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Atomic spatial coherence with spontaneous emission in a strong-coupling cavity
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The role of spontaneous emission in the interaction between a two-level atom and a pumped microcavity in the
strong-coupling regime is discussed. In particular, using a quantum Monte Carlo simulation, we investigate atomic
spatial coherence. It is found that atomic spontaneous emission destroys the coherence between neighboring lattice
sites, while cavity decay does not. Furthermore, our computation of the spatial coherence function shows that
the in-site locality is little affected by the cavity decay but greatly depends on the cavity pump amplitude.
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The combination of cold-atom physics and cavity quantum
electrodynamics (QED) has made possible the investigation
of the coherence properties of matter waves in periodic
potentials [1–11]. A tunable optical lattice can be generated by
pumping a single-mode microcavity with a far-detuned laser,
and strong coupling between the atom(s) and the cavity field
can be reached. In this regime the recoil by scattering photons
can be very important [12,13]. Even a single photon may
transfer significant momentum to the atom(s) and, in reverse,
the atomic distribution also strongly affects the cavity field [2].
Cavity QED systems have been widely used in many fields,
such as cavity cooling [3–6], atomic dynamics detection [7],
or atomic quantum phase probing [8,9].

For the system of an ultracold atom in a strong-coupling
cavity, the condition of large atomic detuning is often satisfied,
which allows the influence of the atomic spontaneous emission
to be neglected. However, when the long-time evolution or the
steady-state properties of the system are being investigated,
spontaneous emission can have a notable effect on the atomic
spatial coherence and can no longer be neglected. The recoil by
spontaneously emitted photons in random directions destroys
the atomic spatial coherence, and interference fringes in mo-
mentum space may not be observed experimentally. Moreover,
when coherently pumped by a laser field, the number of
photons in the cavity grows rapidly and the cavity field
experiences great fluctuation. The approximation of taking the
lowest vibrational state in the Wannier expansion is no longer
valid [10,11]. Thus, a fully quantum-mechanical model has to
be implemented to describe the cavity QED system, and the
Monte Carlo wave function (MCWF) method is commonly
used to simulate the time evolution of such a system [14–17].

In this paper, the effect of spontaneous emission on the
atomic coherence property in the cavity is studied with a fully
quantum-mechanical model. By comparing the time evolution
of the atomic momentum distribution with and without atomic
spontaneous emission, we find that the influence of the atomic
spontaneous emission cannot be neglected in evaluating the
steady-state properties and is responsible for the loss of spatial
coherence. Furthermore, the dependence of the atomic spatial
coherence property on the cavity parameters is studied. The
pumping strength rather than the cavity decay rate is the
dominating factor affecting the atomic locality.
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We consider a two-level atom with mass µ and transition
frequency ωa coupled to a single-mode standing-wave cavity
with resonance frequency ωc and mode function f (r̂) (see
Fig. 1). The coupling strength between the atom and the cavity
field is g. The cavity is pumped coherently by a laser with
frequency ωp and amplitude η. The photons can either leak out
of the cavity from the end mirrors directly (cavity decay) or be
emitted out of the cavity by the atom (spontaneous emission
decay), with decay rates 2κ and 2γ , respectively. The time
evolution of the system is governed by the master equation [18]

ρ̇ = 1

ih̄
[H,ρ] + Lρ. (1)

Using the rotating-wave and electric-dipole approximations,
the Hamiltonian can be depicted in the frame rotating with ωp

as [19,20]

H = −h̄�câ
†â − ih̄η(â − â†) + p̂2

2µ

− h̄�aσ̂+σ̂− − ih̄gf (r̂)(σ̂+â − σ̂−â†), (2)

where the terms on the right-hand side describe (from left
to right)the cavity field, the pumping of the cavity, the
atomic motion, the atomic internal energy, and the atom-field
coupling; �c = ωp − ωc and �a = ωp − ωa are the cavity
and atomic detunings from the frequency of the pumping
laser, respectively; â and â† are the annihilation and creation
operators of the cavity field, respectively; and σ̂+ and σ̂− are
the raising and lowering operators of the atom, respectively.
The Liouvillian is given by [14]

Lρ = γ

(
2
∫

d2uN (u)σ̂−e−ikau·r̂ρeikau·r̂σ̂+ − [σ̂+σ̂−,ρ]+

)
+ κ(2âρâ† − [â†â,ρ]+), (3)

with u the direction vector of the spontaneously emitted
photons and N (u) the directional distribution for the atomic
spontaneous emission, which is considered an isotropic one
for simplicity; ka = ωa/c is the wave number corresponding
to the atomic transition. The first term on the right-hand side
of Eq. (3) describes the spontaneous emission together with
the atomic momentum recoil, and the second term describes
the cavity decay.

In our model, the atomic motion is restricted along the
cavity axis (x direction in Fig. 1). The cavity-mode function
is approximated by a sine mode f (r̂) = f (x̂) = sin(Kx̂), with

1050-2947/2010/82(1)/015601(4) 015601-1 ©2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevA.82.015601


BRIEF REPORTS PHYSICAL REVIEW A 82, 015601 (2010)

FIG. 1. (Color online) The cavity pump scheme. A two-level atom
with transition frequency ωa is coupled to a cavity with resonance
frequency ωc, which is coherently pumped by a laser with frequency
ωp and amplitude η. The coupling strength between the atom and the
cavity is g. The cavity decay rate is 2κ and the atomic spontaneous
emission rate is 2γ .

K the wave number of the cavity field. The recoil of the atom
by spontaneously emitted photons is projected onto the cavity
axis. The value of ka can be well approximated by K since
the detuning between the atomic transition frequency and the
cavity resonance frequency is much smaller than ωa and ωc.
The recoil frequency of the atom after either absorbing or
emitting a photon from either the cavity field or the pump field
is then presented as ωr = h̄K2/(2µ). Typical values of ωr/(2π )
for 133Cs and 87Rb are 2.0663 and 3.7710 kHz, respectively.

In the case of far-off-resonance pumping, the large atomic
detuning leads to low atomic saturation, and we can adiabati-
cally eliminate the upper atomic level. The lowering operator
of the atom is then presented as [11,21]

σ̂− ≈ gf (x̂) â

i�a − γ
, (4)

and σ̂+ = σ̂
†
−. Inserting these expressions into Eqs. (2) and (3),

we can obtain the effective Hamiltonian

Heff = −h̄�câ
†â − ih̄η(â − â†) + p̂2

2µ
+ h̄U0f

2(x̂) â†â, (5)

and the effective Liouvillian

Leffρ =	0

(
2
∑

u

N (u)f (x̂)âe−iKux̂ρeiKux̂ − [f 2(x̂)â†â,ρ]+

)

+ κ(2âρâ† − [â†â,ρ]+), (6)

with U0 = g2�a/(�2
a + γ 2) the effective atom-field coupling

strength and 2	0 = 2g2γ /(�2
a + γ 2) the effective sponta-

neous emission rate; u is the projection of the direction
vector of the spontaneously emitted photons on the x axis.
The cavity decay can be described by the jump operator
Ĵc = √

2κâ and the spontaneous emission by the opera-
tor Ĵa = √

2	0e
−iKux̂f (x̂) â. The Liouvillian can be further

transformed to the standard form Lρ = ∑
m(JmρJ

†
m −

1
2 [J †

mJm,ρ]+).
The state vector of the system is given by |ψ〉 =∑
n,k Cn,k(t)|n〉|k〉, where |n〉 is the nth Fock state of the cavity

field and |k〉 is the kth atomic momentum state, corresponding
to a momentum p = kh̄K . As in [6], the integration in Eq. (6)
is reduced to the summation over u = −1,0,1. We assume
the cavity field is in the vacuum state and the atom is in the

zero-momentum state initially. Because of atomic momentum
diffusion in the periodic potential, a very high dimension is
needed for describing the momentum Hilbert space (in our
simulation the dimension is taken to be 26). The Fock basis for
the cavity field is truncated up to the 10th or 20th state. Using
the Monte Carlo wave function method, we can simulate the
time evolution for a stochastic trajectory of the state vector.
According to the ergodic hypothesis, the dynamical process of
the system can be expressed using the time-dependent density
operator ρ(t), which is given approximately by averaging over
a large number of trajectories, and the steady-state properties
of the system can be expressed by the steady-state density
operator ρss, which is approximated by averaging over a long
time for one trajectory [6].

In order to show clearly the effects of the atomic
spontaneous emission, we present results with and without
spontaneous emission, respectively. The time evolution of the
atomic momentum distribution, that is, the diagonal elements
of ρ(t), is plotted in Fig. 2. When the atomic spontaneous
emission is neglected, the interference fringes in momentum
space are formed with peaks at p = 2mh̄K(m = 0, ± 1, . . .)
along with the establishment of the periodic potential in the
cavity. Compared with the result of an optical lattice potential
in free space [22], high-order momentum can be enhanced due
to the strong atom-field coupling in the cavity.

When atomic spontaneous emission is considered, the
recoil of the atom in random directions breaks the periodicity
of the atomic spatial distribution. Thus, the spatial coherence of
the atomic distribution is destroyed and the probability density
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FIG. 2. (Color online) The atomic momentum distribution with
(a)–(c) 	0 = 0 and (d)–(f) 	0 = 18.75ωr for ωrt = 0.032, 0.16, and
0.72 from top to bottom. All results are given after averaging over
200 trajectories. The vertical axis represents the probability density,
and κ = 31.25ωr, η = 62.5ωr, and �c = U0 = −390ωr.
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FIG. 3. (Color online) The probability density vs the
atomic momentum and spatial distribution of the steady state:
(a) atomic momentum and (b) spatial distribution for 	0 = 0, and
(c) atomic momentum and (d) spatial distribution for 	0 = 18.75ωr.
The dashed line in (b) shows the potential, and κ = 31.25ωr, η =
62.5ωr , and �c = U0 = −390ωr .

is similar to a thermal equilibrium distribution. However, in the
early stage of the establishment of the cavity field, because the
spontaneous emission rate is much smaller than the atom-field
coupling strength, the interference fringes can still be observed
with lower visibility as shown by Figs. 2(d) and 2(e).

The spatial and momentum distributions for the steady
state are given in Fig. 3. The peaks of the probability density
are localized in the center of the lattice sites. When 	0 = 0,
the coherence between different sites results in interference
fringes in momentum space [see Fig. 3(a)]. Nevertheless, with
notable atomic spontaneous emission, which may destroy the
coherence among the sites, no fringes can be observed and the
heating effect is depicted as shown in Fig. 3(c). In addition,
with the same κ and η as well as nonzero 	0, the total decay
rate is larger and the average photon number is smaller; thus,
the peaks in Fig. 3(c) are smaller than in Fig. 3(a).

The atomic spatial coherence property can be measured by
the coherence function χ (x) [6]:

χ (x) =
∫

d(Kξ )|ρa(ξ,ξ + x)|, (7)

where ρa(x1,x2) = 〈x1|(
∑

n〈n|ρ|n〉)|x2〉 is the reduced den-
sity matrix describing the atomic spatial distribution. The
coherence between neighboring sites is given by χ (x =
λc/2 = π/K). The coherence function for different parameters
is depicted in Fig. 4. When the spontaneous emission is
neglected, the coherence between neighboring sites is con-
served [χ (π/K) = 1]. However, when the influence of
spontaneous emission is considered, the coherence between
neighboring sites vanishes [χ (π/K) � 1].

We can perform an integration for the coherence function
to get the spatial coherence degree

C = 1

π

∫ π

0
d(Kx)χ (x), (8)

which reflects the average coherence over a period of the
atomic spatial distribution.
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FIG. 4. (Color online) Atomic spatial coherence functions with
(a) 	0 = 0 and (b) 	0 = 18.75ωr. The curves indicate different
cavity decay rates and pumping amplitudes (κ,η) = (0,31.25ωr),
(31.25ωr,31.25ωr), (62.5ωr,31.25ωr), and (31.25ωr,62.5ωr) shown
as dash-dotted, solid, dashed, and dotted lines, respectively; U0 =
�c = −390ωr .

The time evolution of the atomic spatial coherence degree
is shown in Fig. 5. With the establishment of the lattice in the
cavity, the peaks for the probability density are localized in the
center of the sites, and the nonuniform distribution leads to a
decrease of the atomic spatial coherence. When the effect of
spontaneous emission is considered, the phase of the atomic
wave function at different sites is changed randomly due to the
recoil, which may further decrease the coherence degree.

Now we investigate the influence of the cavity decay rate
κ and the pumping amplitude η. From Eqs. (5) and (6) we
know that the pumping amplitude and the cavity decay do
not influence the atomic spatial or momentum distribution
directly, but they influence the atom through the coupling
term h̄U0f

2(x̂) â†â. With large cavity decay, the cavity
field adiabatically follows the atomic motion, and from the
Heisenberg equation of â† and â we have

â†â = η2

κ2 + [�c − U0 sin2(Kx̂)]2
. (9)

Thus, even for the resonance situation of �c = U0, the spatial
spread of the atomic probability density still causes a shift of
the cavity resonance frequency, which can be much larger than
κ . Consequently, the cavity decay rate may have little influence
on the atomic spatial distribution and the atomic coherence.
Figures 4 and 5 show that the atomic coherence properties do
not depend much on κ at fixed pumping strength η. However,
for larger pumping strength η, the photon number in the cavity
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FIG. 5. (Color online) The time evolution of the atomic
coherence degree with (a) 	0 = 0 and (b) 	0 = 18.75ωr. All
results are given after averaging over 200 trajectories. The
curves indicates different cavity decay rates and pumping am-
plitudes (κ,η) = (0,31.25ωr), (31.25ωr,31.25ωr), (62.5ωr,31.25ωr),
and (31.25ωr,62.5ωr) shown as diamonds, circles, squares, and
triangles, respectively; �c = U0 = −390ωr .
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is larger, resulting in a deeper potential for the optical lattice in
the cavity. The peaks of the atomic spatial distribution become
sharper, resulting in smaller coherence length. Therefore, the
degree of atomic spatial coherence decreases.

The dynamics and steady-state properties for the atomic
momentum and spatial distribution as well as the atomic spatial
coherence have been investigated using the MCWF method.
By comparing the results of situations with and without sponta-
neous emission, we find that the atomic spontaneous emission
is dominant during the decoherence process. In addition, due
to the atomic spatial spread of the probability distribution,
the pumping strength is found to have greater influence on
the photon number in the cavity and consequently the width
of peaks in the atomic distribution, compared to the cavity
decay rate. The spontaneous emission should be suppressed
in experiments when the long-time evolution of the atomic

spatial coherence is investigated. In fact, by normalizing the
atomic wave function to the particle number N and modifying
the effective coupling strength U0 in Eq. (5) to the collective
one NU0, this model can also be used to investigate the
coupling between a noninteracting Bose-Einstein condensate
and the quantized cavity field. With the methods of absorption
imaging and coherent measurement technology of cavity
QED [23], the results may be directly observed and tested by
experiments.
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