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Abstract The biodegradation of heptadecane in five

sand columns was modeled using a multiplicative

Monod approach. Each column contained 1.0 kg of

sand and 2 g of heptadecane, and was supplied with an

artificial seawater solution containing nutrients at a

flow rate that resulted in unsaturated flow through the

column. All nutrients were provided in excess with

the exception of nitrate whose influent concentration

was 0.1, 0.5, 1.0, 2.5, or 5.0 mg N/L. The experiment

was run around 912 h until no measurable oxygen

consumption or CO2 production was observed. The

residual mass of heptadecane was measured at the end

of the experiments and the biodegradation was mon-

itored based on oxygen consumption and CO2 pro-

duction. Biodegradation kinetic parameters were

estimated by fitting the model to experimental data

of oxygen, CO2, and residual mass of heptadecane

obtained from the two columns having influent

nitrate–N concentration of 0.5 and 2.5 mg/L. Noting

that the oxygen and CO2 measurements leveled off at

around 450 h, we fitted the model to these data for that

range. The estimated parameters fell in within the

range reported in the literature. In particular, the half-

saturation constant for nitrate utilization, KN, was

estimated to be 0.45 mg N/L, and the yield coefficient

was found to be 0.15 mg biomass/mg heptadecane.

Using these values, the rest of experimental data from

the five columns was predicted, and the model agreed

with the observations. There were some consistent

discrepancies at large times between the model

simulation and observed data in the cases with higher

nitrate concentration. One plausible explanation for

these differences could be limitation of biodegradation

by reduction of the heptadecane–water interfacial area

in these columns while the model uses a constant

interfacial area.
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Abbreviations

l Gross growth of the active biomass (day-1)

lmax Maximum growth rate (day-1)

qsand True density of the sand (mg/cm3)

r2 Squared error of estimation

e Constant fraction of the decayed biomass

xij Weights

u Shape factor

As Specific surface area of sand (cm2/g)

C CO2 production

ddvg Average particle size (mm)
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F Objective function

H Hessian matrix

kd Endogenous biomass decay rate (day-1)

KS Half-saturation concentration (mg/cm2)

KN Half-saturation concentration for nitrogen

consumption (mg N/L of pore water)

n Number of observations

N Nitrate concentration (mg N/L of pore water)

NK Number of measurements of dependent

variable

O2 Oxygen

p Number of estimated parameters

S Substrate

Sarea Surface-area normalized concentration of

heptadecane (mg/cm2)

Smass Concentration of heptadecane

(mg/kg of dry sand)

X Active biomass concentration (mg/cm2)

Xi Inert biomass concentration (mg/cm2)

X0 Initial biomass concentration (mg/cm2)

YCS Stoichiometric coefficient for CO2 production

from substrate (mg C/mg S)

YCX Stoichiometric coefficient for CO2 produced

during complete mineralization of biomass

(mg C/mg X)

YOS Stoichiometric coefficient for oxygen

consumption based on complete

mineralization of substrate (mg of O2/mg of S)

YOX Stoichiometric coefficient for oxygen

consumption during the complete

mineralization of biomass (mg of O2/mg of X)

YX Biomass yield coefficient for growth on

substrate (mg X/mg S)

uS Simulated result for the dependent variable

uO Observed result for the dependent variable

Vx Covariance matrix

Introduction

Contamination of beaches by accidental oil spills

constitutes immediate and long lasting problems

because the toxic oil components can persist for

relatively long time in the subsurface of shorelines

(Taylor and Reimer 2008; Esler 2010; Guo et al. 2010;

Li and Boufadel 2010; Xia et al. 2010; Atlas and

Hazen, 2011). One available alternative for cleanup

is bioremediation, which involves the addition of

nutrients (such as nitrate and phosphate) to a contam-

inated environment to stimulate the growth of indig-

enous microbes and subsequent biodegradation of the

hydrocarbons. Successful bioremediation is achieved

by maximizing the contact time between the hydro-

carbon and a sufficiently high concentration of nutri-

ents. Previous research (Venosa et al., 1996; Boufadel

et al. 1999; Du et al. 1999) has shown that 2–10 mg

nitrate–N/L is sufficient to support maximum hydro-

carbon biodegradation rates in open systems. Such

concentrations are not commonly found in the envi-

ronment (Venosa et al. 1996; Boufadel et al. 2010;

Boufadel et al. 2011), and thus the addition of nutrient

is required for optimal hydrocarbon biodegradation.

Oil-contaminated shorelines are open environ-

ments, where dissolved nutrients that are added to

the beach surface to enhance oil biodegradation are

washed out of the bioremediation zone by the action of

tide and waves (Wrenn et al. 1997; Boufadel et al.

1998). Therefore, successful bioremediation of coastal

oil spills is more dependent on the kinetics of nutrient

consumption than on its stoichiometry, but guidance

on oil-spill bioremediation is often given in terms of

the total mass of nutrients required to remediate the oil

that is present (Gibbs 1975; Floodgate 1979; Bragg

et al. 1994). More useful guidance could be provided

to spill responders in the form of an effective

numerical model based on the kinetics of nutrient

consumption rather than stoichiometry. Such a model

should demonstrate the relationship between the rate

of biodegradation and nutrient addition and could be

used to design successful bioremediation projects.

Several kinetics-based models—ranging from those

where the kinetics are represented as first-order decay

(Venosa et al. 1996; Venosa et al. 2010) to more

complicated models where Monod expressions are

used (Nicol et al. 1994; Essaid et al. 1995; Schirmer

et al. 2000; Sarioglu and Copty 2008)—have been

developed to describe the rate of hydrocarbon bio-

degradation. Because the latter approach is more

general and can reduce to first-order when the

hydrocarbon concentration is small, it was used in

this study. In addition, these previous models were

extended herein to include the effects of nutrient

concentration and to predict the rates of the coupled

processes of oxygen consumption and carbon dioxide

production. Our model was validated using micro-

cosm studies of heptadecane (C17H36) biodegradation

conducted by Boufadel et al. (1999).
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Because model validation relies on data from a

previously published study, the methods and results

of that study are described and are followed by a

description of the kinetic model of hydrocarbon

biodegradation in porous media. The inverse problem

(i.e., parameter estimation from experimental data) is

then described. Eight kinetic parameters and initial

biomass concentration were estimated by fitting the

model to experimental data, which consisted of

oxygen, CO2, and the mass of heptadecane remaining

at the end of the experiments. The model was

evaluated by comparing the estimated kinetic param-

eters to values reported in the literature, and the

robustness of the model was assessed by error

quantification.

Biodegradation in experimental microcosms

Heptadecane biodegradation rate was studied in

continuous-flow microcosm reactors that consisted

of glass tubes 7.6 cm (ID) by 38.7 cm long packed

with 1.0 kg of sand. The sand used in this study has a

very narrow grain-size distribution (0.6–0.85 mm),

and the bulk (dry) density was about 1.43 kg/L. The

porosity was measured at 0.38. The sand was retained

in the microcosms by a screen placed 5.7 cm from the

bottom. An artificial seawater solution containing

nutrients and micro-nutrients was fed to each micro-

cosm at a rate of 7.2 L/day. All nutrients except nitrate

were provided at concentrations that ensured that they

did not limit microbial growth (Boufadel et al. 1999).

The flow rate through the systems resulted in a specific

flux of 158.7 cm/day, which was lower than the

saturated hydraulic conductivity of the sand. There-

fore, unsaturated flow conditions prevailed in the

microcosms. The average soil moisture ratio (soil

moisture divided by porosity) in the microcosms was

equal to 0.65 (Boufadel et al. 1999).

The hydrocarbon substrate, n-heptadecane, was

immobilized on the sand at a concentration Smass of

2 mg/g of dry sand before the sand/hydrocarbon

mixture was packed into the microcosms (Boufadel

et al. 1999). (The designation ‘‘S’’ reflects that we are

treating heptadecane as substrate (i.e., food) for

biodegradation). For convenience, the concentration

of heptadecane is represented as mass of heptadecane

per unit area of sediments (mg/cm2). The conversion

between mg/g, Smass, and mg/cm2, Sarea, is done

according to:

Sarea ¼
Smass

AS

ð1Þ

Where AS is the specific surface area of sand per mass

of sediments (cm2/g) and can be estimated by:

AS ¼
6

udavgqsand

ð2Þ

Where u is the shape factor, davg is the average particle

size, and qsand is the true density of the sand. Here, the

shape factor, u, is taken as 0.75, which is a reasonable

value for sand (Reynolds and Richards 1996). The

density and the average particle size of sand grains

were found to be 2.65 g/cm3 and 0.725 mm (Boufadel

et al. 1999). The initial surface-area normalized

concentration of heptadecane, Sarea (t = 0) was thus

estimated to be 0.048 mg/cm2.

Each microcosm was isolated from the atmosphere

and connected to a respirometer (N-Con System,

Larchmont, NY), which provided oxygen whenever

the pressure in the system dropped due to oxygen

consumption (due to aerobic biodegradation of the

heptadecane). A KOH tap was used to capture the

carbon dioxide (CO2). The heptadecane biodegrada-

tion rate in each microcosm was monitored by

continuously recording the amount of oxygen that

was supplied by the respirometer. Dissolved inorganic

carbon (i.e., CO2) and nitrate concentrations were

periodically measured in the reactor effluent. Five

different influent nitrate concentrations were used.

They were 0.1, 0.5, 1.0, 2.5, and 5.0 mg of nitrate–N/L

of influent solution. The experiment was run around

912 h until no measurable oxygen consumption or

CO2 production was observed.

The microcosms were inoculated with a mixed

culture of oil-degrading microorganisms that were

originally isolated from a sandy beach near the mouth

of Delaware Bay. The initial biomass concentration of

the inoculum was determined by measuring lipid

phosphate (Findlay et al. 1989). This method assumes

that the measured phospholipids originate only from

the cell membranes of living microorganisms because

phospholipids are turned over rapidly upon cell death,

but the conversion factor relating lipid phosphate to

biomass has been reported to vary between of 1,920

and 10,000 ng of C/nmol lipid phosphate (Findlay
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et al. 1989; Frostegard et al. 1991; Köster and Meyer-

Reil 2001). Therefore, the initial biomass concentra-

tion was estimated during the optimization procedure

using these bounds. Further details on the experimen-

tal procedures are reported in Boufadel et al. (1999).

Mathematical model

Model description

The objective of this study was to develop a relatively

simple model to describe hydrocarbon degradation in

variably saturated porous media (i.e., where the

moisture content is less than 100 % and varies with

position). The stoichiometric equation for the com-

plete mineralization of heptadecane is:

C17H36 þ 26O2 ! 17CO2 þ 18H2O ð3Þ

The biomass was assumed to consist of active and inert

microbial cells. The growth kinetics of the active

biomass was assumed to be first-order with respect to

the biomass (Kindred and Celia 1989; Godeke et al.

2008; Mohamed and Hatfield 2011):

dX

dt
¼ lX � kdX ð4Þ

Where X is the surface-area normalized concentration

of active biomass (mg/cm2) and kd is the endogenous

biomass decay rate (day-1). The decay coefficient was

assumed to be constant (Metcalf and Eddy 1991). The

gross growth of the active biomass, l (day-1), was

assumed to be limited by the availability of substrate

and nitrogen, which is expressed herein as a multiple

Monod formulation (e.g., Bailey and Ollis 1986; Molz

et al. 1986; Schirmer et al. 2000):

l ¼ lmax

Sarea

KS þ Sarea

N

KN þ N
ð5Þ

where lmax is the maximum growth rate (day-1), Sarea

is the surface-area normalized concentration of sub-

strate (mg/cm2) defined in Eq. 2, KS is the half-

saturation concentration for substrate consumption

(mg/cm2), N is the nitrate concentration (mg N/L of

pore water), and KN is the half-saturation concentra-

tion for nitrogen consumption (mg N/L of pore water).

Equation 5 does not have a term that accounts for the

effect of dissolved oxygen on the growth rate, because

the concentration of dissolved oxygen was assumed to

be in equilibrium with the head space, and therefore it

was considered high enough to be non-limiting (say

8.0 mg/L).

The inert biomass consists of biological molecules

that degrade relatively slowly and accumulate in the

system. Accumulation of inert biomass has been

shown to impact biodegradation rate adversely

(Moussa et al. 2005). The inert biomass Xi (mg/cm2)

in this paper was assumed to be a constant fraction, e,
of the decayed biomass (Laspidou and Rittmann

2002):

dXi

dt
¼ e kdX ð6Þ

Substrate consumption was assumed to be a function

of the active biomass concentration (Metcalf and Eddy

1991; Rittmann and McCarty 2001):

dSarea

dt
¼ � l

YX
X ð7Þ

where YX is the biomass yield coefficient for growth on

substrate (mg X/mg S).

Oxygen consumption was assumed to depend on

the rate of substrate degradation, the decay rate of the

degradable fraction of the biomass, and the total

amount of biomass formed (Cao and Alaerts 1996;

Rittmann and McCarty 2001). In essence, oxygen

consumption was modeled by performing a mass

balance on electrons, where electrons released by

oxidation of substrate and decaying biomass are taken

up by reduction of oxygen and synthesis of new

biomass (Sperandio and Paul 1997):

dO2

dt
¼ �YOS

dSarea

dt
þ YOXð1� eÞkdX � YOXlX ð8Þ

where YOS (mg O2/mg S) is the stoichiometric

coefficient for oxygen consumption based on complete

mineralization of substrate and YOX is the stoichiom-

etric coefficient for oxygen consumption during the

complete mineralization of biomass.

Similarly, CO2 production (expressed as mg of C) is

assumed to depend on the substrate consumption rate,

the gross rate of biomass growth, and the biomass

decay rate (Grady and Lim 1980; Rittmann and

McCarty 2001). Carbon dioxide production was

modeled using a mass balance on carbon, assuming

that carbon is released by oxidation of substrate and

decaying biomass and is consumed by synthesis of
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new biomass with the remainder ending up in CO2

(Sperandio and Paul 1997):

dC

dt
¼ �YCS

dSarea

dt
þ YCXð1� eÞkdX � YCXlX ð9Þ

where YCS (mg C/mg S) is the stoichiometric coeffi-

cient for CO2 production from substrate, and YCX (mg

C/mg X) is the amount of CO2 produced by complete

mineralization of biomass.

Numerical implementation of the direct problem

The ‘direct’ problem consists of solving Eqs. 4 through

9 for known values of the kinetic parameters and the

initial biomass. The output is the values of oxygen,

CO2, X, Xi, and S as functions of time. Equations 4–7

present a coupled nonlinear system of equations. This

system was solved by the Picard iteration scheme

(Atkinson 1978). Although the convergence rate of

this scheme is first-order and, therefore, slower than

the Newton iteration scheme (which is second order),

it is generally more stable (Paniconi and Putti 1994).

Equations 8 and 9 were solved after finding the

solutions to Eqs. 4–7. Integration through time was

done using the unconditionally stable implicit Euler

scheme (Atkinson1978). However, the nonlinear

nature of the equations required the use of a very

small time step (Dt = 0.01 h) to ensure convergence

of the Picard scheme. Therefore, the implicit scheme

was less helpful than it is for linear systems where the

time step can be made large.

The inverse problem

The inverse problem involves estimating the param-

eter values that provide the best fit of the kinetic model

to the observed data. The model has eleven adjustable

parameters (Table 1). Two of these, YOS and YCS, were

given by the stoichiometric coefficients for complete

oxidation of heptadecane (Eq. 3). Thus, nine param-

eters, lmax, KS, KN , kd, YX , e, YOX , YCX , and X0, were

estimated by minimizing a weighted least squares

objective function involving the differences between

the simulated and the observed results for the columns

that were provided with 0.5 mg nitrate–N/L and

2.5 mg nitrate–N/L. For these two columns, noting

that the oxygen and CO2 measurements leveled off at

around 450 h, we fitted the model to these data for that

range, and the estimated parameters were then used to

predict the rest of experimental data in the five

columns. A weighted least square objective function

was used. It was formulated as:

F ¼
X4

i¼2;2

X3

j¼1

XNK

k¼1

xijðuS;i;j;k � uO;i;j;kÞ2 ð10Þ

Where u is a generic form for the dependent variables

and the indices j = 1, 2, 3 represent oxygen (O),

carbon (C), and heptadecane (S). The terms uS and uO

represent the simulated and the observed results for the

dependent variables, respectively; i = 2, 4 represents the

sand columns that received 0.5 and 2.5 mg N/L, respec-

tively. The notation ‘‘i = 2,2’’ in the equation implies

a step of 2, thus only columns 2 and 4 are used in the

objection function. The index k = 1,… NK represents

the number of measurements of dependent variable

uO;i;j and xj represents weights discussed below.

The weights in Eq. 10 are intended to quantify the

confidence of the researcher in the data. A large weight

in a term of Eq. 10 implies that higher confidence is

put on the data in that term. This is because the

minimization algorithm proceeds in the direction that

causes the largest change in the objective function

(between the initial estimate and the optimum) thereby

forcing the model to match the observed data of terms

with the highest weight. In the special case of equal

weights, the weighted least square reduces to the

ordinary least square (OLS), where equal confidence is

put on the data. The weights were selected to be:

xij ¼
1

ðNKuO;i;j;kÞ2
ð11Þ

This type of weighting factor puts equal emphasis on

the data of each dependent variable and from each

column. The term NK in the denominator accounts for

the number of data points to avoid giving more weight

for data sets with high number of measurements (i.e.,

residual heptadecane concentration measured once per

microcosm, was given equal weight to oxygen

consumption and CO2 production, which were repre-

sented by 10 data points per microcosm). The

weighting by the inverse of the observed value was

intended to normalize the data to account for mea-

surements of different magnitudes and/or units. Such

an approach is common in environmental applications

(Mishra and Parker 1989; Boufadel et al. 1998).

The minimization algorithm used in this study is a

generalized reduced gradient technique named GRG2
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(Lasdon et al. 1979). Lower and upper bounds on

decision variables are quite easy to handle with GRG2.

The GRG2 requires a user-supplied subroutine

GCOMP to compute the objective function and the

constraints for values of the decision variables. More

information on the software can be found in Lasdon

et al. (1980), and applications of GRG2 in hydrology

can be found in the works by Unver and Mays (1984)

and Boufadel (1998).

Bound and constraints

To eliminate the possibility of obtaining unrealistic

parameter estimates, lower and upper bounds

(Table 1) were imposed on the estimated parameters

by examination of the scientific literatures. Further-

more, to avoid oscillation in the numerical solution,

oxygen consumption, CO2 production, and heptadec-

ane remaining in the sand columns at the end of the

experiment were forced to be positive through a

constraint function. The constraints rely on ‘‘penalty

functions’’, to correct for unrealistic results.

Results

Figure 1 shows the observed surface-area-normalized

concentration of heptadecane remaining in the sand

columns at the end of the experiment. The observed

results indicate that the amount of heptadecane

remaining from the 1.0, 2.5 and 5.0 mg N/L columns

was essentially the same. The quasi-constant distribu-

tion of the heptadecane remaining within the column

for these treatments suggests that the rate-limiting

factor for biodegradation is the oil–water interfacial

area or processes occurring there; it seems that the

500 mg of heptadecane that remained at the end of

the experiments was probably not available to the

alkane-degrading bacteria within the time scale of the

experiment. This is probably due to entrapment of oil

within dead-end pores where transport occurs only by

Knudsen diffusion (Clark 1970).

Figure 2 reports the average concentration in each

column and the modeling results, where the agreement

is good considering that only one set of parameter

values was used, and that other data (CO2 and oxygen)

were also used in the fitting.

The oxygen uptake that was observed in each of

the microcosm reactors is shown in Fig. 3, along

with modeling results. The data of the first 450 h

were fitted in the columns with influent nitrate–N

concentration of 0.5 and 2.5 mg/L, and the rest of

experimental data were predicted by the model

including the data of the latter 450 h in the two

fitted columns and the data of the total 912 h in other

three columns.

Table 1 Parameters fixed or estimated in the model

Parameter Units Lower

bound

Upper

bound

Literature values Optimal

value

Variance

YOS mg of O2/mg of S Parameter is fixeda Bailey and Ollis (1986) 3.47

YCS mg of C/mg of S Parameter is fixeda Bailey and Ollis (1986) 0.85

lmax day-1 0.01 10 7.6, Nicol et al. (1994); 0.05

* 2.15, Schirmer et al. (2000)

1.57 0.002

kd day-1 0.01 0.1 0.01, Essaid et al. (1995); 0.05

* 0.76, Nicol et al. (1994)

0.01 1.3 9 10-5

YX mg X/mg S 0.1 4 0.01 * 1.33, Essaid et al. (1995);

0.25 * 1.24, Schirmer et al. (2000)

0.15 2.2 9 10-5

KS mg S/cm2 0.0 12 0.88 6.3 9 10-4

KN mg of N/L of solution 0.02 5 0.1, Essaid and Bekins (1997) 0.45 9.5 9 10-4

YCX mg of C/mg of X 0.47 0.6 0.47 * 0.6, Bailey and Ollis (1986) 0.6 0.14

YOX mg of O2/mg of X 0.68 2.72 0.68 * 2.72, Bailey and Ollis (1986) 1.56 1.15

X0 mg X/cm2 4.8 9 10-7 4.8 9 10-3 4.8 9 10-7*4.8 9 10-3,

Kopke et al. (2005)

1.7 9 10-3 1.5 9 10-4

e Dimensionless 0.05 0.3 0.05 * 0.3, Bailey and Ollis (1986) 0.3 0.18

a These parameters were fixed at the stochiometric values obtained from Eq. 3
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Data for CO2 production are shown in Fig. 4.

Reasonable agreement between the model predictions

and the experimental observations was obtained for

both of the response variables for all five microcosms.

The model captured the rapid rise at early times, but

overestimated the observed oxygen and CO2 at latter

times, especially for the cases of higher nitrate

concentration. However, the overall behavior of the

model is better in this case, because the model in

Figs. 3 and 4 underestimated the observed oxygen and

CO2 data in the early stage and overestimated them

later. One plausible explanation for this systematic

discrepancies between prediction and observations is

that the model does not allow the interfacial area

between oil and water (Eq. 2) to decrease as the oil

gets consumed, as done, for example, by Nicol et al.

(1994). This investigation is left for future work.

Discussion

The parameter estimates that were obtained by fitting

this model to the microcosm data are consistent with

previously reported values collected in very different

experimental systems. In particular, the maximum

specific growth rate, lmax, that was estimated by this

model (1.57 day-1) is within the range of values from

0.13 to 9.6 day-1 that have been previously reported

for bacteria growing on normal hydrocarbons (Chen

et al. 1992; Nicol et al. 1994; Essaid et al. 1995;

Schirmer et al. 1999; Schirmer et al. 2000). Estimates

of endogenous decay coefficients vary widely: ranging

from about 0.03 to 1.6 day-1 in wastewater treatment

systems and slowly growing mixed cultures (Grady

CPL Jr. and Lim 1980; Nicol et al. 1994). The estimate

obtained in this study (0.01 day-1) is similar to decay

coefficients that were used in previous studies (Borden

and Bedient 1986; Malone et al. 1993; Essaid, et al.

1995).

The coefficients for biomass elemental composition

YCX and YOX , reflect the elemental composition of the

labile biomass, and therefore, the range of acceptable

values was relatively narrow because the reported

elemental composition of biomass is relatively con-

sistent (Bailey and Ollis 1986). The coefficient for

carbon, YCX, went to the upper limit of acceptable

values (0.6 mg C/mg X), but the optimal value for the

oxygen coefficient, YOX (1.56 mg O2/mg X) was not

limited by the predetermined constraints.

The optimal biomass yield coefficient, YX, was

0.15 mg biomass/mg heptadecane, which seems

reasonable for aerobic biodegradation of an organic

compound. Previous estimates ranged from about 0.05

to 1.56 mg biomass/g carbon (MacQuarrie et al. 1990;

Alvarez et al. 1991; Chen et al. 1992; Essaid et al.

1995).

The half-saturation coefficient for nitrate was the

parameter of most interest in this study, and unfortu-

nately, few previous studies are available for comparison
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to this estimate. In fact, this study was motivated by the

absence of good previous estimates of the half-saturation

constant for nitrogen utilization by hydrocarbon-

degrading bacteria. The relatively low value observed

(KN = 0.45 mg N/L) is consistent with the results of a

bioremediation field study that was conducted on the

shore of Delaware Bay (Venosa et al. 1996). In that

study, increasing the average nitrate concentration in the

interstitial pore water from the background value of

0.8 mg N/L to over 6 mg N/L doubled the alkane

biodegradation rate. This suggests that the background

nitrate concentration was close to the half-saturation

concentration for indigenous alkane degraders.

The physiological interpretation of the half-saturation

concentration for heptadecane, KS, is uncertain because

it is affected by many factors, including substrate

transport into the microbial cells and biodegradation

through multistep metabolic pathways in which free

intermediates sometimes occur. In addition to the

factors that determine KS for soluble substrates, the

half-saturation concentration KS for insoluble sub-

strates may also be affected by the dissolution rate, the

interfacial area between bacteria and substrate, and

the production of microbial products that enhance

biological availability (Aichinger et al. 1992). The

half-saturation concentration estimated for heptadec-

ane in this study (0.88 mg C/cm2) might also depend

on the heptadecane–water interfacial area and the

thickness of the substrate coating on the sand particles.

Nevertheless, the estimated KS value in this study may

still be useful for groundwater models, where due to

heterogeneity, many of the physical factors (such as

the surface area) affecting KS cannot be measured

throughout the porous domain. The relatively large

value of KS with respect to the highest substrate

concentration (0.048 mg C/cm2) in this paper indi-

cates that the rate of biodegradation of heptadecane

was approximately first order, which is consistent with

the good fit that Venosa et al. (1996; 2010) obtained

when they used a first-order rate law to describe their

experimental data of oil biodegradation.

Model assessment

The squared error of the estimation, r2, can be

expressed by the following formula (Bard 1974):
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r2 ¼ F

n� p
ð12Þ

Where F is the value of the objective function, n is the

number of observations, p is the number of estimated

parameters. The value of Eq. 12 at the optimum

was r2 = 0.071. The sensitivity of the model to the

parameter estimates is shown in Fig. 5, where

the value of r2 is shown for variations of ±50 % in

the value of each parameter. The quantity r2of the

error stays very flat as parameters Kd, YCX , e, YOX vary

by ±50 % around their estimated values. However, it

changes relatively rapidly when parameters KS, YX ,

lmax, X0, KN vary by ±50 % around their estimated

values, which indicates that the model is sensitive to

these parameters. Thus, more attention should be paid

to calibrating these values in future’s simulation of

hydrocarbon biodegradation. Notice that the value of

the objective function (as expected) increases going

away from the optimum, which confirms (visually)

that the search algorithm was robust.

To quantify the findings of Fig. 5, we evaluated the

covariance matrix, Vx, of the parameters according to

the equation (Bard 1974):

Vx ¼ r2H�1 ð13Þ

Where H is the Hessian matrix whose terms are the

second derivative of the objective function with

respect to the parameters. To estimate these values,

we fitted a quadratic function to the value of the

objective function near the optimum as given by

Fig. 5. We used only the diagonal terms in this work

for simplicity.

The last column of Table 1 reports the variances of

the parameters as given by Eq. 13. The variances of

the parameters YCX , e, YOX are large, which is due to

the small curvature of the objective function. This

indicates that the model is not sensitive to these

parameters, which is due to the fact that no informa-

tion on the biomass was used as input. Thus, when

biomass information is used in the model, we suggest

that one does not estimate these parameters, rather use

their values from the literature. This is a welcome

news for oil spill responders who need to decide on

the fate of oil and where time constraints precludes

obtaining information on the microbial community.

Summary and conclusion

A kinetic model was established to describe the

biodegradation of residual hydrocarbons in variably-

saturated porous media. Multiple-Monod kinetics was

used to represent the dependence of microbial growth

and hydrocarbon biodegradation on the substrate and

nutrient. Eight kinetic parameters and the initial biomass

concentration were estimated by fitting the model to

experimental data of oxygen, CO2, and remaining

heptadecane obtained from columns having influent

nitrate–N concentration of 0.5 and 2.5 mg/L. The

estimates fell in the range reported previously in the

literature despite the fact that many of them were

allowed to cover wider ranges (Table 1). Using the

estimated parameters, the model was able to predict the

biodegradation of heptadecane in the remaining col-

umns. The fitting showed some consistent discrepancies
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between the model simulation and observed data in the

cases of higher nitrate concentration. One plausible

explanation of this mismatch is that the oil–water

interfacial area may have limited the rate and extent

of biodegradation in these columns. Further model

improvements or experimental verification may be able

to resolve this issue.

The kinetic model developed in this work simulated

the consumption of substrate, consumption of oxygen,

and production of CO2. Models that rely primarily on

substrate consumption are experimentally cumbersome

and expensive when applied to biodegradation of non-

aqueous phase substrates due to the difficulty of collect-

ing representative subsamples for analysis. Typically,

one would need to sacrifice the column to get the

concentration of non aqueous hydrocarbon concentra-

tion. This is particularly true of the variably saturated

porous–medium microcosms used in this study. So,

basing parameter estimates on abundant data of surro-

gates obtained through stoichiometry, such as oxygen and

carbon dioxide, results in estimates that are physically

based. Indeed, this was confirmed when the parameters

estimated from two columns were able to predict the

biochemical reactions in other columns, for the corre-

sponding period. Ultimately, we hope to use these

parameters to simulate the rate of hydrocarbon biodeg-

radation under a variety of scenarios for two purposes: (1)

better understand the limitations on biodegradation at the

macroscopic scale, and (2) use the results to provide

guidance to spill responders who need to evaluate specific

response alternatives in real time.
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