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Abstract

In order to make the analog fault classificatiorrenaccurate, we present a method based on the S\ygxio
Machines Classifier (SVC) with wavelet packet deposition (WPD) as a preprocessam. this paper, tr
conventional one-against-rest SVC is resorted téopm a multi-class classification task becatisis classifie
is simple in terms of training and testing. wkver, this SVC needs all decision functions tesify the quer
sample. In our study, this classifier is improvedrtake the fault classification task more fast effidient. Also
in order to reduce the size of the feature samgheswavelet packetnalysis is employed. In our investigatic
the wavelet analysis can be used as a tool ofieatxtractor or noise filter and this preprocessor improv:
the fault classification resolution of the analagaits. Moreover, our investigation illusties that the SVC ¢
be applicable to the domain of analog fault classiion and this novel classifier can be viewedmslternativ
for the back-propagation (BP) neural network cleessi
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1. Introduction

For nearly forty years, the subject of analog étréault diagnosis has been of interest to
researchers in the domain of analog testing. Tuk d@gagnosis can be divided into two parts:
fault detection and fault localization [1]. Fau#itdction technique can detect whether a circuit
under test is faulty. Next, the fault localizatidechnique is employed to find which
component or sub-system module is faulty. In ounception, the fault diagnosis can be
summarized to the problem of fault classificatibault classification can be performed by a
circuit mathematical model or an artificial intgince approach. The circuit model can be
used to perform fault location or even parameteniification easily, but, in fact, it is hard to
obtain an accurate model even for a linear analoguit because of component value
variation {.e. tolerance) resulting from manufacturing technolegyther factors. Also, it is
complicated to establish an analog fault model beedhe number of possible analog faults
can be infinite. Another problem is the limitatiohaccessible nodes of the analog circuit, and
this limitation will probably impair the diagnosissolution. Focusing on these difficulties of
analog fault classification, artificial intelligeaseems to be the most effective tool in analog
circuit fault classification. In the past decadég Neural Networks (NNs) based methods has
been applauded by researchers in diagnosing analegr circuits or even nonlinear
circuits[2, 3]. The NN can learn the samples itselfording to some training rules and after a
training stage it can predict a sample which dassbelong to the training samples. A large
number of articles have addressed the applicataineeural networks in analog circuit
diagnosis[29] and a review of this literature indicates the intaoce of NNs in the
application to analog fault diagnosis.
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Up to now, the back-propagation neural network (BlPMas the most popular classifier
in the analog diagnosis domain, but this ANN sfdtes some difficultiese.g, easy
entrapment into the local minima during the tragngtage, long training time to convergence
etc In order to solve these problems, some addition@asures or even different neural
networks have to be considered. For example, thetgealgorithm (GA) is used in [5] for
finding a global minimal solution; in [4], the leang vector quantization neural network
(LVQNN) is adopted to avoid this local minimum iraihing stage; a modular diagnostic-
system is used in [6] to replace the single neamtivork with many small-sized neural
networks, and this replacement can give a flexalidgnosis of the circuit at component level
or even system level. Also, the ANN is sensitivetite data dimension of the training
samples. High-dimensional data always resultslong training time, and sometimes, failure
to converge. Hence, a proper preprocessor is reageds the application of analog circuit
diagnosis with NNs, the widely used preprocesstingaswavelet decomposition technique [3,
5-8]. The wavelet decomposition is a multi-resolutimmalysis method which can get the
details and approximations (coefficients) of thgmsi.

In this paper, the wavelet packet decompositiohriggie is utilized to reduce the feature
size, then, a fault classifier is designed to penfault classification (including detection and
localization). The presented classifier in thisgraig a multi-class SVC, which is based on an
ensemble of binary support vector machines classi{fBSVC). The SVC is characterized by
fast convergence to the global optimization, extelgeneralization capability and immunity
to high-dimensional datatc These characteristics make the SVC an attractassifier in
diagnosing the analog circuits and the consequ&pereaments also prove the SVC is
applicable to analog circuit diagnosis. In the sasteral years, some researchers have begun
to use the SVC to perform the analog circuit diagmeask [1612]. The frequently used SVC
is based on the structure of so-called one-agaimstor the one-against-rest. In [12], the
author employs a multi-class SVC which has a orarsgrrest structure to perform fault
classification task. In [10] and [11], the one-aig&ione SVC is preferred for this task. Ror
fault classes, a one-against-one SVC has to Na{N-1) / 2 BSVCs and in the diagnosis
stage N (N-1) / 2 decision functions must be calculated. Insiudy, a one-against-rest SVC
is resorted to perform analog circuit fault isaatibecause this classifier has a simple
structure compared to the one-against-one SVC.N-ault classes, the conventional one-
against-rest SVC will trailN BSVCs, and thus, onlM calculations of all decision functions
are needed. In this paper, the conventional onestgaest SVC is further improved and this
improvement will contribute to the reduction oftteg time while keeping diagnosis accuracy
acceptable.

This paper is organized in the following orderSection 2, we give a concise introduction
to BSVC and several multi-class SVCs are also medliin this section. The proposed SVC as
well as the fault decision algorithm is discussedSection 3. In Section 4, the method is
validated by the experiment results from simulateéduits as well as actual circuits with
discrete components. Results based on severalstalplg figures are given in Section 5.
Useful conclusions are presented in Section 6.

2. Multi-class support vector machines classifiersused in this study
2.1. Binary support vector machines classifier (BSVC)

For binary classification, let (), y)} (1=12,..Q) be a set of training samples. Each
samplex O R, d being the dimension of the input space, is assigmeg{+1-1} . The input
space is mapped via the mapping functigr) to a high-dimensional linear space, where an
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optimal hyper-plane (W ,b) is found to separate the samplewith indicator
functionsign( f( X):

1 f(x)=0
san 1 ={ 1000
where:
f(X)=We@X+D. (1)

In the case of nonlinear separable training sampglask variablesf, 20 are introduced.

Considering the criterion of maximal margin/erroinimization leads to the following
optimization problem:

2 Q
R o
SU YW+ B-1+£ 20

whereC is the upper bound, controlling the tradeoff & tassification boundary complexity
and classification error. Solving this optimizatiproblem will lead to a quadratic program
(QP) solution, in which Lagrange Multiplierk are introduced:

f00=3 Y A K(x %)+ b, )@

where n_,is the number of total support vectord, >0is the Lagrange multiplier of the

k" support vector, and (x, % ) =< @(X),@( %) >is the kernel function, heres 1> is the dot

product.

Generally, the support vectors can be divided tato types: unbounded support vectors
(UBSV) and bounded support vectors (BSV). The UBB#rs to the support vectors whose
corresponding Lagrange multipliers are less tGaand the BSV refers to the support vectors
whose Lagrange multipliers are equalGo Here, the kernel function must meet Mercer’'s
condition [13]. In our study, both thg"-order polynomial kernel function and the radial

basis kernel (RBF) function are used:
K(x y) =1+ Xy, (4.1)

—|x-yf

K(x,y)=e o , (4.2)

where o is the width of the kernel function and the supeps T is the transpose of column
vector Xx.

2.2. Multi-class SVC

Many practical problems, such as analog circuiguiisis, fall into the category of multi-
class classification. In order to solve a multisslaproblem, several BSVCs must be
combined, or even a new multi-class support vectassifier should be considered [14]. In
our research, two typical multi-class SVC techngaee used and compared.

The first one is the one-against-rest SVC, whicls wavented by Vapnik [15]. In the
training stageN BSVCs are constructed fot classes, and for each training process, the
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i"class (represented with “-1” label in our study)séparated from the otheX-() classes
(represented with “+1” label in our study). In tdecision stage, in order to test query
samplex, the Winner-Takes-All (WTA) rule is always adopted all the decision functions.

Let f.(x)(i=1,...N) be the decision function of tH& BSVC:

FO)=2 Y A KX )+, ) (5
k=1
where n, is the support vector number for tiigfunctionf (x), A, is the Lagrange multiplier

of the k™ support vectory, is the label of th&k" support vector, ant}” is the bias off (x).
The WTA rule is:
argmin(f; (x)), (6)

i=1,2,..N

The second conventional multi-class method is theagainst-one SVC. In the training
stage, all possible pair classes are trained @andesheN (N-1) / 2 BSVCs are constructed.
In the decision stage, Max-wins strategy is adaptethis paper, we use the decision method
described in [14].

Other types of multi-class SVC, such as the decittiee or hierarchical SVC [16], will
probably generate different classifier structurgsdifferent combinations of BSVCs. This
means that additional measures need to be adoptgdirt a viable classifier structure, and
these measures are usually complex and time-congurm our study, these methods are not
addressed.

3. The proposed fault classification method
3.1. Method principle

The SVC proposed in our experiments is based onotmeagainst-rest SVC. The
conventional one-against-rest SVC requires theutation of all the decision functions,
which are not necessary for most of diagnosis cases

For instance, suppose to classify three fault elagsee Fig. 1), represented by “1”, “2”
and “3” (in the high-dimensional space) respectivel

the query sample
®

D
Fig. 1. Three classes are separated by the onaskgast SVC.

In Fig. 1, the one-against-rest SVC is designedeioerate three BSVCs, whose optimal
decision hyper-planes are,[D, and I} respectively. In this illustration, the arrow ditien
of the optimal hype-plane indicates the label & ttaining samplee(g, the arrow direction
of D; indicates the label of class “1” is -1 and theeotblasses are represented by label +1).
Assume the query sampbeto fall into the area of class “1”, then the demmsfunctions for
the sample should be f,(x) <0, f,(x) >0and f,(x) >0. In other words, the query sample
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can be easily assigned to class “1” from the puglasi the decision function outputs. In this
case, it is the decision functiofj(x) that gives the classification information and thibeo

two decision functions {,(x) and f,(x)) are redundant.

A special case is that the query sample falls theounclassifiable region (UR, a public
region formed by more than two hyper-planes, whdseision function outputs are all
informative) or the rejected region (RR, a pubégion formed by all hyper-planes), as shown
in Fig. 2. This phenomenon occurs when two or nfaué classes becomes overlapped in the
measurement space. In our investigations, sofsetaare easy to overlap in the measurement
space because the overlapped soft classes alwagsbme similar samples.

In the case of UR, the query sample falls intoghblic area formed by Dand 3. From
the figure, it is easy to gef,(x) <0, f,(x) >0and f,(x)<0. Obviously, both f (x)and

f,(x) are informative, and,(x) is redundant.

If the sample falls into the RR, which is formed ddiythe decision hyper-planes, then we
get f,(x)>0, f,(x) >0andf,(x) >0. This case means that none of the decision fumti®

informative.

the query sample
. D

s |
AN q;}q,__vlﬂ:i. rejected area

the unclassifiable
area

Fig. 2. The query sample falls into the UR formgdy and . In this figure, all URs are shaded by the
dashed-lines and the RR is shaded by crossed désksd

In the application of the one-against-rest SVCralag circuit fault classification, if we
know which decision functions are informative, mamgymputations will be avoided and the
testing time will be expected to reduce remarkablyis technique will be useful in analog
fault detection and localization.

3.2. Fault decision algorithm

Our fault decision algorithm is based on the numbfemformative decision functions
(NIDF). Different NIDFs will lead to different fatilecision algorithms.

- NIDF=1. This means only one decision functiofj(&) <0) is informative and in this

case, the query sample should be assigned td'faelt class.

— NIDF>1. In this case, the sample falls into thecaled UR. We must take measures to
deal with this case, or the classifier can notdie@n the assignment of the sample. Our
method is based on a heuristic assumption thasdh®ple has a closer space distance to
the fault class it should be assigned to. In outhioed we calculate the space distances
between the query sample and the hyper-planesviedah decision calculations. Our
method is simply illustrated with Fig. 3.

Assume the query sample to fall into the UR forrbgd>; and 3. We calculate the space
distanced; andds, shown in Fig. 3, respectively. ¢k < d;, we assign the query sample to
fault class “1”, otherwise, the query sample wi# Bssigned to class “3”. This heuristic
method works well in our experiments. Because, fthenpoint view of space distance, the
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larger the distance is, the bigger the possibiiigh which the sample belongs to the
corresponding class is.

the query sample

il

Fig. 3. Space distance based method is taken dtvesthe UR.

The space distana# is calculated in the high-dimensional spaice kernel space), onto
which the input samples are mapped via the nonlimegoping functiong(s) :

A

Y= Tw

(7)

where xis the query samplef; is the decision function of hyper-plang . |is the 2-norm
of the weight vectoW, of D..

According to the principle of support vector ma@snW, can be calculated by:

i
nS\/

W, =D Y AdX). (8)

k=1

It is the UBSVs that mainly determine the classifperformance, and then, only the
UBSVs are considered in our algorithm. Hence, §&hanged to be:

i
Nubsy

W=Dy A e, ©)

where _is the number of UBSV of th&" decision function.
Also, W can be computed with the dot product form:

[V = < W, W > (10)

Considering the kernel function principeXx, y) =< @(x),@(y) >, |W,| turns out to be:

wi= S50 <ot

(11)

=\/Z YiY A A K%, X)

i=1 1=1
In this case, our decision algorithm becomes:

xd arg(m'ax(ji ) 12)
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— NIDF=0. In this case, the sample falls into the RRich is shown in Fig. 4.

Fig. 4. Space distance based method is takenatvesthe RR

We still adopt the space distance measure to decidee assignment of the query sample.
In Fig. 4, the space distances between the sanmgleath hyper-planes are computed. Our
fault decision algorithm depends on the followintger

xDarg(min(di ))- (13)

This decision rule indicates that the smaller tlstatice is, the bigger the possibility with
which the sample belongs to the corresponding felaks on the other side of the decision
hyper-plane. For instance, in Fig. 4dif< d2< d3, then, according to (13), the query sample
should be assigned to class “1”.

3.3. Method implementation

In fact, it is quite difficult to directly get thenformative decision functions with an
accurate and fast method. The most reliable meithéal calculate all decision functions one
by one and then, select these informative functidinsctly. But, in this general operation,
many redundant decision functions are also invokled too much time will be consumed on
these redundant decision functions. In this papee, use the Euclidean distance in
measurement space to obtain the informative detidinctions. Euclidean distance
calculation is well known in analog fault dictioggiFD) applications, and this method is not
accurate but very fast. In our study, this distapaged method can give one or more decision
function candidates, based on which our metho@itpmed.

Prior to the use of our approach, three FDs nedaktoonstructed. The first FD (EDis
very simple, and it only contains the centroidalbffault classes. Suppose to class$Wyault
classes and each class contéihsaining samples. The centroids are defined aswoel

1 M
Ci=y 2% (14)

where x; is thei™ training sample of fault clagg j =1,....N ).

The second FD (Ff) contains the training parameters of the one-agaiest SVC. In our
design, every BSVC is trained and the correspondargmeters (such as the support vectors,
Lagrange multipliers, bias, kernel function typel dhe related kernel parameters) are saved.
For convenience of expression, BSVC, (] =1,...N) be the BSVC to separate fault class

J from the remaining fault classes.
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The third FD (FR) contains the|w,| (or 1/|[W] , i=1,...N). This FD will make the
calculation more fast in case the sample falls intoRR.

Our method can be divided into three steps anceteteps are illustrated clearly with the
flow chart shown in Fig. 5.

In the first step, the Euclidean distangd, ( j =1,...N ) between the query sampleand

centroid C,is calculated respectively. This calculation is ratcurate to decide on the

informative decision function directly, but it isygple and very fast. In our investigation, the
time consumed for this calculation can be neglaegiihen compared to the next steps. In
order to find the possible candidates of informatidecision functions, the sort operation is
needed and the indices corresponding to the féadses also need to be saved to a variable
index [N]. In this step, the first FD is used.

In the second step, the candidate decision funstoe calculated one by one viaFDhe
signal function is employed to decide on the infative functions. In our design, once an
informative decision function is found, the nexdois still executed until a redundant one is
found. This arrangement can try to avoid the lossnformative decision functions. For
instance, if the output oBSVC, is negative while the output &SVC, is positive, then the

informative BSVC should bBSVC, and so, the program will turn to the third stagefinal

fault detection or localization.
In the third step, the program can easily deterntireeregion the sample falls into and
hence the corresponding fault decision algorithmdspted. The time needed in this step can

be negligible, because in this step, botff, @f) (calculated from the second step ) ands FD
(i.e.1/||W] ) are already available. In this step,sR@an be used depending on the NIDF.

3.4. Computational complexity for the proposed SVC

According to the flow chart, the computational céexgy will contain three parts as
follows. Let | be the dimension of the sampla_§,the average of the support vectors of the
one-against-rest SVQy,.,. the number of BSVCs involved in the second step, . the
number of informative decision functions.

— In the first step, the computational load is maiflgm the sorting operation, whose
complexity isO(I-Nlog,") .

- In the second step, the computational complexitymainly from the calculation of
decision functions. According to [17], the calcidat cost of a single BSVC decision
function is O(H-EV), where H =O(l) is the computational cost of kernel function
(polynomial kernel or RBF kernel). Hence, this stefi require a calculation cost of

O(ngsyee Heny) .
— In the third step, the decision conclusion can bewvd from all informative decision
functions, so, the computational complexity shdagddd(nge,c) -
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index[N]=null;

L]

Calculation of Ed; {=1,--, N}
* Stepl (FD)
Sort the Ed; in the ascending order

and save the corresponding index j
to index[/] {(j/=1.:*, N}

v

flag=-1;
k=1
temp[N]-null; \

L

i=index k]
temp[&]=1;

> Step 2 (FD;)

| Fault decision u.{gn.l':'.”'!.r.l:l I Step3 (FD3)

Fig. 5. Implementation flow chart of the proposeeitiod.

Hence, the total complexit®, ., of the proposed method should be:

Ototal = O(I‘ N‘logzN ) + q MNsve® H'E) + Q nBsw)
©(max{l-N lngN’ Mesve® He Ny nistr}) . (15)

For a practical problem, generally,g,. < N, ngs,c <N and N < 2™, thus we have:
Oga = O Mesyer Hen) < QLN H ). (16)
In a word, the computational cost of the proposesthod is smaller than that of the

conventional one-against-rest SVC, whose computatioomplexity can be expressed with
(16).
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4. Analog circuits used and featur e extraction
4.1. Linear Circuits

The first circuit under test (CUT), as shown in.Fgg is a Sallen-Key band pass filter
(BPF) [6], [12] with 24.5 KHz central frequency.

+15V

| S

R1=5. LBK

Wout

Fig. 6. First analog circuit under test.

In this experiment, the operational amplifier outpadeVout is accessible. For this CUT,
a fault-free component has a model {1+ k), whereX is the nominal value, anllis the

tolerance. In this papekis set at 5% for resistors and 10% for capacitrsoft fault model
of component value lower (higher) than the nominalue is expressed with
[X*L-1), X*A-K] ([X*A+K, X*@ + )] ) respectively, wheref is the fault tolerance.
In this paper,f is set at 50%. The fault classes used in thisitieze listed in the following
order: nf, RZ, R2f, R4], R4t, C1|, C11, C2|, C21, where 1" (* |”) indicates the component
value is higher (lower) than the nominal value.djlthe fault class “nf” means the CUT is
fault-free.

The second filter is a High-Pass filter [8], whishshown in Fig.7. For this circuit, Vout is
the only accessible node. In this experiment, théty components and the fault classes are
all listed in order in Table 1. The component talere listed in this Table is for future
software simulation with Monte Carlo analysis.

Fig. 7. Second analog circuit under test.

For both circuits simulated with SPICE softwaree thtimulus is a pulse with 16
duration and 5 V peak. For every fault class, gn@@es are generated by varying the circuit
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faulty components within their nominal tolerancdslesthe faulty component value is set to a
fault value or changes evenly within its fault talece

Table 1. Fault classes designed for the second Gldiinal and faulty components values are alsoipec

Order || Faultclass | Nominal value | Tolerance | Fault value
1 nf - - -
2 C1t 5nf 10% 10nf
3 C1] 5nf 10% 2.5nf
4 R4t 1600 Q 5% 2500Q
5 R4| 1600Q 5% 500Q
6 C2t 5nf 10% 15nf
7 C2] 5nf 10% 1.5nf
8 R31 6200Q 5% 12000Q
9 R3| 6200Q 5% 2700Q
10 R21 6200Q 5% 18000Q
11 R2| 6200Q 5% 2000Q
12 R11 6200Q 5% 15000Q
13 R1| 6200Q 5% 3000Q

4.2. Nonlinear circuits

The first nonlinear anlog circuit is a differentamplifier with Q2N2222 transistors (Q1
and Q2, shown in Fig. 8) and in this circuit, Q3 a4 form a basic current mirror. In this
study, a 10 Hz sine wave signal with 0.05 V is useexcite the circuit and the responses are
collected via the collector of Q2€. Vout).

Viea!+H12V

Rb/20k

Rs1/1k

1

In this analog circuit, single soft faults for R&¢2 and Rb are considered. The soft faults
are summarized in Table 2. For the resistors, tfefault model increasing the value is
designed agX +60, X +100], where gindicates a sigma variation from the nominal value

X.

For the transistors (Q1~Q4), single hard faultse(opr short) are also under consideration.
In this study, the hard fault for a transistor t@ve six cases as illustrated in Fig. 9. The open
fault for single terminal of the transistor is siiaed by adding a 100 Mohm resistor in series
with this terminal (the open fault classes are QBGo and QEo corresponding to (a), (b) and
(c) respectively in Fig. 9; the short fault is siated by adding a 1 ohm resistor in parallel
with these two terminals (the short fault classes@BCs, QCEs and QBEs corresponding to
(d), (e) and (f) respectively in Fig. 9).

Wee/-12IV

Fig. 8. A nonlinear circuit.
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Table 2. Single faults selected for the differdrdiaplifier.

Fault class | Nominal value | Tolerance Fault model
Re1t 10k 5% [X+60, X +100]
Re1] 10k 5% [X =100, X - 60]
Re21 10k 5% [X+60, X +100]
Re2| 10k 5% [X-100,X - 60]
Rbt 20k 5% [X+60, X +100]
Rb| 20k 5% [X =100, X - 60]

= 1000 ohim
|

1008 chim
' I:

(a)

]
it
Q

B
(d)

Fig. 9. Hard fault models designed for a transi§ior

For this circuit, some hard faults can lead to e results and these hard faults form an
ambiguity group (AG). For instance, Q1CEs (or Q2C&s result in Q2 shut down and the
potential of Vout will be pulled up to Vcc (+12 Wlence, Q1CEs and Q2CEs are added to
the same AG (note that Q4BCs does not exist). For(@3, the hard fault classes including
the AG members are summarized in Table 3. In thieement, altogether 14 fault classes
are considered including the fault-free class (nf’ class).

Table 3. The AGs for the amplifier circuit.

Fault class AG members

Q1BCs

Q1BEs -

Q1CEs Q2CEs

Q1Bo Q1Co,Q1E0

Q2BCs -

Q2BEs Q2Bo,Q2Co,Q2E0,Q3BEs (Q4BEs), Q3B0,Q3Co,Q3E0, Q4CEs
Q3BCs Q3CEs, Q4Bo,Q4Co,Q4E0

In order to further evaluate our methods, a sintj@d-wave rectifier (see Fig. 10) with
discrete components is used to obtain real samgubelsthe fault injection is conducted
manually. This nonlinear circuit has been studiefBi.

The faulty responses frov are measured with a data acquisition card (DAC)eurtle
stimulus ofV, =sin(27 50t ). In our experiment, R1 and R2 produce soft faaftd diodes
D1, D2 produce hard faults. The fault classes usethis experiment are listed in the
following order: nf, R1, R1t, R2|, R2f, D1sh, D1lo, D2sh and D20. Here, D1sh means diode
D1 shorted and D1o means diode D1 opened. Consglére resistors, the single soft fault
model is identical to the first CUT. The faulty sales for the resistors are collected by
changing the resistor’'s value. For each fault ¢cla8sactual samples are collected.
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—

I

k2 200
o

=1
[y 2 TN4148

H— -
R 200 = Ve
i D1 IN4148

LWZ68

Fig. 10. The actual analog circuit.
4.3. Feature extraction

In our study, wavelet packet decomposition is erygdioto perform feature extraction and
this technique has been addressed in [5] and {8]tHe linear circuits, the WPD technique is
applied to the fault samples which are decompastdapproximations and details at leiel
(N=1, 2, 3..., segmented with dashed-lines shown in Flgy. For this experiment, we have
chosen the Haar function as the mother waveletusecthis wavelet function works well in
our practice.

Layer |

Laver N

Fig. 11. Wavelet decomposition of a sigBahto a hierarchical structure.

For the original sampl8,., whereDPis the data points of original sam@e for the
simulated circuits,DPis 5000 at a sample rate of 5 MHz. For the acturabit, DPis 2000
when the DAC works at a sample rate of 100 KHz.

In our investigations, the wavelet decompositiommglemented at level five, because, at
this depth good results are always achieved. Feetkimulated circuits, we use the feature
extraction approach as follows.

Let the approximation coefficients bé\(i=1,2,...,1€), and the detail coefficients

beD. (i =1,2,...,1€). For every coefficient, the data dimensiorDB/2°. We further process

these coefficients more compactly:
AC =| A, (17.1)

DC =|D]|.,. (17.2)

where ||| is the infinity norm. Our feature sample is a 3@ensional vector:

[AC, AC, ..., AG,, DG, DC, ..., DG4].

For the actual nonlinear circuit, the wavelet asslys used to denoise the collected circuit
responses as shown in Fig. 12. Generally, the lsignatained from the DAC are always
superimposed with noise. The noise can make fda#isc(especially for the soft classes)
overlap in the measurement space, and this willdaffidulties to the subsequent process.
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In this study, the wavelet packet is used to deasaphe signal into approximations and
details. The detail coefficients can be viewedhashigh-frequency component of the original
signal [6]. In our experiment, the approximationswd be retained because they can
reconstruct a purified outline of the waveform.

We obtain the first approximation at level fivechase at this level, the effect of noise can
be negligible. The waveforms reconstructed by tret &pproximation are shown in Fig. 13,
in which we can observe the waveforms have betdd and refined from noise.

N/ KN /A N /A

\'

-1 -1
0 1000 2000 0 1000 2000 0 1000 2000
(b) R1| (©) R11

1 ‘ - 1
0 1000 2000 0 1000 2000 0 1000 2000
@) R2] () R27 () Dish

T T
| |
| |

|
| |
| |
| |
| |
| |
1

-2 ‘ -0.05 ‘ -1
0 1000 2000 0 1000 2000 0 1000 2000

(9) D1o (h) D2sh (i) D20

Fig. 12. Waveforms of fault classes for the actiraiuit.

Considering that the output waveforms of the cirewme cyclical and simple, we further
extract three well-known features in the time domai

[fO,f1,f 2]
where:
— f0=min(S)means getting the minimal value fro8y

- fl=max(@ )means selecting the maximal value from the si§nal

DP
O’s)
- f2=meang s defined as = Dp

This feature extraction technique is also direetbplied to the original samples shown in
Fig. 12, in which the waveforms are not preprocegssigh wavelet analysis. We did this for
the effectiveness illustration of wavelet analysisgerms of noise eradication, because, three
features used in this study are easily affectethbynoise.

For both cases, we give their three-dimensiondD)3catter plots, which are shown in
Fig. 14 a and b respectively. In Fig. 14, only falasses (including nf and soft classes) are
given because the noise plays a significant etiadhe soft classes.

Also in Fig. 14, it is easy to find that the feasiwith the wavelet analysis become more
separable and this indicates the effectivenesshefwavelet analysis in terms of noise
elimination. Also, this promotion will be benefitim the subsequent machine learning and
pattern classification. This conclusion will be paped by the following results.
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Fig. 13. The first approximation of wavelet anadyat level five for various fault classes.

a)

Fig. 14. Feature comparison in 3-D space for twthods: a) features without wavelet analysis;
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b) features with the wavelet analysis at level five
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5. Results
5.1. Classifier design

In our study, altogether four fault classifiers designed. The first one is the BPNN with
three-layered architecture I-J-K as shown in Fig, ib which | is the input size, J is the
number of hidden-layer neurons, K is the numbeowput layer neurons. Also in Fig. 15,

h,is the bias of thej"™ hidden-layer neuron wherg =1,2,...J ; b, is the bias of the

k" output-layer neuron whose output @, where k=1,2,...K. f(s)is the activation
function of the hidden layer angl(+) is the activation function of the output layer.

Let the input vector be=[X,, X,,..., X ['. The j"hidden layer neuron receives a total
activation oijT-x+ h, from the input layer (i.e. the sampie), where W, =[W,,..., W, I'is
a weight vector connecting the input vectoand the j" hidden layer neuron. Thk™ output
layer  neuron receives a total activation  of (W, ) ex +b,,  where
X =[ f(W,ex+1R),..., f(W]+x+ [,)]". Hence, thek" output is:

O, = g((W,) =X +1hy). (18)

% =100

W, W,
Input Layer Hidden Layer OQOutput Layer

Fig. 15. The BPNN architecture used.

For the target value of the output vector we uské-ai-K coding scheme. Hence, the
assignment ok can be determined by:
arg maxQ, . (19

k=1,2,...K

For the first simulated circuit, we use an archiiee of 32-9-9 BPNN to train the samples.
For the second simulated circuit and the ampldissuit, the BPNN has an architecture of 32-
13-13 and of 32-14-14, respectively. For the actirauit, the BPNN uses a structure of 3-9-
9.

The first SVC designed in our study is the converdl one-against-rest SVC. The second
one is the proposed method in this paper. Two g@adaat-rest SVCs have identical training
parameterse.g, support vectors, training time, Lagrange mukifd, etc. The third classifier
is the one-against-one SVC. In the testing stag®n&-against-one SVC, we adopt the
decision strategy addressed in [14].
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5.2. Machinelearning

For all circuits under consideration, the trainggt contains 10 samples for every fault
class. The other remaining 40 samples are useditime testing. All samples are normalized
to have zero mean and standard unity variance.

For the BPNN, the activation function tansig isdif®m the input layer to hidden-layer.
From the hidden-layer to output layer, the actostiunctionis logsig. For each BPNN, an
error goal of 0.01 is specified because a very lsemedr goal will probably lead to an over-
fitted classifier. In our design, a fast traininigaithm adjusted by a momentum constant
M_is applied and the BPNN learns wellM _is chosen within the range of 0.85~0.88. For

the BPNN, another problem is that different tragsnwill probably result in different
performances. In this paper, every BPNN is traittede times and the final performance is
achieved by selecting the best one from threeiirgsn

For the SVC, we adopt the standard support vectmhmes algorithm [18]. In our study,
the upper bound is confined to 1000, because with this paraméiber,SVC classifier can
achieve good classification performance. We mamgstigate the performance of the RBF
and polynomial kernel functions. In our study, varies across {0.01,0.1,1,2,4,8,16,32,
128,256}and qis confined to {1,2,3}, we select an optima or gdepending on the

classification performance of the classifier.
5.3. Experimental results

We write Matlab7.0 codes for all classifiers innbsrof sample preprocessing, training and
testing, etc. All codes run on a PC with PIV 2.8GBao CPU and 2GB RAM. For the
convenience of performance comparison, severalifgmons are predefined and used in
Table 4. Additional explanations are also listethi@ remarks column.

In the training stage, for the first two filtereetBPNN converges to the error goal, but, for
the other two circuits, the BPNN cannot convergthivithe specified epochs. Despite this,
the BPNN can still be used to perform fault clasatfon. In our study, for all the circuits
under test, the SVC can converge to a global smiuduickly. The training time comparisons
for these classifiers are also given in Table 5.

Table 4. Specifications used in our experiments.

Specifications Definitions Remarks
percentage of correct classification only for testing
Accuracy
samples
Percentage of correct classification only for training
Recall
samples
TeT testing time in seconds
TrT training time in seconds
NSF the number of samples falling into the URs or the RR only used for the SVCs
INB The total number of BSVCs used for testing certain fault | only used for the 15t SVC and the 2nd
class SVC and 40 samples are tested.

Our comparisons for different classifiers are malmsed on the specifications.

— Accuracy & Recall & TeT & TrT. Focusing on the specifications, we give the tedwy
BPNN the SVCs in Table 5. In testing the Sallen-keeg High-Pass filter, we found that
the first-order polynomial kernel functiorg€l) can give the best performance. For the
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differential amplifier, we chooser =16. For the actual rectifier circuit without wavelet
analysis,o =0.1 and for the same circuit by employing wavalslysis to get rid of noise,
the 3%order polynomial kernel function is the best cleoic

Table 5. Experimental results of several classffer the circuits.

Circuit Classifier Accuracy | TrT TeT Recall
BPNN 0.972 2.135 0.329 1
The 1st SVC 0.978 1.762 6.412 1
The Sallen-Key filter The 2% SVC 0.983 1762 | 22711 | 1
The 3¢ SVC 0.992 0.879 18.864 1
BPNN 0.998 3.210 0.443 1
, The 1st SVC 1 1.268 18.023 1
The High-Pass filter The 21 SVC 1 1268 | 2932 | 1
The 3 SVC 1 1.374 56.227 1
BPNN 0.964 15.228 0.646 0.979
The differential amplifier The 1% SVC 0.963 1.956 19.804 1
The 2" SVC 0.964 1.956 4.332 1
The 34 SVC 0.966 2.388 74.378 1
BPNN 0.836 14.4 0.267 0.856
The Half-wave-rectifier The 15t SVC 0.828 1.147 4.250 1
(without wavelet analysis) The 2 SVC 0.828 1.147 0.787 1
The 3¢ SVC 0.847 0.894 9.340 1
BPNN 0.936 11.624 0.263 0.956
The Half-wave-rectifier The 1t SVC 0.969 1.762 4.335 1
(wavelet analysis) The 20 SVC 0.978 1.762 0.820 1
The 34 SVC 0.992 0.879 9.438 1

In Table 5, for most cases, the SVC classifier agts a very close performandee.(
accuracy) to the BPNN with wavelet analysis aspieprocessor. For the actual circuit with
wavelet analysis, the SVC displays an excellent acwlirate the classification performance,
which is apparently superior to the BPNN. Also, tB¥C gives 100% recall capability
compared to the BPNN. These data indicate thaBtHe can be applicable to the analog fault
detection and localization as an alternative ferBPNN. In our investigations, some samples
fail to be classified because their correspondinigpat waveforms are almost identical.

For the SVCs, the one-against-one SVC always giaesexcellent generalization
capability, however, this classifier consumes toacmtime to perform classification task.
Compared to the conventional one-against-rest amglagainst-one SVC, the proposed
approach can give a comparable performance betidsifar less time to implement testing.

In addition, the SVC Iillustrates different performeas depending on different feature
extractors when it goes to the actual circuit. o features without wavelet analysis, the
classifier displays an inferior performance. Howetke classifier performs quite well when
it is applied to the features with wavelet analyastidevel five. This difference also validates
the effectiveness of the wavelet analysis in teomsoise eradication.

— TNB. This specification is mainly used to evaluate ¢benputational complexity of two
one-against-rest SVC. For the conventional oneratiaest SVC, forty testing samples
will result in the anticipation of totaN.40 BSVCs, whereN is the number of fault
classes. For the proposed method, only a smaligpodf BSVCs are needed. Hence,
based on the aforementioned analysis of the predeifdw chart, the time needed is
reduced remarkably and this reduction is also diedrable 5. The TNBs consumed by
two methods are shown in Fig. 16, in which the @ipancy between the first SVC and the
second SVC seems to be distinct.
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Fig. 16. Comparison 6fNBs consumed by thé'BVC and the ¥ SVC in testing a) the Sallen-Key circuit
(N=9); b) the High-Pass filtelN=13); c) the differential amplifieiN=14) and d) the actual nonlinear
circuit with wavelet analysidN=9).
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NSF. This specification is mainly used to detect the gasfalling into the RR. A large
NSF always means a larger computational complexityour investigations, the NSF
seems to be small. In our method, the space desthased approach is employed to
resolve these problems. From Table 6, it is clear the proposed fault decision algorithm
can correctly classify most of the samples fallinp the URs or the RR. In diagnosing
the actual circuit, the NSF is reduced to 13 fromatter wavelet analysis, because the
wavelet analysis can eliminate the effect of thes@oand this elimination can make the
features become distinguishable and thus, fewepkesnfall into the URs or the RR.

Table 6. The effectiveness of the space distaneeisidn algorithm.

Number of testing samples Number of samples correctly classified

Circut NSF using the decision algorithm
The Sallen-Key filter 360 21 19
The high-pass filter 520 7 7
The differential amplifier 560 36 32
The Half-wave-rectifier 360 17 12
(without wavelet analysis)
The Half-wave-rectifier 360
. . 13 8
(with wavelet analysis)

6. Conclusions

In this paper, we investigate the diagnosis peréme of the SVCs by using fault

dictionary methods. Useful conclusions can be draywreviewing the above results:

The SVC can be used to perform an analog circaigribsis task. In our research, the
important parameters for the SVC are mainly uppeund C and kernel function
parameters. The support vectors, as well as thesgonding Lagrange multipliers can be
found automatically by the training algorithm. Ftre BPNN, too many network
parameters need to be adjusted manuadlg,(the hidden layer neurons, activation
function types, learning rate, momentum constatt), thus, resulting in a more
unreliable classifier structure. In addition, inr avestigations, the trainings of SVCs are
always successful and the training time neede@dgh training set is also stable, but the
BPNN sometimes fails to converge and its perforreaalso varies depending on the
training stage. In addition to this, the SVC ilkades an excellent and stable fault
classification performance, which is close or eseperior to the BPNN.

The wavelet packet analysis is useful in our ingesibns and this usefulness lies in that it
can effectively perform feature size reduction amwise eradication operations. In our
study, the wavelet mother function is Haar, andeletvanalysis depth is specified at level
five, because with this, good results are alwayseaed. These results also indicate that
the Haar wavelet function is effective in the apaiion of analog circuit faults
classification. In further research, other typesvatelet functions will be exploited.

The simulated and practical results have shown tt@atSVCs, including our proposed
methods, are applicable to analog circuit diagnoBie one-against-one SVC performs
well in our diagnosis cases, but it is not suitaoleanalog diagnosis case with a large
number of fault classes, because this classifigwires N(N-1)/2 BSVCs. If Nis very
large, this approach will become prohibitive. Owognsed method is based on the one-
against-rest SVC, which requiréé BSVCs to determine a sample assignment. Generally,
according to the above results and analysis, thepgsed method needs less computational
cost to perform a fault classification task.

The computational complexity of the SVC dependshennumber of support vectors, thus
leading to different testing time. This can be fdygexplained through Eg. (16).



Metrol. Meas. SystVol. XVII (2010), No. 4, pp. 00-00

Generally speaking, a large number of support veamll result in high computational
and storage complexities. Hence, reducing the numndde support vectors while
maintaining the classifier performance unchangesanseto be a prominent task and this
task will be envisaged in our next work.
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