second-order central difference operators

for the second and first derivatives. The truncation error of Eq. (5)
is given in

0 = −auxx + pux − f

= −aδ2
x ui + pδxui − f + (

aδ2
x ui − pδxui − auxx + pux

)
= −aδ2

x ui + pδxui − f + ah2
x

12
uxxxx − ph2

x

6
uxxx + O

(
h4

x

)
(6)

where hx is the mesh size. To obtain the fourth-order compact
scheme to (4), we need to apply second order approximations to
each of the derivative terms in (6). To this end, we differentiate
both sides of (4) with respect to x and obtain

uxxx = p

a
uxx − 1

a
fx (7)

Differentiating both sides of (7), we get

uxxxx = p

a
uxxx − 1

a
fxx (8)

Combining (7) and (8) yields

uxxxx =
(

p

a

)2

uxx − p

a2
fx − 1

a
fxx (9)

Substituting (7) and (9) into (6), and rearranging it, we have

−aδ2
x ui + pδxui − aPe2

x

12
uxx

= f − Pexhx

12
fx + h2

x

12
fxx + O

(
h4

x

)
(10)

where Pex is the cell Reynolds number in the x-direction and Pex =
phx/a.

Using the second-order central difference formulas to approxi-
mate uxx , fx and fxx in Eq. (10), we get

−a

(
1 + Pe2

x

12

)
δ2

x ui + pδxui =
(

1 − Pexhx

12
δx + h2

x

12
δ2

x

)
f i (11)

Eq. (11), which is called as the HOC scheme for Eq. (4), has
been derived by other authors [5] using the same approach. Ac-
tually, to derive the HOC-FD approximations for convection and
diffusion problems, this technique has been outlined by several au-
thors [21,25].

It is easily found that the HOC scheme (11) is derived by re-
placing the fourth- and third-order derivatives in (6) with the
second-order derivative. This shows that the HOC scheme (11) is
a dissipation-dominant scheme. However, as was shown in [6], the
HOC scheme (11) produces significantly enhanced dissipation at
high cell Reynolds numbers and becomes singular for pure convec-
tive problems (a = 0). Excessive dissipation degrades the numerical
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resolution. Fortunately, we have noticed that the converted term

of the truncation error ah2
x

12 uxxxx − ph2
x

6 uxxx leads to the flaws asso-
ciated with the HOC scheme (11), in which both the fourth- and
third-order derivatives are replaced with the second-order deriva-
tive.

In order to circumvent the flaws associated with the HOC
scheme (11), we only need to replace the fourth-order derivative
in the truncation error with the first-order derivative. Applying (4)
to Eq. (9) gets

uxxxx =
(

p

a

)3

ux − p2

a3
f − p

a2
fx − 1

a
fxx (12)

New, substituting (7) and (12) into (6), and rearranging it, we
obtain

−aδ2
x ui + pδxui − aPe2

x

6
uxx + pPe2

x

12
ux

=
(

1 + Pe2
x

12

)
f − Pexhx

12
fx + h2

x

12
fxx + O

(
h4

x

)
(13)

Using the second-order central difference formulas to approxi-
mate ux and uxx in Eq. (13), and retaining the leading truncation
errors, we have

−a

(
1 − Pe2

x

12

)
δ2

x ui + p

(
1 − Pe2

x

6

)
δxui

− aPe2
xh2

x

144
uxxxx + pPe2

xh2
x

36
uxxx

=
(

1 − Pe2
x

6

)
f − Pexhx

12
fx + h2

x

12
fxx + O

(
h4

x

)
(14)

Again, substituting (8) and (9) into (14) and approximating ux and
uxx by the second-order central difference formulas, and rearrang-
ing it, yield

−a

(
1 − Pe2

x

12
+ Pe4

x

144

)
δ2

x ui + p

(
1 − Pe2

x

6
+ Pe4

x

36

)
δxui

+ aPe4
xh2

x

1728
uxxxx − pPe4

xh2
x

216
uxxx

=
(

1 − Pe2
x

6
+ Pe4

x

36

)
f − Pexhx

12

(
1 − Pe2

x

4

)
fx

+ h2
x

12

(
1 − Pe2

x

12

)
fxx + O

(
h4

x

)
(15)

Applying Eq. (4) to (15), we get

−a

(
1 − Pe2

x

12
+ Pe4

x

144

)
δ2

x ui + p

(
1 − Pe2

x

6
+ Pe4

x

36

)
δxui

− 7aPe4
xh2

1728
uxxxx

=
(

1 − Pe2
x

6
+ Pe4

x

36

)
f − Pexhx

12

(
1 − Pe2

x

4

)
fx

+ h2
x

12

(
1 − Pe2

x

12
+ Pe4

x

18

)
fxx + O

(
h4

x

)
(16)

Approximating fx and fxx in Eq. (16) by the second-order cen-
tral difference formulas and neglecting the terms of fourth order,
a new fourth-order compact scheme for the steady convective dif-
fusion problem (4) is given by(−αδ2

x + pδx
)
ui = (

1 + α1δx + α2δ
2
x

)
f i (17)

in which
α = a

(
1 − Pe2

x
12 + Pe4

x
144

1 − Pe2
x

6 + Pe4
x

36

)
, α1 =

{ a−α
p , p �= 0

0, p = 0

α2 =
⎧⎨
⎩

a(a−α)

p2 + h2
x

6 , p �= 0

h2
x

12 , p = 0
(18)

The truncation error analysis shows that Eq. (17) with (18) is
a fourth-order scheme for the convection–diffusion equation (4).
The scheme (17) may be named as a high-order compact rational
(RHOC) FD scheme; i.e., the influencing coefficients of the FD for-
mulation are connected to the rational functions of the coefficients
of the differential operator and mesh size. It is interesting to note
that the RHOC scheme (17) for the model equation (4) becomes
actually the standard fourth-order Padé scheme for pure convec-
tive problems (a = 0) or for pure diffusive problems (p = 0). In
addition, the good resolution properties of the RHOC scheme will
also be shown in Section 2.2.

2.2. Fourier analysis of the difference error

The classical truncation error analysis does not represent all the
characteristics of a numerical discretization scheme. The Fourier
analysis of numerical schemes is a useful tool (e.g., Refs. [6,27])
in which the resolution of the finite difference operator with its
analytical counterpart can be compared. The Fourier analysis of
a scheme, which allows one to assess how different frequency
components of a harmonic function in a periodic domain are
represented by the scheme, can provide additional information
about its resolution properties. Consider the trial function, u = eikx

(i = √−1) on a periodic domain. By application of this trial func-
tion to the differential equation (4), the exact characteristic is ob-
tained as follows:

λExact = ak2 + ipk (19)

where k is the wave number. Replacing the difference operators
in the approximation (16) with the corresponding modified wave
numbers, the characteristic function of the RHOC scheme is given
by

λRHOC = αk′′ + ipk′

(1 − α2k′′) + iα1k′ (20)

in which k′ = sin khx
hx

and k′′ = 2−2 cos khx

h2
x

.

For comparison, the Fourier analysis is also performed for the
fourth-order Padé (PDE) [6] scheme, the fourth-order compact
(HOC) [5] scheme, the standard second-order central difference
(CD) scheme and the exponential fourth-order compact (EHOC)
[23] scheme and the results are compared with (19) along with
the RHOC scheme. The characteristic functions for the HOC, the
PDE and the CD schemes, given by [6], are

λHOC = α̂k′′ + ipk′

(1 − α̂2k′′) + iα̂1k′ (21)

where α̂ = a(1 + Pe2
x

12 ), α̂1 = a−α̂
p and α̂2 = a(a−α̂)

p2 + h2
x

6 .

λPDE = ak̂′′ + ipk̂′ (22)

where k̂′ = 3 sin khx
hx(2+cos khx)

and k̂′′ = 12(1−cos khx)

h2
x (5+cos khx)

, and

λCD = ak′′ + ipk′ (23)

respectively. k′ and k′′ in above expressions are the same as the
ones given in (20).
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Fig. 1. The nondimensional real part of λ for four numerical schemes at different cell Reynolds numbers: (a) Pex = 0.1; (b) Pex = 10; (c) Pex = 100; (d) Pex = 1000. Horizontal
coordinate represents khx .
The characteristic function of the EHOC scheme in [23] is

λEHOC = ᾱk′′ + ipk′

(1 − ᾱ2k′′) + iᾱ1k′ (24)

where

ᾱ =
{

a Pex
2 coth

( Pex
2

)
, p �= 0,

a, p = 0,
ᾱ1 =

{ a−α
p , p �= 0

0, p = 0

and

ᾱ2 =
⎧⎨
⎩

a(a−α)

p2 + h2
x

6 , p �= 0

h2
x

12 , p = 0

The nondimensional real and imaginary parts Re(λ)h2
x/a and

Im(λ)hx/p of λ as the functions of khx are shown in Figs. 1
and 2 with their exact counterparts (19) at four different cell
Reynolds numbers Pex = 0.1, 10, 100 and 1000, respectively. For
the case of Pex = 0.1, shown in Fig. 1(a), the HOC, the EHOC, the
PDE and the RHOC schemes are almost indistinguishably show-
ing identical dissipation errors. In contrast to the three fourth-
order compact schemes, the CD scheme has much larger dissipa-
tion error (Re(λ)h2

x/a). Figs. 1(b), (c) and (d) show that when the
cell Reynolds number is increased to 10, 100 and 1000, for the
convection-dominated cases, the HOC and the EHOC schemes have
dramatically increased dissipation errors, while the RHOC scheme
shows better resolution characteristic, and the PDE and the CD
schemes do not alter their nondissipative properties. The dispersive
errors for the five schemes are shown in Fig. 2. At the cell Reynolds
number of 0.1, the imaginary parts Im(λ)hx/p for the HOC, the
EHOC and the RHOC schemes are basically the same, while the
PDE scheme shows much smaller dispersive error than the HOC,
the EHOC and the RHOC schemes at the higher wavenumbers.
When the cell Reynolds number is 10, Im(λ)hx/p of the HOC
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Fig. 2. Nondimensional imaginary parts of λ for four numerical schemes at different cell Reynolds numbers: (a) Pex = 0.1; (b) Pex = 10; (c) Pex = 100; (d) Pex = 1000.
Horizontal coordinate represents khx .
scheme produces overshoot, the EHOC scheme depicts much less
dispersive error than the RHOC and the PDE schemes. If the cell
Reynolds number is increased to 100 and 1000, Im(λ)hx/p of the
HOC scheme produces significant overshoot, while the RHOC and
the PDE schemes give better resolutions than the other schemes
and are almost indistinguishable. Figs. 1(c) and (d) also show that,
at Pex = 100 and 1000, although Im(λ)hx/p of the EHOC scheme
produces overshoot, the EHOC scheme is far better in resolution
than the HOC, the CD schemes and is almost the same as the res-
olution of the RHOC and the PDE schemes.

2.3. The RHOC-ADI scheme for the 2D unsteady case

The RHOC scheme (17) discussed in the previous section shows
a good wave resolution property. In this section, we will utilize
(17) to establish a new high-order ADI scheme for the 2D unsteady
convection–diffusion equation (1).
Eq. (17) can be rewritten symbolically as(
1 + α1δx + α2δ

2
x

)−1(−αδ2
x + pδx

)
ui = f i (25)

where the operator (1 + α1δx + α2δ
2
x )−1 has symbolic meaning

only.
In order to derive HOC schemes for numerical solution of trans-

port problems involving convective and diffusive processes, the
symbolic HOC operator approximation technique has been used
by several authors [5,7,20,23,28]. An analogous symbolic RHOC ap-
proximation operator can also be given for the variable y.

For convenience, several FD operators are defined as follows:

Lx = 1 + α1δx + α2δ
2
x , Ax = −αδ2

x + pδx

L y = 1 + β1δy + β2δ
2
y, A y = −βδ2

y + qδy

in which δy and δ2
y are the second-order central difference opera-

tors for the first and second derivatives in the y-direction, and
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β = b

(
1 − Pe2

y
12 + Pe4

y
144

1 − Pe2
y

6 + Pe4
y

36

)
, β1 =

{
b−β

q , q �= 0

0, q = 0

β2 =

⎧⎪⎨
⎪⎩

b(b−β)

q2 + h2
y

6 , q �= 0

h2
y

12 , q = 0

(26)

where Pey = qhy/b, while hy is the mesh size in the y-direction.
Applying the rational fourth-order FD operators L−1

x Ax and
L−1

y A y to the 2D unsteady convection diffusion equation in (1)
yields the following rational fourth-order compact approximation:(

∂un

∂t

)
i j

= −(
L−1

x Ax + L−1
y A y

)
un

ij + O
(
h4) (27)

in which O (h4) represents the O (h4
x) + O (h4

y) term, i j the spatial
position of (xi, y j) and un the approximate solution at time level
tn = n	t , n the time level, and 	t = tn+1 − tn the temporal step
size.

Eq. (27) is a fourth-order semi-discrete formula for the 2D
unsteady convection–diffusion problem (1). This semi-discrete ap-
proximation approach has been used in [5,23]. In the following,
un will be written in short for un

ij if there is no confusion about
the notations. By the application of the forward Taylor series de-
velopment, we have

un+1 =
(

1 + 	t
∂

∂t
+ 1

2!	t2 ∂2

∂t2
+ 1

3!	t3 ∂3

∂t3
+ · · ·

)
un

= exp

(
	t

∂

∂t

)
un (28)

whose equivalent equation is

exp

(
−	t

2

∂

∂t

)
un+1 = exp

(
	t

2

∂

∂t

)
un (29)

When applied to the right-hand side of (29) with (27), we obtain
a rational fourth-order FD approximation of Eq. (1)

exp

(
	t

2

(
L−1

x Ax + L−1
y A y

))
un+1

= exp

(
−	t

2

(
L−1

x Ax + L−1
y A y

))
un (30)

Noting that the commutativity of the difference operators Ax , Lx ,
A y and L y gives

exp

(
	t

2
L−1

x Ax

)
exp

(
	t

2
L−1

y A y

)
un+1

= exp

(−	t

2
L−1

x Ax

)
exp

(−	t

2
L−1

y A y

)
un (31)

By using the Taylor expansions, we have(
1 + 	t

2
L−1

x Ax

)(
1 + 	t

2
L−1

y A y

)
un+1

=
(

1 − 	t

2
L−1

x Ax

)(
1 − 	t

2
L−1

y A y

)
un + O

(
	t3)

+ O
(
	th4) (32)

Applying to both sides of Eq. (32) with the difference operator
LxL y and neglecting O (	t3) + O (	th4), we obtain(

Lx + 	t

2
Ax

)(
L y + 	t

2
A y

)
un+1

=
(

Lx − 	t
Ax

)(
L y − 	t

A y

)
un (33)
2 2
The resulting approximation (33) is temporally second order and
spatially fourth order. Introducing an intermediate variable u∗ ,
Eq. (33) can be solved in two steps as(

Lx + 	t

2
Ax

)
u∗ =

(
Lx − 	t

2
Ax

)(
L y − 	t

2
A y

)
un (34a)(

L y + 	t

2
A y

)
un+1 = u∗ (34b)

The solutions to the resulting RHOC-ADI schemes (34a) and (34b)
can be computed by applying the one-dimensional tridiagonal
Thomas algorithm with a considerable saving in computing time.
The intermediate variable values of u∗ at the boundary in first ADI
scheme above is explicitly given in terms of the central difference
of gn+1 with respect to y from Eq. (2):

u∗ =
(

L y + 	t

2
A y

)
gn+1 (35)

2.4. Stability analysis

In this section, we study the stability of the FD scheme (33)
using the von Neumann method for linear stability analysis. We
assume that the numerical solution can be expressed by virtue of
a Fourier series, whose typical term is

un
ij = ηn exp

{
i(kxxi + ky y j)

}
(36)

where i = √−1, ηn is the amplitude at time level n, xi = ihx
and y j = jhy , and the wavenumbers kx and ky in the x- and y-
directions, respectively. Exploiting the discrete Fourier mode (36)
in both sides of Eq. (33), the amplification factor G(θx, θy) =
ηn+1/ηn is found to be∣∣G(θx, θy)

∣∣ = ∣∣g(θx)
∣∣∣∣g(θy)

∣∣
in which θx = kxhx and θy = kyhy , and g(θy) is given by

g(θy) = (γ1 − γ2) + i(γ3 − γ4)

(γ1 + γ2) + i(γ3 + γ4)
(37)

with

γ1 = 1 − 4β2

h2
y

sin2 θy

2
, γ2 = 2β	t

h2
y

sin2 θy

2

γ3 = β1

hy
sin θy, γ4 = q	t

2hy
sin θy

and the other similar term g(θx) can be obtained by replacing y
with x, and q, β , β1 and β2 with p, α, α1 and α2, respectively in
the above expression.

For stability it is sufficient that |g(θx)|2 � 1 and |g(θy)|2 � 1. It
is easy to verify that γ1γ2 + γ3γ4 � 0 as a necessary and sufficient
condition for |g(θy)|2 � 1. Simple calculation of γ1γ2 + γ3γ4 gives
that

γ1γ2 + γ3γ4

= 2β	t

h2
y

(
1 − 4β2

h2
y

sin2 θy

2

)
sin2 θy

2
+ qβ1	t

2h2
y

sin2 θy

= 2β	t

h2
y

(
1 − 4β2

h2
y

sin2 θy

2

)
sin2 θy

2

+ 2qβ1	t

h2
y

(
1 − sin2 θy

2

)
sin2 θy

2
(38)

From Eq. (26), it is easy to find that β = β1 = 0 if b = 0. Substi-
tuting β = β1 = 0 into Eq. (38), we get γ1γ2 + γ3γ4 = 0 for all
θy ∈ [−π,π ].
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Suppose now that b > 0, we will verify that γ1γ2 + γ3γ4 � 0.
First assume that q = 0, then

β = b, β1 = 0, β2 = h2
y

12
(39)

Substituting (39) into (38), we have

γ1γ2 + γ3γ4 = 2b	t

h2
y

(
1 − 1

3
sin2 θy

2

)
sin2 θy

2
(40)

Notice that b > 0 and 0 � sin2 θy
2 � 1, we conclude that γ1γ2 +

γ3γ4 � 0 for all θy ∈ [−π,π ]. Assuming q �= 0, from Eq. (38), we
obtain

γ1γ2 + γ3γ4

= 2	t

h2
y

[
β

(
1 − 4β2

h2
y

)
sin2 θy

2
+ b

(
1 − sin2 θy

2

)]
sin2 θy

2

= 2	t

h2
y

{
β

[
1

3
− 4b(b − β)

q2h2
y

]
sin2 θy

2
+ b

(
1 − sin2 θy

2

)}

× sin2 θy

2
(41)

Given that 1 − z2

12 + z4

144 = ( z2

12 − 1
2 )2 + 3

4 > 0 and 1 − z2

6 + z4

36 =
( z2

6 − 1
2 )2 + 3

4 > 0 for all real z and b > 0, we have

β = b

(
1 − Pe2

y
12 + Pe4

y
144

1 − Pe2
y

6 + Pe4
y

36

)
> 0 (42)

Note that

1

3
− 4b(b − β)

q2h2
y

= 1

3
−

(
− 1

3 + Pe2
y

12

1 − Pe2
y

6 + Pe4
y

36

)

=
1
3

( Pe2
y

6 − 5
4

)2 + 7
48( Pe2

y
6 − 1

2

)2 + 3
4

(43)

and hence

1

3
− 4b(b − β)

q2h2
y

> 0 (44)

Since 0 � sin2 θy
2 � 1, the following inequality holds by means of

(42) and (44):

β

[
1

3
− 4b(b − β)

q2h2
y

]
sin2 θy

2
+ b

(
1 − sin2 θy

2

)
> 0 (45)

Combining (41) and (45) yields

γ1γ2 + γ3γ4

= 2	t

h2
y

{
β

[
1

3
− 4b(b − β)

q2h2
y

]
sin2 θy

2
+ b

(
1 − sin2 θy

2

)}

× sin2 θy

2
� 0 (46)

which follows that |g(θy)|2 � 1 for all θy ∈ [−π,π ]. Similarly, we
can find that |g(θx)|2 � 1. Thus the presented method, when ap-
plied to the 2D unsteady linear convection diffusion equation, is
unconditionally stable.
Table 1
L2 norm errors and the convergence rate with 	t = h2, T = 0.25.

Grid PR-ADI method RHOC-ADI method

L2 norm error Rate L2 norm error Rate

11 × 11 1.42176×10−4 – 1.45398×10−5 –
21 × 21 3.53994×10−5 2.006 8.47123×10−7 4.101
41 × 41 8.94131×10−6 1.985 5.26653×10−8 4.008

Table 2
L2 norm errors at hx = hy = 0.05, T = 0.25 with different time steps.

	t PR-ADI method RHOC-ADI method

L2 norm error L2 norm error Rate

0.005 3.14549×10−5 3.38630×10−6 –
0.0025 3.40370×10−5 8.14478×10−7 2.056
0.00125 3.46825×10−5 1.71440×10−7 2.248

3. Numerical experiments

In this section, we present the numerical results of the pro-
posed rational higher order compact ADI (RHOC-ADI) method on
three test problems possessing exact solution. To illustrate the va-
lidity and effectiveness, we compare with the numerical results of
some other available methods involving the Karaa and Zhang ADI
(HOC-ADI) scheme [5], the Tian and Ge ADI (EHOC-ADI) scheme
[23], the Peaceman–Rachford ADI (PR-ADI) scheme [4] and the
Padé ADI (PDE-ADI) scheme [6]. The ADI methods used were per-
formed by repeatedly solving a series of triangular linear systems.
We conduct our computations using double precision arithmetic
on a SONY PCG-V505MCP machine.

3.1. Problem 1

Consider Eq. (1) with the coefficients a = b = 1 and p = q = 0
in the unit square domain 0 � x, y � 1. The equation is a pure
diffusion equation, whose analytical solution is given by

u(x, y, t) = e−2π2t sin(πx) sin(π y) (47)

The boundary and initial conditions can be taken easily from (47).
This test problem was used in [5,23].

The numerical results obtained for Problem 1 using the RHOC-
ADI scheme and the PR-ADI scheme [4] under a uniform grids
(h = hx = hy) with different mesh sizes and their accuracies com-
pared under the L2 norm error of the numerical solution with
respect to the analytical solution are presented in Tables 1 and 2.
We see that the RHOC-ADI method proposed in this paper has
more accurate results in comparison with the PR-ADI method. In
Table 1, 	t = h2 and the final time T = 0.25 are chosen for the
verifications of spatial fourth-order accuracy and temporal second-
order accuracy. The use of the ln2(err1/err2) estimates the rate of
convergence, where err1 and err2 are L2 norm errors with the grid
sizes h and h/2, respectively. These values are approximately 4 and
2 for the RHOC-ADI method and the PR-ADI method respectively.
L2 norm errors at h = 1/20 and t = 0.25 with various time steps
are depicted in Table 2 for different schemes. Table 2 shows that
the results of the RHOC-ADI method become more and more accu-
rate with the reduction in time step, while the ones of the PR-ADI
method are almost invariable. Also Tables 1 and 2 show the supe-
riority of the RHOC-ADI scheme over the PR-ADI scheme. It should
be pointed out that, for pure diffusion (p = q = 0) problems, the
HOC-ADI scheme [5], the EHOC-ADI scheme [23] and the RHOC-
ADI scheme are the same.
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Fig. 3. Contour lines of the pulse in the sub-region 1.2 � x, y � 1.8 at the final time T = 1.0: (a) exact and the present ADI, (b) exact and the PDE ADI, (c) exact and the
EHOC ADI, (d) exact and the HOC ADI, (e) exact and the PR ADI, and (f) exact [Pe = 2.0, 	t = 2.5 × 10−3]. Dash–dot contour lines in (a)–(f) correspond to exact solution.
3.2. Problem 2

Consider Eq. (1) in the square domain 0 � x, y � 2, which is a
special problem with an analytical solution given, as in [9], by

u(x, y, t)

= 1
exp

[
− (x − pt − 0.5)2

− (y − qt − 0.5)2 ]
(48)
4t + 1 a(4t + 1) b(4t + 1)
The boundary and initial conditions can be taken easily from (48).

In this study, four cell Reynolds numbers Pe = 2, Pe = 20, Pe =
200 and Pe = 2000 corresponding to the convective velocities p =
q = 1, p = q = 10, p = q = 100 and p = q = 1000, respectively,

are considered. The values a = b = 0.01 of viscosity coefficient are

kept unchanged. We choose times step sizes of 	t = 2.5 × 10−3,

2.5×10−4, 2.5×10−5 and 2.5×10−6 for Pe = 2, Pe = 20, Pe = 200
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Fig. 4. Contour lines of the pulse in the sub-region 1.2 � x, y � 1.8 at the final time T = 0.1: (a) exact and the present ADI, (b) exact and the PDE ADI, (c) exact and the
EHOC ADI, (d) exact and the HOC ADI, (e) exact and the PR ADI, and (f) exact [Pe = 20, 	t = 2.5 × 10−4]. Dash–dot contour lines in (a)–(f) correspond to exact solution.
and Pe = 2000, respectively. The space step sizes of hx = hy = 0.02
are used to compare the accuracy of the numerical solution.

Figs. 3–6 contain contour curves for the analytical and com-
puted pulses in the sub-region 1.2 � x, y � 1.8 for each test car-
ried out. For Pe = 2, the solutions obtained from the RHOC-ADI
scheme (Fig. 3(a)), the PDE-ADI scheme (Fig. 3(b)) and the EHOC-
ADI scheme (Fig. 3(c)) as well as the HOC-ADI scheme (Fig. 3(d))
capture very well the moving pulse, yielding pulses centered at
(1.5,1.5) and almost indistinguishable from the exact one. How-
ever, the PR-ADI scheme produces a pulse distorted in both the x-
and y-directions (Fig. 3(e)). As is observed in Figs. 1(a) and 2(a),
this is due to the fact the second-order error terms of method is
related to the wave numbers in both directions. In the high cell
Reynolds number case (Pe = 20, 200 and 2000), the superiority
of the RHOC-ADI and the PDE-ADI [6] schemes are more clearly
exhibited. The present RHOC-ADI and the PDE-ADI [6] schemes



658 Z.F. Tian / Computer Physics Communications 182 (2011) 649–662
Fig. 5. Contour lines of the pulse in the sub-region 1.2 � x, y � 1.8 at the final time T = 0.01: (a) exact and the present ADI, (b) exact and the PDE ADI, (c) exact and the
EHOC ADI, (d) exact and the HOC ADI, (e) exact and the PR ADI, and (f) exact [Pe = 200, 	t = 2.5 × 10−5]. Dash–dot contour lines in (a)–(f) correspond to exact solution.
produce the solutions in good agreement with the analytical so-
lution in terms of amplitude and phase (see Figs. 4–6(a), (b)).
However, noticeable dissipated solutions in the HOC-ADI and the
PR-ADI schemes, which are also highly distorted and oscillations
are clearly observed from Figs. 4–6(d), (e). In particular, as pointed
out in [6], the enhanced numerical dissipation makes the HOC-
ADI scheme unattractive for direct numerical simulations (DNS) or
large eddy simulations (LES) of turbulent flows. From Figs. 5(d), (e)
and 6(d), (e), we note that the solutions given with the PR-ADI
and the HOC-ADI schemes produce the distortions and oscillations
in opposite-direction. This feature can be explained by the charac-
teristics of the schemes used in spatial directions (see Figs. 1(c), (d)
and 2(c), (d)).

Figs. 4(c), 5(c) and 6(c) give the contour curves computed us-
ing the EHOC-ADI scheme [23] at Pe = 20, Pe = 200 and Pe = 2000,
respectively. As expected, the EHOC-ADI solution is nonoscillatory



Z.F. Tian / Computer Physics Communications 182 (2011) 649–662 659
Fig. 6. Contour lines of the pulse in the sub-region 1.2 � x, y � 1.8 at the final time T = 0.001: (a) exact and the present ADI, (b) exact and the PDE ADI, (c) exact and the
EHOC ADI, (d) exact and the HOC ADI, (e) exact and the PR ADI, and (f) exact [Pe = 2000, 	t = 2.5 × 10−6]. Dash–dot contour lines in (a)–(f) correspond to exact solution.
for all the chosen Pe, but dissipated solutions at (1.5,1.5) sur-
roundings may been clearly observed from Figs. 4(c), 5(c) and
6(c).

In Table 3, the L∞ norms errors, the L2 norms errors and the
CPU time used for Pe = 20, Pe = 200 and Pe = 2000, using the PR-
ADI scheme [4], the HOC-ADI scheme [5], the EHOC-ADI scheme
[23], the PDE-ADI scheme [6] and the RHOC-ADI scheme respec-
tively, are given. The errors of the PDE-ADI scheme and the RHOC-
ADI method are almost identical and are distinctly lower than
those of other ADI methods as can be seen from Table 3. We also
notice that the RHOC-ADI, the HOC-ADI, the EHOC-ADI and the
PR-ADI methods exhibit less CPU time than that of the PDE-ADI
method from Table 3. The execution CPU time of the RHOC-ADI
method is more than 2 times shorter than that of the PDE-ADI
method. This clearly shows that the RHOC-ADI method is the most
effective in view of accuracy and time consumption.
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3.3. Problem 3

Consider a pure convective equation (p = q = 1 and a = b = 0)
with the periodic boundary condition in the square domain 0 � x,
y � 2. The initial condition is given by

u(x, y) = sin
(
π(x + y)

)
(49)

This problem, which was used as a test one in [29], is a periodic
flow of sin-surface. Computations, using the RHOC-ADI scheme and
the PR-ADI scheme [4], are carried out until the final time T = 1.0
on uniform grids of sizes 41 × 41 with a time step 	t = 0.01. The
evolution of solution under uniform grids h = hx = hy = 0.05, is

Table 3
Errors and CPU times of four ADI methods with hx = hy = 0.02, Problem 2.

Method L∞ norm error L2 norm error CPU time (s)

(a) t = 0.1 for Pe = 20 with 	t = 2.5 × 10−4

PR-ADI [4] 1.596×10−1 1.108×10−2 2.00
HOC-ADI [5] 5.998×10−2 3.048×10−3 2.11
EHOC-ADI [23] 2.491×10−2 1.200×10−3 2.13
PDE-ADI [6] 2.936×10−3 1.751×10−4 4.47
RHOC-ADI 3.128×10−3 1.748×10−4 2.12

(b) t = 0.01 for Pe = 200 with 	t = 2.5 × 10−5

PR-ADI [4] 2.827×10−1 1.898×10−2 2.00
HOC-ADI [5] 1.691×10−1 9.809×10−3 2.11
EHOC-ADI [23] 5.802×10−2 2.456×10−3 2.13
PDE-ADI [6] 7.514×10−3 3.752×10−4 4.47
RHOC-ADI 7.462×10−3 3.751×10−4 2.12

(c) t = 0.001 for Pe = 2000 with 	t = 2.5 × 10−6

PR-ADI [4] 3.017×10−1 2.018×10−2 2.00
HOC-ADI [5] 1.884×10−1 1.094×10−2 2.11
EHOC-ADI [23] 6.377×10−2 2.662×10−3 2.13
PDE-ADI [6] 8.400×10−3 4.114×10−4 4.47
RHOC-ADI 8.394×10−3 4.113×10−4 2.12
shown in Figs. 7 and 8. Note that the approximation solution with
the RHOC-ADI method is more accurate than that with the PR-ADI
method. It is shown that, for pure convective problems, the RHOC-
ADI scheme can resolve accurately the evolution of solution, while
the PR-ADI scheme gives only very poor results.

In Table 4, we choose 	t = h2 and the final time T = 1 for the
verifications of fourth-order accuracy in space and second-order
accuracy in time. The rate of convergence is estimated by using
the ln2(err1/err2), where err1 and err2 denote L∞ and L2 norm
errors with the grid sizes h and h/2, respectively. These values are
approximately 4 for the RHOC-ADI method in space. Table 5 de-
picts, at h = 1/40 and the final time T = 0.5, L∞ norm errors and
L2 norm errors with various time steps for the RHOC-ADI scheme.
The results of Table 5 clearly indicate that the RHOC-ADI method
achieve the expected, second-order accuracy in time. It is worth

Table 4
Errors and the convergence rate with 	t = h2, T = 1, using RHOC-ADI method,
Problem 3.

Grid L∞ norm error Rate L2 norm error Rate

11 × 11 4.08598×10−2 – 9.55999×10−3 –
21 × 21 3.12399×10−3 3.709 6.67135×10−4 3.841
41 × 41 2.07656×10−4 3.912 4.32371×10−5 3.948
81 × 81 1.32346×10−5 3.972 2.74398×10−6 3.978

Table 5
Errors and the convergence rate at hx = hy = 0.05, T = 0.5 with different time steps
using RHOC-ADI method, Problem 3.

	t L∞ norm error Rate L2 norm error Rate

0.08 6.02674×10−2 – 1.17485×10−2 –
0.04 1.52228×10−2 1.983 2.97219×10−3 1.985
0.02 3.98562×10−3 1.933 7.85990×10−4 1.919
0.01 1.02742×10−3 1.956 2.02641×10−4 1.956
Fig. 7. Periodic flow of the sin-surface. Solution, obtained using the RHOC-ADI method at different times: (a) initial condition; (b) t = 0.4; (c) t = 0.8; and (d) t = 1.0.
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Fig. 8. Periodic flow of the sin-surface. Solution, obtained using the PR-ADI method at different times: (a) initial condition; (b) t = 0.4; (c) t = 0.8; and (d) t = 1.0.
noticing that, for the pure convection (a = 0) problems, the HOC-
ADI scheme cannot be used. In this case, as was shown in [6], it
becomes singular.

4. Conclusion and remarks

In the present article, a rational high-order compact alternating
direction implicit (RHOC-ADI) method has been described for the
numerical solution of 2D unsteady convection–diffusion problems.
The method is temporally second order and spatially fourth order
and only involves 3-point stencil for each 1D operator which al-
lows a considerable saving in computing time. It is shown through
a discrete Fourier analysis that the proposed RHOC-ADI scheme
is unconditionally stable. Numerical studies are carried out to
demonstrate its high accuracy and efficiency and to show its supe-
riority over the PDE-ADI method, the HOC-ADI method, the EHOC-
ADI method and the classical PR-ADI method, in the aspects of
accuracy and/or computational cost.
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