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1. Introduction

Consider the defocusing nonlinear Schrédinger equation (dNLS) in one space dimension

i0u = —32u +2|ul’u (11)

on the Sobolev space Hg = HN(T, C) of complex valued functions on R of period one,

N N L2THjX.
HN = [u(x):Zuje X |y < oo},
Jjez

where
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J#0

and ij, j € Z, denote the Fourier coefficients of u. It is an integrable PDE and according to [12],
admits global Birkhoff coordinates. Indeed, recall from [12] that the (complex) NLS equation can be
viewed as a Hamiltonian system with phase space HY = Hg X Hg and Poisson bracket

1
{F,G}(¢1.¢2) = —i/(3¢1F3¢2G — 34, Fdg,G) dx
0

where 94, F denotes the L2-gradient of F with respect to ¢; (i = 1,2). The Hamiltonian equations of
motion are given by

O¢p1 = —i0g, Hnis, 02 = i0p, Hnis

where

1

Hnis($1, ¢2) = / (010502 + 9763 ) dx.
0
The defocusing NLS equation (1.1) is then obtained by restricting the complex NLS equation to the

invariant subspace HYN = {¢ € HN | ¢ = ¢1}. Note that HY is a real subspace of HY. To describe the
Birkhoff coordinates introduce the model space

by ={(@.p) = @j. ppjez: 4;. Pj € R llqlin + lIplln < oo}

where

1
2
Ipln = (pﬁ - Zﬂ”mnz) :
J#0
The corresponding complex Hilbert space is denoted by th . The space h,’,\’ is endowed with the Poisson

structure induced by the standard symplectic form ZjeZ dgj Adpj. In [12] one finds a detailed proof
of the following result on Birkhoff coordinates for (1.1).

Theorem 1.1. There exists a real analytic map @ : H? — h° with the following properties

(B1) @ is canonical, i.e. for any C'-functions F, G on h?, (Fod,Go®}={F,G}o®.

(B2) Forany N € Zx, the restriction of @, @ ‘H?’ : Hf’ — hf’, is a real analytic diffeomorphism.

(B3) @ defines global Birkhoff coordinates for NLS on H}. That is, on h}, the transformed NLS Hamiltonian
Hpis o @~ is a real analytic function of the actions I; = %(p? + q?), jer.

(B4) The differential of @ at ¢ =0, do®, is the Fourier transform.

To state our KAM theorem, we need first to introduce some more notations. Let us denote by T,
T € R, the flow of translation on L?, i.e. for any ¢ € Lg, T:¢(x) = ¢ (x+ 7). Note that T — T (¢) solves
the linear PDE 0;¢ = dx¢. Actually the latter is a Hamiltonian PDE

071 = —idy, (iH3), 072 =0y, (iH2)
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where H» is the Hamiltonian

Hy (1, ¢2) =/¢23x¢1 dx
0

which is the second Hamiltonian in the NLS-hierarchy - see e.g. [12, Section 4]. In particular, H, Pois-
son commutes with Hpyys,

{Ha, Hyis} =0

Actually, a large class of Hamiltonians Poisson commutes with H;. Indeed, consider a Hamiltonian of
the form

1

P(¢)=/F(X, P1(%), p2(x)) dx

0

where F = F(x, ¢, n) is a polynomial in two complex variables ¢, 7, F(X, £, 1) =) gnite aij(x){inj, with
coefficients a;j in C®°(T, C). As H! < CO(T, C?) by the Sobolev embedding theorem, for any N > 1
the functional P is defined on Hé\’. Note that for i =1,2, 945, P = fi(x, $1(%), ¢2(x)) with f1 =9,F,
f2 =0, F and that (34, P, 3, P) € HY for any ¢ in HY. By a straightforward computation,

{P, Hz} = —i/(8¢1p . 3¢2H2 — 8¢2P . 8¢1H2)dx
0

1
= —i/(8¢1 P - 9xp1 + 0g, P - 0x¢p2) dx

1
lf
0

As F(x, ¢(x)) is 1-periodic, f01 %F(x,¢(x))dx vanishes. Furthermore,

F(x, ¢(x) dx—l—l/(axF) X, ¢ (x)) dx

%IQ

1

1
/ OF) (%, p(0)) dx =) / (0xaij) (01 (%) 2 () dx.
0

finite {)

Hence {P, H»} vanishes identically iff all the coefficients a;; of the polynomial F are constant. More
generally, {P, Hy} vanishes identically for any Hamiltonian P on its domain of definition if it is of the
form

1

P(¢) = / F(¢1(x), p2(x)) dx (12)

0

where F(¢,n) is an arbitrary analytic function on some domain of C2.
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Next we need to introduce notation to parametrize finite-dimensional tori invariant under the
defocusing NLS. For 14 = (Ij)jea € R with A C Z finite and R4 ) = (R-¢)*, denote by T}, the torus

in h? given by
Ty ={(q), pj)jez: 45+ p5=2IVi€ A; pj=q;=0VjeZ\ A}

and by 7, its image by o1, T, = cD”(T,A). For IT C RQO a compact subset of positive Lebesgue
measure, denote by T;7 and 7; the sets

Tp=J T, and Ty =o' (Tn).
Ipell

We will consider Hamiltonian perturbations Hyis + €K on Hf’, N € Z>1, with the following assump-
tions on K:

(P1) K is analytic on some open neighborhood U = Uy of 77 in Hé" and real valued on U N Hf’;
(P2) the Ly-gradients 9y, K, 9, K are bounded as functions from U to HY and verify the normaliza-
tion condition

sup{[19g, KlIn + 19p, K lIn: ¢ € U} <1
(P3) {K, H,} =0.
Examples of Hamiltonians satisfying conditions (P1)-(P3) are polynomials in ¢1, ¢, of the form

1

> [ ayoroiaoidx
finite
where the complex coefficients a;; are constant and satisfy a;; =aj;.
Our KAM theorem states that for any A € Z finite and for any € > 0 sufficiently small, many of
the NLS-invariant tori 7;, persist under perturbation of the NLS Hamiltonian by € K with K satisfying
(P1)-(P3). Moreover, these tori and their linear flows are only slightly deformed. Let us now state

our KAM theorem in a more formal way. Denote by T# the |A|-dimensional torus (R/27Z)* and by
meas(W) the Lebesgue measure of a Lebesgue measurable subset W C RA.

Theorem 1.2. Let N € Z> and let A C Z be a finite index set. Furthermore let IT C Rio be a compact subset
of positive Lebesgue measure. Then for any Hamiltonian K satisfying (P1)-(P3), there exists €y > 0 so that the
following holds:

(KAMT1) there exists a family of closed subsets I1. C I1, |€| < €, with lim¢_,o meas({T \ [I¢) =0;
(KAM2) for any |€| < €, there exists a Lipschitz family of real analytic torus embeddings

EE:TA ><17€—>UOH£V;
(KAM3) for any |€| < €g, there exists a Lipschitz map
fg :HG e RA

such that for any |€| < €o, 14 € e, and 64 € TA, the curve t — Ec(0a + tfe(I4), 1) is a quasi-
periodic solution of

3t¢)1 = —ia¢,2 Hnis — i63¢2 K, 8t¢>2 = ia¢1 Hnis + iéad,] K.
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Related work. Theorem 1.2 confirms that the KAM type theorem of [7], when applied to dNLS, does
not only hold near ¢ =0, but is actually valid on the entire phase space. In [8], Geng and You prove
an abstract KAM result in spaces with exponential weights near an equilibrium solution of certain
linear integrable PDEs for a special class of perturbations. They then apply their theorem, among
other equations, to the beam equation and to a class of nonlinear Schrédinger equations in arbitrary
space dimension. We note that the existence of quasi-periodic solutions of such equations was proved
earlier in [2], by the C-W-B method. At the same time, Theorem 1.2 complements the KAM type
theorem proved in [10] where instead of imposing condition (P3), dNLS is studied on various invariant
subspaces of Hﬁ’, including the subspace of odd functions and the one of even functions of Hf’. The
perturbations considered in [10] are assumed to induce Hamiltonian vector fields which are tangent
to the subspaces considered so that the perturbed equation evolves on these subspaces. For further
results on Hamiltonian perturbations of nonlinear Schrédinger equations, see [1-9] and [13-17].

To prove Theorem 1.2 one has to overcome the difficulties caused by the asymptotics of the NLS
frequencies (wj)jez. In fact, for j € Z large, w; ~ w_j, i.e,, w; and w_j are in ‘near resonance’. In
earlier work (see [14,10]), NLS-invariant subspaces of HY were considered so that the near resonances
mentioned above are no longer relevant when dNLS is restricted to these subspaces. In [8], Geng and
You overcome the difficulties caused by these near resonances by imposing a symmetry condition on
the perturbations - cf. [8], condition (A4). Condition (P3), introduced above, is a coordinate-free way
of formulating their condition (A4). In Section 2 we express condition (P3) in Birkhoff coordinates.
It allows to apply a KAM theorem with symmetries, a version of a by now standard abstract KAM
theorem of the type obtained in [18] (cf. also [7]), which we state in Section 4. Taking into account
the properties of the frequencies of dNLS, discussed in Section 3, Theorem 1.2 is then proved in
Section 5. In subsequent work we plan to apply the arguments used in the proof of Theorem 1.2 to
other equations as well. In Section 6 we prove the KAM theorem with symmetries stated in Section 4.

2. Hy-symmetry

Let us consider a real analytic Hamiltonian P, defined on an open neighborhood U C Hg of the
form introduced in Section 1 with I7T C Ri‘o where A C Z is finite. We want to compute the Poisson
bracket {P,iH>} in Birkhoff coordinates (q, p) = (q;, p;) jez. For this purpose it is convenient to intro-
duce action-angle coordinates Iy = (I})jea, 0 =64 = (6j) jea and complex coordinates w = (W;)jep,
z=(zj)jep Where B =7\ A. Note that for j € A, one has I; > 0 and hence the angle variable 0; is
well defined mod 2. The coordinates g, p are related to I, 64, w, and z as follows: for je€ A

(qj, pj) =+/21j(cosd;, —sinb)),

where [ = (p? +q?)/2 whereas for j € B,

1 . 1 .
wj=—(q;—ipj), zj=—=(qj+ipj).
j ﬁ(qj D) j ﬁ(QJ pi)

Note that for any j e B, dwj Adz; =idq; Adpj and w;zj =1 whereas for j € A one has df; Andlj=
dq; Adpj. Assume that P:U — C is a real analytic Hamiltonian. Then the Taylor expansion of P o1
at [p=&e€ll, w=0, z=0 is of the form

Z PkZmneil(-GyZWmZn (2'1)



T. Kappeler, Z. Liang / J. Differential Equations 252 (2012) 4068-4113 4073

where y =14 — & and where k,¢,m,n are integer vectors, k € ZA, ¢ € Zio, m,n e Zio with
|m|, |n| < oco. Here |m| = ZjeB m; and in (2.1) we have used the multi-index notation

y‘:l—[yf.j, k-e:ijOj, w’":l_[wTj.
jeA jeA jeB

Further introduce the sequence v = (vj)jez where v; = j, for any j € Z. With the notation v =
(Vj)jea and vp = (vj) jep one then has

k'VA:ijj and m'VB:ijj.
jeA jeB

By Theorem 1.1, there exists a neighborhood W of H? in H? so that the Birkhoff map & is defined
on W and has range V := @(W) C h? so that for any N >0,

&:WnHY - vnpl (2.2)

c
is a bi-analytic diffeomorphism.
Proposition 2.1.
@) onphlnv,iHyo @ 1(q,p) = " jez 27 jlj. In particular, for 14 = £ + y one has iH; o & (g, p) =
270 (C+ Y jep JVj+ D jep iwjzj), wherec =3 4 j&j.

(ii) Let P:U — C be given as above. Then, at any point Ip = & € I1, w = 0, z = 0, the function {P o
@1, iH, o @1} admits a Taylor expansionin y = [4 — &, w, z of the form

{Po &1 iHy o0 (;b_l} =2mi Z (k-va+m—m)- vB)Pkemneik'eyewmz”.

k,Z,mn

Proof. (i) follows from [11], Proposition 3.4 and the remark following it and (ii) results from a
straightforward computation, taking into account that the Birkhoff coordinates are canonical. O

As an immediate consequence of Proposition 2.1 one has the following

Corollary 2.1. For P:U — C with {P, Hy} = 0, the coefficients of the Taylor expansion (2.1) of P o @~ at
In=§ eI, w=0z=0satisfy forany k € Z*, ¢ € 24, m,n € Z&

if Prgmn #0 thenk-va+ (n—m)-vg =0. (2.3)

Proof. As & and hence &' are canonical one has 0= {P,Hy} o @ ! ={Po®~! Hy 0o ®~!}. The
claimed statement then follows from item (ii) of Proposition 2.1. O

As an illustration of implications of (2.3), consider P in Corollary 2.1 with the property that Po®~!
admits an expansion of the form

Z pkjeik'GWjZ_j. (24)
|k|I<K, jeB

It then follows from (2.3) that py; =0 for any j € B with 2|j| > K maX;e4 |i|. In particular, the sum in
(2.4) is finite.
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3. NLS frequencies

Let W and V be the open neighborhoods introduced in Section 2 - see (2.2). Note that Hyjso @ !
is well-defined on V N hg and analytic there. By Theorem 1.1, Hyis o @~ ! only depends on the action
variables I;, j € Z, and it then follows that Hyis o @~ is a real analytic function of Ij, j € Z. For any
jez,

wj = anHNLS o1

is called the jth NLS frequency of the (defocusing) NLS. We note that due to Theorem 1.1, the fre-
quencies are analytic functions on V,N for any N € Z3>1 where V,N C ¢2N(7,C) denotes the open
neighborhood of ¢1:2N(Z, R) given by

2

2

pi+q

v,’V;={1=<%> :(qj,pj)jezevmhy}. (31)
JjezZ

Here E}C’“ = ¢1%(Z,C) denotes the Banach space consisting of all complex sequences v = Vjjez
with

IVIigra = Ivol + > 1il*Ivjl < 0.
Jj#0

The expansion of Hy;so@~! at I =0 is calculated in [14]. It leads to the following asymptotic expan-
sion of the frequencies in a neighborhood of I =0 in ¢1:2(Z, C) (see [10, Corollary 3.2])

wj =41’ +4) I +21j+0O(I?)
i#]
and of their partial derivatives
owj=4—268;; +O). (3.2)
As an application one obtains the following results (cf. [10]).

) . . . . A .
Proposition 3.1. For any @ # A C Z with |A| < oo, the following functions, when restricted to ]R>O, satisfy

4 det((01,@))ijea)|,_o #0: in particular det((d;,®))i jea) # 0:

(ii) foranyk € ZA and a, b € B,
(M1) k- wp + wq #0;
(M2) k-wa £ (wq + wp) #Z0;
(M3) ifin addition a # b then k - wa + wq — wp # 0.

Proof. (i) It follows from (3.2) that

det((31,0))i jea)|,_o = —(=2'"(21A] = 1) #0.

(i) Let A’:= AU {a} and k* € Z*" with kji =kj for j € A and k¥ = £1. In particular, k* # 0. As
by (i), det((d;;wj);,jea’) doesn’t vanish identically on Rgo- it follows that there exists j € A’ so that

01 (3 ieakiwi £ wq) doesn’t vanish identically. This proves (M1). The statements (M2) and (M3) are
proved in a similar way. O
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Remark 3.1. Consider the case (M2) with a=b. Let A’ = AU {a}, k* € A’ with k? =k; forany jeA

and k;,t = 42. Then k* # 0. Hence again, 01 (O jcakiwi £ 2wq) cannot vanish identically for all j e A’
at the same time.

Proposition 3.1 will allow us to prove Kolmogorov’s and Melnikov’s conditions for NLS on the entire
phase space - see Section 5 for details. Finally we state the asymptotics of the frequencies derived
in [10]. There, they are stated for potentials of real type, ¢ € H}. The proof of Theorem 5.10 in [10]
shows that the asymptotics actually hold on W N H/.

Proposition 3.2. For ¢ € W N H! or equivalently, for I in V},
4232
wj=4m°j*+0(1) (3.3)
locally uniformly on W N H]. Hence by [13], Theorem A.3, and by Theorem 1.1,

VI > £2(2,0), I (0j-457%),,

is real analytic.

Note that the asymptotics (3.3) imply that

wj—w_j=0(1). (34)

It means that the frequencies w; and w_; are not well separated as |j| — oo. This causes the ad-
ditional difficulties, alluded to in the introduction, when estimating the measure of the set of good
parameters in the proof of Theorem 1.2.

4. An infinite-dimensional KAM theorem with symmetries

Theorem 1.2 is derived from an abstract KAM Theorem with parameters in infinite dimension, first
obtained by Kuksin [15] and then further developed by Pdschel [18], cf. also [13]. We need a version
of this result taking into account the occurrence of near resonance (3.4). Following the exposition in
[13] and [18], consider small perturbations of a family of infinite-dimensional integrable Hamiltonians
H=H(y,u,v; &) with parameter ¢ in the normal form

1
H= o)y +5 > 24w +v3), (41)
jeA jeB
on the phase space

MV =TA x RA x ¢2N x ¢2N

with coordinates (x,y,u,v) where A C Z with |A| < oo, B=Z\ A, N € Z>1 and where TA
RA/2wZ* denotes the |A|-dimensional torus, conveniently indexed by the set A. Here ¢2N =
¢2N (B, R) denotes the Hilbert space of all real sequences u = (uj)jep with

2 -\ 2N 2
lully =D >N lujl* < oo,
jeB

where (j) =1V |j|. The ‘internal’ frequencies, w = (®j)jea, as well as the ‘external’ ones, 2 =
(£2})jep, are real valued and depend on the parameter £ € IT C RA and I7 is a compact subset
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of R? of positive Lebesgue measure. The symplectic form on MY is the standard one given by
> jeadxjAndyj+3 icpduj Adv;. The Hamiltonian equations of motion of H are therefore

x=w&), y=0, u=QE¢yv, v=-2Eu,

where for any j € B, (£2(&§)u); = £2j(¢§)u;. Hence, for any parameter £ € I1, on the |A|-dimensional
invariant torus,

To =T x {0} x {0} x {0},

the flow is rotational with internal frequencies w(§) = (w;j(£))jea. In the normal space, described
by the (u,v) coordinates, we have an elliptic equilibrium at the origin, whose frequencies are
2(5) = (£2j(%)) jen- Hence, for any & e I1, Ty is an invariant, rotational, linearly stable torus for the
Hamiltonian H. Our aim is to prove the persistence of this torus under small perturbations H + P
of the integrable Hamiltonian H for a large Cantor set of parameter values &. To this end we make
assumptions on the frequencies of the unperturbed Hamiltonian H and on the perturbation P.

Assumption A (Frequencies).

(A1) The map & — w(&) between IT and its image w(/T) is a homeomorphism which, together with
its inverse, is Lipschitz continuous.
(A2) There exists a real sequence (£2)jep, independent of & € I, of the form

2i=1jI"+a1lj|* +---+aplj|® (4.2)

where d =dp > dy > --- >dp >0 with D € Z3p,d > 1, and aj,...,ap € R, so that & —
(82— §j)]—€3 is a Lipschitz continuous map on IT with values in £°*~% = ¢°=%(B, R) for some
0<s<1A@d=1).

(A3) For any (k,e) in Z :={(k,e) e Z* x ZB\ (0,0): |e| <2; k-vs+e-vp =0} withe#£0

meas{& € IT: k- w(§) +e- 2(§) =0} =0. (4.3)

Recall that for integer vectors such as e, the norm |e| is given by |e| = ZjeB lej|. Furthermore, we
note that Assumption (A1) implies that (4.3) holds for e = 0.

The second set of assumptions concerns the perturbing Hamiltonian P and its vector field, Xp =

(dyP, —0dxP, dy P, —d, P). We use the notation iz Xp for Xp evaluated at &. Finally, we denote by Mg

the complexification of the phase space MN, MN = (C/27Z)4 x CA x ZéN X Ké”. Note that at each

point of MY, the tangent space is given by
Pg =CA x CA x EéN X ZéN.
Assumption B (Perturbation).

(B1) There exists a neighborhood V of Ty in Mg such that P is a function on V x IT and its Hamil-
tonian vector field defines a map

Xp:V x T —PY. (4.4)

Moreover, ig Xp is real analytic on V for each & € I7, and i, Xp is uniformly Lipschitz on IT for
each w e V. (Here i Xp denotes the vector field Xp, evaluated at the parameter value &; iy Xp
is defined similarly.)
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(B2) {P, S} =0 where

S=a+b) jyj+cd j+vi)/2 (4.5)
jeA jeB

with a e R and b,c e R\ {0}.

To state the KAM theorem we need to introduce some domains and norms. For s >0 and r > 0
we introduce the complex Ty-neighborhoods

D(s.r) = {I3x] < s} x {ly| <r*} x {llully + [vIn <7} € ME.

Here, for z in R* or C#, |z| = maxjea |zj]. For a vector Y in P} with components (Yx, Yy, Yy, Yy)
introduce the weighted norm

1 1 1
IYllrn = 1Yal 4+ Z Yyl 4+ Z1¥ully + 1Y vlIN-

Such weights are convenient when estimating the components of a Hamiltonian vector field Xp =
(dyP, —dxP,dyP,—3,P) on D(s,r) in terms of r. For a vector field Y:V x [T — Pg we then define
the norms

IYIERy = sup  [Y(w.8), .
(w,§)

eVxII
li ||A$§Y||iu15-v
Y1 Ny = SUp ————5
T E,cell & —¢|
§#¢

where Ag; Y =igY —i.;Y, and
ligY 17N,y = sup [ Y(w. )], -
weV

In a completely analogous way, the Lipschitz semi-norm of the map F: IT — £°~¢ is defined as

li | A Fllgoo.—s
|F|11-I[)eoo,—5 = Sup gi
’ g cell |§ - §|
§#¢
Finally, let 1 < M < oo be a constant satisfying
li li
@l + 182177 s <M. (46)

Note that if Assumption .4 and Assumption B hold such an M exists.

Theorem 4.1. Suppose H is a family of Hamiltonians of the form (4.1) defined on the phase space MN,
N € Z31, and depending on parameters in IT so that Assumption A is satisfied with d and 8. Furthermore,
assume that s > 0. Then there exist a positive constant y depending on the finite subset A C Z of (4.1),d, 4,
the frequencies w and §2 of H, and s such that for any perturbed Hamiltonian H + P with P satisfying As-
sumption BB on a neighborhood V of Ty in ./\/lg, with D(s,r) € V for somer > 0, and the smallness condition
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o sup o lip
&= Xplly N;pes,rysrr T M”XP I N:Ds.xm < QY (4.7)
forsome 0 < « < 1, the following holds. There exist

(i) a closed subset IT, C I, depending on the perturbation P, with meas(/T \ IT,) - Oas«a — 0,
(ii) a Lipschitz family of real analytic torus embeddings ¥ : T# x IT, — MV,
(iii) a Lipschitz map f : IT, — RA,

such that for any & € IT,, W (T4 x {€}) is an invariant torus of the perturbed Hamiltonian H + P at & and the
flow of H + P on this torus is given by

TAxR— MV, (%00 &(x+tf(E),5).

Thus for any x € T and £ € IT,, the curve t — W (x + tf (£), &) is a quasi-periodic solution for the Hamilto-
nian ig (H + P). Moreover, for any & € I1,, the embedding ¥ (-, §) : TA — MV is real analytic on D(s/2) =
{|13x| < s/2}, and

o i ce
sup lip
¥ — l1’0”r,N;D(s/2)xm + M”W - lpO”r,N;D(s/Z)xH* < o’

o .
sup lip
If —olp, + ;1) —olg, <ce.

where
Wo:TA x [T — Ty, (x,&)— (x,0,0,0)
is the trivial embedding, and c is a positive constant which depends on the same parameters as y.

Remark 4.1.

(i) Note that (4.2) implies that for any j € B with —j € B, one has S_Z_j = 5]-. Theorem 4.1 continues
to hold under a weaker version of (4.2) where the coefficients for j > 0 and j < 0 might take
different values, af,...,a%. However for the applications we have in mind, condition (A2) as
stated suffices. Furthermore, it is straightforward to verify that Theorem 4.1 also continues to
hold if § and/or some of the exponents in (4.2) are negative. We add the condition § > 0 and
dp > 0 for convenience.

(ii) Theorem 4.1 remains true if S in Assumption (B2) is replaced by ZjeA oDy + ZjeB p(j)(u? +

v?)/Z where (p(j))jez is a real sequence, satisfying for some constants kg > 0, k1 > 0 and
Cp >0,

o) = p(=D)| = Cpljl* >0, VI|j| =Ko > 0.

It turns out that Theorem 4.1 can be shown by adapting the proofs of Theorem A and Corollary C
in [18], taking into account the symmetry condition (B2). The latter condition is used in an essential
way to obtain the claimed measure estimate of Theorem 4.1 - see Section 6.4.

We conclude this section with a brief outline of the KAM proof in the presence of symmetries.
As in the case without symmetries, it employs the rapidly converging iteration scheme of Newton
type, involving an infinite sequence of coordinate transformations. At the vth step of the scheme, a
Hamiltonian H, + P, is considered where H, is a Hamiltonian of the form (4.1), and P, is a small
perturbation satisfying the symmetry condition {P,, S} = 0. In the case considered, the Hamiltonian
S is in normal form, given by the expression (4.5). One then constructs a canonical transformation
v, with the property that (H, + P,) o ¥, takes the form H, ;1 + P,4+1 where H, 1 is again of the
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form (4.1) and P, is a much smaller error term than P,, satisfying in addition {P,1, S} =0. The
composition of the infinite sequence of coordinate changes ¥y, ¥1, ... transforms the initial Hamilto-
nian H + P - at least formally - into a normal form H,. For the construction of these coordinate
transformations a set of parameters & has to be excluded. The measure of this set is then estimated,
using that {P,, S} =0 for any v. Let us now describe the construction of the transformation ¥, in
more detail. For brevity, we drop the index v in H,, P,, R, and write

H+P=H+R+(P-R),
where R is obtained from P by truncating its Fourier and Taylor series expansion. From {P, S} =0
one deduces that {R, S} =0 as well. The canonical transformation ¥, is constructed as the time-1-
map of the flow X‘F of a Hamiltonian vector field Xg, ¥, = XfF|t:1, where the Hamiltonian F satisfies

{F,S}=0. To find such a Hamiltonian F, one expands (H + P) o XtF with respect to t at t = 0. Recall
that for any Hamiltonian G,

icoxf ={G, F}o Xt
dt F= F

Hence

1
RoX}:R—{—/{R,F}oXtht
0

and
1
HoXh=Ho+(H.F)+ [ (1= 0[(H.F).F]o Xpdr.
0

Altogether, one thus has

1
(H+R)owv:H+R+{H,F}+/{(1—t){H,F}+R,F}ox;dr.
0

The latter integral is of quadratic order in R and F and will be part of the new error term. The aim
is to determine F in such a way that Hy := H + R + {H, F} is again of the form (4.1) and {F, S} =0.
Setting H := H4 — H, this amounts to solve the system of linear equations

{F,H}+H=R and {F,S}=0 (4.8)

for F and It{ with H being of the form (4.1), and R given as above. We will explicitly construct a
solution F, H of (4.8). It then follows that

(1—t){H,F}+R=(1—t)H + R,
and hence
(H+P)oW,=H, 4+ Q+(P—R)o ¥, (4.9)

with
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1
Q:/{(l—r)1f1+tR,F}ofodt. (4.10)
0

Then H is the new normal form H, ;1 and Q+(P—-R)o¥, the new perturbative term P, 1. Note
that the term Q is of quadratic order in R, F, H. Furthermore, one has So X, =S as

d
a(sox;)z{s,F}oxgzo and SoXi|,_,=S. (4.11)

Hence
{P=R)ow,,S}={(P-—R)oW,,So¥,} ={P—R,S}o¥, =0

and, with G(t) := (1 — t)H + tR,
1

{Q,S}:/{{G(t),F} o Xf, So X }dt

0
1
=/{{G(t),F},s}ox;dt.
0

As H and S are both in normal form one has {I:I , S} = 0. Together with the already established iden-
tities {F, S} =0 and {R, S} =0, one then concludes by the Jacobi identity that {Q, S} = 0. Altogether
it follows that {P,+1, S} = 0. In Section 6, we complete the proof of Theorem 4.1.

5. Proof of Theorem 1.2

In this section we show how Theorem 1.2 can be deduced from Theorem 4.1, using similar ar-
guments as in [13] - see also [10]. Recall the set-up of Theorem 1.2. The subset A C Z is of finite
cardinality, I7T < RQO is compact and of positive Lebesgue measure, T;; is a union of A-tori in
h? indexed by & € IT, and T; = @~'(Tr7) € (\yso HY. Consider the perturbed NLS Hamiltonian
H¢ = Hnis + €K, where K is a real analytic map, K:U — C, with U = U7 a complex neighborhood
of 7p7 in H?’ for some N € Z1, so that properties (P1)-(P3) of Theorem 1.2 hold.

As a first step we apply the Birkhoff map &' of Theorem 1.1,

o~ 1:pN - HN.
Since @~ is real analytic, there is a complex neighborhood V of Tj; in the complexification of bf’ ,
which is mapped bi-analytically onto the neighborhood U of 7. If necessary, we choose U and/or V

smaller. Hence we have the following diagram where each arrow represents a bi-analytic diffeomor-
phism given by an approximate restriction of @ ~!:

T, ¢ Tp < Vv < BV

/ | :

7T < T3 < U < HN,

Now we consider the transformed Hamiltonian He o @~ 1. Define Hys:= Hyso @~ ! and K := K o
@1}y so that

H¢ o1 :I:INL5+€I~(.
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Then H¢ o cbi] is real analytic on V > Ty. Let us first look at the integrable Hamiltonian Hyis. By
Theorem 1.1, Hyis depends on (q, p) only through the actions, I; = (q? +p?)/2, j € Z. As in Section 3,

we view Hpzs as a real analytic function of the I = (Ij)jez defined on V;\’ where V,N has been

introduced in (3.1). Using Taylor’s formula and the definition of the frequencies, w;(l) := 9; Hpis(D,
we obtain

I:INLS(IO+]):HNLS(IO)+ij(IO)]j+Q (5.1)
JeZ

where Q :=3; i Qi;(1° J)JiJj and

1
Qij(lo,]) ::/(1 —t)alia)j(10+t])dt.

0

Note that d;,w; = 9y a1 Hpis(D) and hence the Q;j are symmetric in i and j. Using the asymptotics

of w; and the analyticity properties of (w; — 47r2j2)]-€Z of Proposition 3.2 it follows from Cauchy’s
estimate (see e.g. [13, Lemma A.2]) that

sup
Jez

> Q1% ) Ji

i€Z

< ClJlgran

and hence

Q= <Cl N (5.2)

> Q1% ))Jid;
ij

uniformly in I on some complex neighborhood of T and || J|| c12v sufficiently small. Furthermore,
by assumption (P2), the Hamiltonian vector field Xk of K, given by Xy = —i(34, K, —9¢, K), is defined
on U and of order 1, |Xg|ly = O(1). The Hamiltonian vector field of the transformed Hamiltonian
K=Koo™!,

Xg=(27") ' Xk =do - Xg 0@,

is then defined on V. In view of Theorem 1.1, we may shrink V, if necessary, so that d® o ®~! is
uniformly bounded on V. Hence

IXglin=0(1) (5.3)
uniformly on V.

As a second step we introduce symplectic polar coordinates near the tori in the family Tj. For
each & = (£j)jea € IT we then introduce new coordinates by setting for j e A

V2GEi+ype™i=qj+ip;,  \J2E+ypet i=q;—ip;
whereas for j € B, the Birkhoff coordinates q;, p; play the role of uj, v; of Section 4,

uj:=(qj, Vj:=Dj.
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For each & € I1, this transformation is real analytic and symplectic on D(s,r) € V for all s > 0 and
r > 0 sufficiently small. In the following we fix such an s, while we keep the freedom of choosing
r smaller later in the proof. Using the expansion of Hyis in (5.1) and setting I° to be element with
components &; for je A and 0 for j € B, the integrable Hamiltonian Hpis in the new coordinates is,
up to a constant depending only on &, given by H + Q with

H=H(y,u,vi&) =Y wj@yj+ Y 2;& W +v3)/2, (54)

jeA jeB

where 2;(¢) :==wj(&) for j e B, and, according to (5.1), Q = Q(y, u, v; &) is given by

Q=) Qi DJiJj with Jj=y;(jeA)and J;=(uj+v3)/2(jeB), (5.5)

ij

where we have identified I° with £. We want to apply Theorem 4.1 for H, defined by (5.4), P := Q +
€K, and S:=iH; 0 ®~'. We now verify Assumptions (A1)-(A3) and (B1)-(B2). Concerning (A1), recall
that by Proposition 3.1, det((%—g)i, jea) # 0 on [I1. Since this determinant is a real analytic function,
it is nonzero almost everywhere on I7. In particular, for any given n > 0 we may excise from IT a
relatively open subset /T, with meas(/T;) < 1 such that on IT\ IT; the above determinant is uniformly
bounded away from zero. Moreover, we may cover I1 \ IT; by finitely many closed subsets IT,, so that
on each subset the map & — w(£) is a bianalytic homeomorphism onto its image in RA. Henceforth
it suffices to consider each such parameter set /7, one at a time.

Next let us verify (A2). The external frequencies £2;, j € B, may be written as £2;(¢) = §j + Qj &)
with £2; =4722 and

QJ(S) = .Qj - §j = 31].1:11\”_5(&) —4712j2.

By Proposition 3.2, 2 E > (_r}j(g))jeg maps I7 into £°°(B;R) and is analytic on a complex neigh-
borhood of IT with values in £%°(B, C). Hence £2 is also Lipschitz by Cauchy’s estimate. In summary,
Assumption (A2) is satisfied with d =2 and § =0.

To see that Assumption (A3) holds note that by Proposition 3.1, k- w(§) + e - $2(&) # 0 for every
ke Z" and e € ZB with 1 < |e| < 2. Since each such expression is real analytic in £, its zero set is a
set of measure zero and (A3) follows.

Toward Assumption (B2), first note that by Proposition 2.1(i), iH, o @~ ! is of the form S, described
in (B2). As @~ is canonical and Q, given by (5.5), is in normal form, it follows that {Q,iH, o @~}
= 0. Furthermore, in view of Assumption (P3), {K o ®~!,iHy 0 @~ 1} ={K,iH>} o @~ = 0. Altogether
we have shown that

{P,iH 0@ '} ={Q +€K,iH;00 '} =0
and Assumption (B2) follows.
It remains to check Assumption (B1). As already mentioned, the perturbation P consists of two
parts
P=0Q +€K.
In view of the definition (5.5), the Hamiltonian vector field of Q is given by

Xq =(3Q.,0,3,Q, —3 Q).

To estimate the size of Xo we apply Cauchy’s estimate to each of its components. From the estimate

(5.2) together with the bounds |y| <r? and |lu|ly + ||v|IN <T one then gets that 1Xq ||if118:D(s’r)Xm <
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cr?. As Q analytically extends to some complex neighborhood of I7, again by Cauchy’s estimate, one
obtains a similar bound for the Lipschitz semi-norm of Xgq,

lip 2
I1XQ Il N:psrysem, S €T°-

Taking the weight factors in the norm || - ||,y into account and using (5.3), one gets the following

estimate for the second term in P, ”XI_(”:tlls;D(s,r)xHL < r% Arguing as for Q, one obtains a bound of

the same form for the Lipschitz semi-norm, ||X,~<|\Irif’N;D(s,r)an < r% Altogether, we thus have shown

that for any 0 <@ < M and r > 0 small enough,

sup (%4 lip 2, €
1Xq +ekllrn:pis.xm, + 371X ek N« < C(r + r_2>' (5.6)

In particular, we have verified Assumption (B1) with V in (4.4) given by D(s,1).
To meet the smallness condition (4.7) of Theorem 4.1 for P = Q + €K choose r and « as follows

2
=€, a:fﬁ, (5.7)

with € so small that o < 1. Here, C is taken from the preceding estimate, and y is taken from
Theorem 4.1. We then obtain

C(r2+r€—2> =2C/e=ya.

The estimate (5.6) then implies that (4.7) holds. The conclusions of Theorem 1.2 now follow from the
ones of Theorem 4.1. Let us only comment on the measure theoretic statement of Theorem 1.2. By
Theorem 4.1 and the choice (5.7) of «, for each I7, there exists I1, € I1, so that

meas(/I,\I1,¢) >0 ase— 0.

Finitely many sets I1, cover the parameter domain /7 up to a set of measure 1. By first choosing 7
and then € small enough we can assure that

meas(]'[ \ UI'[L() —0 ase—0.
L

The proof of Theorem 1.2 is now complete. O
6. Proof of Theorem 4.1

The aim of this section is to prove Theorem 4.1. It is based on the proof of a KAM theorem without
symmetries presented in [18].

6.1. Linearized equation

In this subsection we study the linear system (4.8)

{F,H}+H=R and {F,S}=0 (6.1)
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where H, S, R are given Hamiltonians and F, 1 are to be determined. It is convenient to introduce
complex coordinates w = (W;)jep, Z= (zj) jep defined by

1 1
w=—(Ww-—iv) and z= —2(u+iv).

V2 V2
In these complex coordinates, the Hamiltonians H = H(y, w, z; £) and S = S(y, w, z) are given by
H= Za)jyj +Z.QJ'WJ'ZJ',
JjeA jeB

S:a+b2jyj+CZjoZj.
JjeA jeB

Here wj = w;(§) and 2; = £2j(¢) depend on the parameter £ and a,b,c are real constants with
b #0,c #0. In the sequel we will assume that the constants a, b, ¢ are given by a=0, b=c=1
- the case where a € R, b,c € R\ {0} are arbitrary is proved in the same way. H is assumed to be
regular on the domain D(s,r) x IT in the sense that for each & € IT, i H = H(-; £) is real analytic on
D(s,r) and H(y, w, z; -) is Lipschitz in &, uniformly on D(s, r). The Hamiltonian R = R(x, y, w, z; §) is
also assumed to be regular on D(s,r) x IT and to be of the form

R= Z Rimne™*y'w™mz". (6.2)
2[l|+|m+n|<2

Here and in the sequel, a sum such as in (6.2) extends over all integer vectors k € Z4, | € ZQO,
and m,n € Zio. Hence R is a polynomial in y, w, z of degree two - the yj, j € A, being variables

of degree two - whose coefficients depend regularly on x and & in the sense above. Moreover, the
Hamiltonian vector field Xg = Xg(x, y, w, z; £) associated with R is assumed to be a regular map

Xg:D(s,r) x IT— Py (6.3)
and R is assumed to satisfy the symmetry conditions
{R,S}=0. (6.4)
The latter identity means that for any k € Z4, I € Z’;O, m,ne Zgo and £ € IT
Rigmn - (k- va + (n —m) - vg) =0. (6.5)

The mean value [R] of R is defined by

[Rl= > Rommy'w"z".
[l+|m]=1

Note that [R] is of the same form as H. To shorten notation we drop the subscripts N and I7 in
lip lip lip

N . . . .
I - ”Artll{J);D(s,‘r)xH and write || - I Des.r) instead of | - I N Ds.ryxrr @S well as |w]'P, [£2] joo,—s Instead of
|a)|l,'$, |S2|'1'floc._5. In the sequel, we will always assume that 2 satisfies condition (A2) of Section 4,

ie, 2 =82 + £ where 2 is independent of & with

2;=1jlY+--- forsomed>1
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and 2 = £2 — 2 is a Lipschitz map, £2: 17 — ¢°~%(B,R) for some 0 < 8§ <d — 1. Finally, for any
e € ZB with finite support we define

lels := Y _(j)lejl.

jeB

Lemma 6.1. Let « > 0, s > 0, r > 0 and assume that H and R are regular on D(s,r) x IT and that R satisfies
(6.3) and (6.4). Moreover assume that for any & € IT and any (k,e) € Z

k-w®& +e 2| =aA 1V |e|§ (6.6)

where the sequence (Ag)geza € R satlsﬁes Ay > 1. Then the linear system (6.1) has a unique solution F, 2
when normalized by [F] =0, [A]=A. The following estimates hold:

sup sup _qlip lip
”XH ”r D(s,r) < ”XR”r,D(s,r)’ ”XH”r,D(s,r) < “XR“I’,D(S,r)
and forany0 <o < s
X [[5UP < 1980 16B» X p [ISUP
Il F”r’D(s,g,r) l R”r D(s,r)’

lip 2530 lip M sup
IXElly pis—ory S ——( IXRI: Dy + E”XRHT’D(”) ;

where M > 1 satisfies M > || +22|". _, and B, = (214! > keza <I<)4Aﬁe*2”‘“’)%.

£00.—8

Proof. We are looking for solutions F and H of (6.1) which admit expansions of the form

F= Z Fklmnelkxylw z"
2|14+ |m+n| <2

and

l..,,m_m
Z ImmyWZ~

|k|+|m|=

Use that {xj, yj} =1 for any je A and {wj,z;} =1 for any j € B and that all other brackets between
coordinate functions vanish to conclude

[eXylwmzt, y ;) = ikjel*ylwmz" (6.7)

and
{e®*ytwmz, wiz;} =i(nj — mje**ylwmZ" (6.8)
It then follows that

{F,HY =Y iFum (k- @+ (n—m) - 2)e**ylwmz"
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One then finds by comparison of coefficients that the system (6.1) admits the solution F and 3 given
by

R Kimn M
i Py = m7 if Rigmn 7# 0 and (k, n —m) # (0, 0),
0, otherwise,
I:IOlmm = ROImm- (6-9)

By (6.5), one has Ryjmn(k-va + (n —m)-vg) = 0. Thus the small divispr cogditions (6.6) guarantee that
Fiimn is well defined for any k, I, m, n. Furthermore [F] =0 and [H] = H. When normalized in this
way, F and H are uniquely determined. Clearly, one has {H, S} =0 and

{F.S}= iFumn(k - va+ (n—m) - vg)e**ylwmz"
which by the definition of F equals

ylwmzn

ZRklmn(k va + (n—m) - vp) ek
k-w+nm—m)- 2

In view of (6.5) it then follows that {F, S} = 0. To derive the claimed estimates we decompose R =
R® + R! + R? and write

RO = RO0 — RO00 | R001. R! = R10 4 ROI. R2 — R20 4 R11 4 RO2
where R? comprises all terms with |m +n| =a,

000 ik-x 001 001 ik-x 1
R™ = Z Rikoooe™ ™,  R™ = ZRJ- yj= Z Riaooe™ "y
jeA =1

and R® are given by
0__ 10,,, . 01 __ 01, .
=2 Ri'w;,  RU=} R{'z,
jeB jeB

20 _ 2000 1 _ 11, 0 02 _ 02, .
= Z Rij wiwj, R = Z Rij ziwj, R™ = Z Rij zizj.

i,jeB i,jeB i,jeB

The coefficients ’R‘]’.b and R?}’ are given by the corresponding derivatives of R with respect to the

components of w and z at w =0, z=0 and depend on x and & whereas the coefficients R‘;‘” are
given by dy;R|y=o and also depend on x and &. So e.g. for any j € B,

10 ik-x
R{% = 0w;Rlw=0.220 = Y _ Ryomioe™* and m/ = (8j)cs.

The functions F and H are decomposed in a similar way. The linear system {F, H} + H = R then may
be written as follows

{Fab7H}:Rab_[Rab], I:Iab:[Rab]

and it suffices to obtain the claimed estimates for each of the Hamiltonians F®, A% individually. By
the definition of A%, the claimed estimates for H held trivially. Concerning the terms F?, they all
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can be treated in a similar fashion. So we concentrate on F° and F!! only. Let us begin with F10,
We want to estimate Xgio = (0, —9xF19,0,i9,,F19) in terms of Xg. It is convenient to introduce the
notation R = (R ) jep with

.10 -
Rj=R® = Ryje™™ = dw, Rlw=o, z=0.
k

By the definition of the norm || - ||:ug(s ;) one has
IRIDG <TIXRIZ D r (6.10)

where D(s) := {x € C*/2Z": |3x| <s}. By assumption, R:D(s) — ¢>N = ¢2N(B, C) is analytic and
has a Fourier expansion with Fourier coefficients (Ry;)jep, k € ZA, satisfying the L2-bound

2 . 2
O [ Rigjen [ <2M(IRIBE)
kezZA
Actually, due to the symmetry conditions (6.5), for each k € ZA4, Rkj =0, and hence .7-"kj =0, for any
Jj € B except p0551bly for j=jk)=k-va.

For any k € ZA4, Rk](k) T — C is Lipschitz and the corresponding coefficient }"kj(k) of F is given
by

Rijde

iFijo = ————=—.
kit = T — 25k

By the small divisors assumption (6.6), |k - w — 2| > ozAk_1 for any k € ZA. Hence

. A .
|(Fipje |y < ;kH (R je| y (6.11)

and thus

IFUDG-0) < Dl Fig)jen e~
k

1

1 _ 2
< L(Sagerne)’ (Sictwealiess)’
k
Bs - sup
< IR
or, as F = dwF10,

sup

D(s— o—) ”XR“SUP

1
T JowF™| rD(sr)

The other nonzero component of Xp1o is given by 9xF10 = Sk ik(ZjGB fkjwj)e”‘"‘. As by (6.11),

Zﬁkjwj

. Ay -
< |[(Fij) jes ||N||W||N < ;”(Rkj)jeB“N”W”N,
jeB
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one gets

sup
D(s—o,r)

1
loxF]
;

Ak . _ B .
Kl (Rig)jen [y 77 < —ZIRIBE)-

It then follows from (6.10) that

1 10 || Sup sup
10 Fpie < S IXRIZ D -
Altogether, we have proved that
1 2B
sup 10 || SUP 10 || SUP o sup
[ XF1o ”r,D(s—U,r) < 2 ||3XF ”D(s —o.r) + = “aWF ”r D(s—o,r) S — Xk ”r D(r,s)"

Next we want to estimate || Xgio ||
any k € ZA and with j = j(k),

r.D(s—o.r)- Let Qi =k - —2j) and A = Ag; for &, ¢ € IT. Then, for

iAFig = Aoy Rig) = o' ARy) + Rig Aoy )
and

Aoy, k Aw — A.Q]
(&) ok (@)  on(®) - ak(Q)

—Ay )=

By the small divisors assumption (6.6), |o| > oA, <]>% Recall that £2; = .(_Bj + ij, where A2 =
AR2j = 0(jI%). One then gets

A2
_ | A2
nog | < 2 <|k||A |+ ——" ’)
| k ‘ 2 (]>6
and thus

A2 )
l(AFipje]y < = ||(A7zk,)]es Iy + =2 (Kl A®| + AR p.-s) |(Ri)jes |y (612)
2

Summing up to the Fourier series as before we obtain
IAF Ips—0) < ||AR||EU(2) -|- (IAa)| 1AL, ‘3)”72”31(2).

Dividing this inequality by |§ — ¢| and taking the supremum over & # ¢ in IT yields, with F=09,F10,

1 10 lip lip lip M sup
T ” dwF ”D(s o) ||‘7:”D(s o) < — ”XR”r D(s,r) + E”XR”r,D(s,r)

where we used that M > |w|"P + |Q|2§o‘75.
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Now let us estimate the Lipschitz semi-norm of the other nonzero component 3xF!° of X10. Note
that

AoxF10=%" ik(Z Af'kjwj>e”‘"‘.
k jeB

Hence by (6.12)

sup

1
? ” AaXFw ”D(sfa,r)

<K [(AFi jen) || g1

k

A . A2 )
<Y [kjekiG=o) <;k [ARigjesly + 5 (Kl A]+1AR1s) [ (Rig)jes sz)
k

and thus by the definition of B,

By

B . .
D0 < 5 IARIDE + 3 (1801 +AR1 ) IRIBE,

D(s—o,r) X

1
Ll aaFv]

leading as above to the estimate

1 10 lip Bs lip M sup
S1F s < — (IR Dery + — IXRIZD 6 )-

Altogether we have shown

lip 2B, lip M sup
”XFw”r,D(s—a,r) < 7 <||XR”r,D(s,r) + E”XR”r,D(s,r) .

Let us now turn our attention to the term F = F'!. We want to estimate
Xpi = (0, =9 F'', —i9,F'1 idy, F1).

Recall that R =R' =3 ;R/!zjw . For convenience, let R;; := R]! and denote the operator corre-

sponding to (ﬁij),‘,jeg by 7. Note that 7@,7 = Ow; 0z Rlw=0,z=0. Due to the special form of R, R can
be viewed as the Jacobian of 9,R|,—¢ with respect to w at w = 0. In particular, it can be viewed as a
linear operator on ¢%N = ¢2:N(B, C). Hence by the Cauchy estimate for analytic maps between Banach
spaces (cf. [18, Lemma A.3])

.. 1
IRl < ~10RIDE » < IXRIF DS (6.13)

where _|_|7i|| denotes the operator norm on ¢2N(B, C). This is equivalent to the statement that R=
((iy™NRij(/YM)i jep is a bounded operator on ¢2 = ¢2(B, C). Expanding R into its Fourier series with
operator valued coefficients 7~Zk = (ﬁk,,’j),‘yjeg, k e ZA, one gets as before

= ~ 2
D IReIPeM < 2A(1RIHE)

kezA
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where now HﬁkH denotes the operator norm of Ry : £2 — ¢2. The corresponding coefficient Fj =
(Fi,ij)i,jep is given by (cf. (6.9))

7%')(,1" Pad . .
iFij = { m if Riijj #0and |k| + |i — j| #0, (614)
0, otherwise.

Note that by the symmetry conditions (6.5), ﬁk,,-j # 0 implies that j =i+ k-v4. Hence for any k € Z4,
in each row and in each column of the infinite matrix (7~2k .ij)i.jes — and thus also of the infinite ma-

trix (fk ij)i,jep — there is at most one nonzero entry. Therefore the operator norm of Rk (Rk ij)i,jeB
can be computed to be

IRkl = sup |Ryijl-

i,jeB

By (6.5)~(6.6), Ry,ij # 0 with [k| +|i — j| # 0 implies that |k - w + £2; — 2| > @A, . Hence | Fi|l <
%HRkH uniformly on I7. Summing up over k leads to

IF Do) < ||R||i;’(‘;).
Going back to the operator norm of linear operators on ¢2N one gets, in view of (6.13),
1 P F“ sup _ 1 ]__ sup ]__ sup R sup
v |2 HD(S—(r,r) = sup ;” Wlipis—oy S IFlpis—oy < ” Ipcs)
lwln<r
< Bo XrIPP (6.15)
S ?” R”r,D(s,r)' 4
Similarly one has
1 ”3 Fl1 ||5UP Xp|[SUP
T Iow Dis—o.n) S ” Ry Des.r-
To estimate L [|oxF!! ID_gr, note that ayF'' = iy k(Y Fijziwpe®*. As |Y;  Fijziwj| <
IFzlInlIw] i, it follows from (6.15) and the definition of B,
l”a FHHSUP ||X ”sup
2 119 Dis—o.n) S Rllr,D(s,r):
Altogether we thus have proved that
sup
”XF“”r D(s— Jr) IIXR”r ,D(s,1)"

Next we want to estimate || Xz || The Lipschitz estimate of F is obtained in a similar fashion

as the one of F. Indeed, let

r,D(s—o,r)"

j=Jja,k):=i+k-va and ap;:=k -0+ 2; — 2;.
Then

A —1 A5 5 -1
1AFiij =) ; ARkij + R ijAoy ;-
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The small divisors assumption (6.6) then implies that

[SES

loge il = oA (D + (7)) 2.

Using that
|AS2 — 821 _ |AL] n |AL2j]
0%+ (j)° (i) (i?
one gets as above
A2 2
1 k [AS2i|  |AS2] A,
Aoy | < —2<|k|| ol + =5+ =5 ) < g2 (kI1A®] 42421 0-0)
and therefore, uniformly on I7,
. A2
IAFll < —IIARkII t52 (IkIIAwI + 2| AR o3 ) [ Rel.
Summing up over k this leads to
IAFID6—_o) < ||AR||;“§;) ‘;(|Aw| +2[AR21 0 5) IRIIpG)-
Going back to the operator norm of linear operators on £>N one gets
IAF 6o < ||AR||;“(‘;) ‘; (1A@| +2|AR21g.-3) IR - (6.16)

Dividing this inequality by |& — ¢| and taking the supremum over & # ¢ in [T yields

.o l ZB .o l M .
IF N 550y < 7"(”7%” pes) + EHRMB“(‘;)).

Finally arguing as in (6.15) one concludes that

1 11 lip 1 . lip 2Bs lip sup
- ”aZF ”D(s—o,r) = Sup — ”‘lFW”D(sfcr,r) < — | IXr “r psn T “XR ”r,D(s.r) . (6.17)
r Iwln<r T a

Similarly one has
1 11 1lip 2Bs lip M sup
? H owF ”D(s—a,r) < a ||XR ”r,D(s,r) + E ”XR ”r,D(s,r) .

. i
To estimate ||, F!! I'pts—o ) MOte that

—idyAF!! = Zk( > Aﬁijziwj>eik-x.
k i,j

As |Zi!j Ajfijziwjl < IAFNzInlwly it follows from (6.16) and the definition of B,
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1 ..
l3aF 58, ) < 2K AF e
k

B ,
< 70||AR||;1('2)+ 2 (1A0] +2|AR1 o) IR -

With the same arguments which lead to (6.17) one then concludes that

1 11 lip 2B5 lip M sup

T'_2”aXF ||D(s—{r,r) < o ”XR”r,D(S,r) + E”XR”T,D(SJ) .
Altogether we thus have proved that

lip 6Bs lip sup
||XF11 ”r,D(s—U,r) < T (”XR”r D(s,r) +— ||XR||r’D(S’r)>'

All the other components F% admit the same type of estimates. More precisely, ||XF0||
sup
r,D(s,r)

r,D(s—o,r)’

su 3B(I
| X p20 ||r D(s o) I Xp11 ||r D(S G n and || Xpo2 ||r D(s—o.r) ar€ each bounded by == Xl whereas

1 X p10 ||r D(s_o.n and [ Xpor ||r D(s_o.r are bounded by 23" ||XR|\i”g(S,r). Altogether, one gets
16B
sup o sup
||XF||r7D(S_o"r) X ”XR”r D(s,r)"

Similarly, by the estimates above, one obtains

lip 253(7 lip M sup
”XF”r’D(S,g’r) <— 1 IXRr ”r D(s,r) + E ”XR”r,D(s,r)

as claimed. O
Following [18], the estimates may be compactly written as follows. For A > 0, define for a param-

eter dependent vector field Y:D(s,r) x IT — P(’CV with components (Yy,Yy,Yy,Yy) and parameter
Eell,

X . sup lip
1YY ps,ry =Y lr ps.ry FANY I ps -

stand for either ||Y|3"2 or ||Y||

Furthermore, let ||Y||* r.DG.1)

r,D(s,r) r,D(s,r)"

Corollary 6.1. Under the assumptions of Lemma 6.1, one has for0 <o <sand 0 < A < %
||Xg||;k,D(s,r) < ||XR||:D(SJ),
and
IXFI D50 <~ IXRIF D5,
Moreover, if A, = (k)7, then
By <b .o~ CTHAIF2 (6.18)

with some constant b > 1 depending only on A and 7.
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6.2. KAM step

At the vth step of the iteration scheme we are given a Hamiltonian H, + P, where H,, is in normal
form and P, is a small perturbation satisfying {P,, S} = 0. More precisely, H, and P, are assumed
to be regular on D(s,,r,) x IT,, with 0 <s, <s,_1 and 0 <r, <r,_1 in the sense defined at the
beginning of Section 6.1. Furthermore, I7, C IT is a compact subset and H, is of the form

H=w"y+2"w-z

with @" = (})jea and 2"w = (2}'w)) jep satisfying lw” P 4 |A’2"|l£"’jcl_(S

condition on T,

< M, and the small divisors

1
k-’ +e 2°| >avA -1V Je|? (6.19)

for any (k,e) € Z where Ay = (k). The perturbation P, satisfies in addition the symmetry condition
{P,, S} =0. In this subsection we now drop the index v and write ‘+’ for ‘v + 1’ to simplify notation.
Thus P =P, and P4 = P, and so on. In the following, C stands for a constant which depends only
on A and T - actually the dependence on t only enters through the constant b in (6.18). Furthermore
we assume that the perturbation is so small that we can choose 0 < 1 < ls and 0 < o < 3 with

T 2
o <1, such that

2
o i ook
sup lip n
IXP 7By + 31X sy < =

(6.20)
where k¥ =27 + |A| + 3 and cp > 1 is a sufficiently large constant depending only on A and 7, which
will be specified later and will enter the smallness condition of the perturbation P in Theorem 4.1,
encoded in y.

Approximation of P

We now approximate P by its Taylor polynomial R of degree two in y, w, and z of the form (6.2).
This leads to corresponding approximations of the partial derivatives dxP, d,P, 0 P, and ;P which
constitute the Hamiltonian vector field Xp. As in the proof of Lemma 6.1, we represent R in the form
20<itj<2 RY. The components of the Hamiltonian vector fields Xy can then be expressed in terms
of the derivatives up to order 2 of components of Xp evaluated at y =0, w =0, z=0. Since P(; &)
is analytic, Cauchy’s estimate then leads to the estimate

||XR||;(,D(SJ) < ClXp “:(,D(s,r)’ (6.21)

where we recall that C stands for a constant which depends only on A and 7. Next we need to
estimate how accurate X approximates Xp. We claim that

IXp — XR”;;r,D(SAnr) < C"I”XP”:,D(SJ)- (6.22)
To prove this inequality note that
Xp — Xg = (3y(P — R), —0x(P — R), —=i9;(P — R), idw (P — R)).

Let us begin by estimating d,P — dyR. As dyR = 9y P|y—o,w=0,z—0 one has
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1
dyP —9yR = /(y -0y)(dy P)(x, ty, tw, tz) dt
0

1 1
+/(W -0w) @y P)(x, ty, tw, t2) dt+/(z- 92)(dyP)(x, ty, tw, tz)dt.
0 0

Here y -9y = ZJ»GA yjdy; and w - 8y, z- 9, are defined similarly. By Cauchy’s estimate one has

sup (4771’)2 sup 2 sup
” - 8)/)(B)/P)HD(sAnr) < Cm”a}’P”D(s,r) <Cn ”aJ’P”D(s,r)'

Similarly one gets

sup sup

|w-8m)@y P pGagn: 1@ 8@y P56 gy < CIByPIBE -

As 13y PlIpg ) < IXpI}D s 1)y it then follows that

sup sup
13y P = By RIDE apry < COIXPIE D1
In a similar way one shows that
lip lip
13y P = By RIGs apry < COIXP I D

Next let us estimate the component d,, P — 9, R. Note that

1
owPXx,y,w,z) =0wP(x,0,w,2) +fy <y (OwP)(x, ty, w, 2) dt.
0

The error term f01 y - 9y(@wP)(x,ty, w,z)dt is not part of X and Cauchy’s estimate leads to

1

/y-ay(awP)(x, ty, w,z)dt
0

sup
< 1 (4)’]7‘)2 sup

2 D(s,n)
by (@ —=4mD)

1
<ClawPlpe ) < COlXP I D -

Now expand 9y, P(x, 0, w, z),

1
d
owP(x,0,w,2)—0,P(x,0,0,0) =/ EBWP(X, 0,tw,tz)dt =:1.
0

As %awp(x, 0,tw,tz) =w -9y (OwP)(X,0,tw, tz) +z- 3,(0w P)(x,0, tw, tz) we get

I=w-3w(3wP)(x,0,0,0) +z- 3,(dwP)(x,0,0,0) + Il + Il + IV
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where

II= /(1 —S)(W - y) - (W - 0y)(@wP)(x,0,swW, s2)dS| =,

1
= /(1 —S)(z-9;7) - (z2-3,)(0wP)(x,0,sW, s2)dS|3—,

IV = 2/(1 —8)(z-0z)(W - 0w) (0w P)(x,0,sw, sz)ds.

The error terms I, III, IV are not part of Xg and by Cauchy’s estimate for second derivatives one gets

B P N U 0 P S LT,
P IDGAmn S r (1 — a2 W Iben S Pllr.D(s.n:

For IIl and IV similar estimates are obtained. Altogether we then get

1 sup sup
0w P = OwRlpGs 4y < CIXPlr s -

In a similar way one shows that
—1 owP — dwR h < C” X l
r 10w w ”D(s,4nr) X Il P”r,D(s,r)'

By the same arguments one also has

E”azp - 8zR||B(574m) < Cn||XP||:7D(g7r)~

Finally, we need to consider dyP — dxR. First expand dyP with respect to y,
8XP(Xa y, W7 Z) = aXP(X7 Os W’ Z) + (y : ay)(aXP)(X5 07 W7 Z) + V

where

1

2/(1 =0 - 9y)(¥ - 9y) (OxP)(x, sy, W, 2) ds|5-y
0

is not part of dyR. By Cauchy’s estimate one gets

sup C (77?)4 sup

sup sup
o )zn 156 40 < G2 (1= aymy 196P Iblen < 7 2||axP|| <Cn?(Xp|

D(s,r) r,D(s,r)"

As R is an affine function of y it follows that the term VI in the expansion

(y - 9y)(0xP)(x,0,w, z) = (y - 9y)(3xP)(x,0,0,0) + VI
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is not part of 0xR where

VI:=/(W~8W)(y . ay)(axP)(x,0,tw,tz)dt+/(z~Bz)(y-ay)(axP)(x, 0,tw, tz)dt.

Arguing as above one has

C (nr)°
71154P sup sup
D(s anr) < (nr)z ((1 47])r)3 ”aXP”D(S X C’? ”XP”r D(s,r)*

(nr)2

The remaining term 0P (x, 0, w, z) has to be expanded in w and z up to order 2. The remainder term
VII can then be written in terms of integrals and Cauchy’s estimate can be applied to show that

1 sup sup
W “V"”D(SATIT) < CUHXP”r,D(S,r)-

Altogether we thus have proved that

su sup
”XP XR”r]r D(s,4nr) X Cn”XP”r .D(s,r)"

In a similar way one shows that

lip
”XP - XR ”m D(s,4nr) CT]”XP ”r D(s,r)

and (6.22) is established.

Solution of linearized equation
Since the small divisors assumption (6.19) are supposed to hold, we can solve the linear system

(F,H}+H=R, {F,S}=0

with the help of Lemma 6.1. By Corollary 6.1 and the estimates (6.21) we obtain

X5 ”r D) S C”XP”r D(s,r) (6.23)

and, for any 0 <A < &,

IXE <Ca o FIXp I pisry (6.24)

r,D(s—o,r)
where we recall that k =27 + |A| + 3. By the construction of F and the estimates of X of Lemma 6.1
it follows that Xp is a real analytic map Xr:D(s —o,1) —> Pfcv where Pg = (7’@’, Il llr.n). At each
point r = (x,y, w,z) € D(s — o,r), the differential dXr defines a bounded linear operator on Pg.
Note that the || - ||; y-distance in P(’C\’ between D(s — 20, ;) and the boundary of D(s — o, 1) can be

estimated from below by o A ; " . Hence by Cauchy’s estimate

1AXEIF D205, < CO T IXFIRD o) (6.25)
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where for any r € D(s — 20, %), llde XF || denotes the operator norm on Pg,

ldeXpll = sup [ldeXF-Ylrn.
IYllrN<1
Similarly, one sees that
li - li
1AXE N, 205, < CO T XD s - (6.26)

Canonical transformation
The preceding estimates together with (6.20) and (6.24) imply that for any 0 < A < %

1 _
— X7 ldX |t < Cey'n?. (6.27)

r,D(s—o,r)’ r,D(s—20,%)

Note that the || - ||, y-distance of D(s — 30, El) to the boundary of D(s — 20, %) is at least o A 21—3 >
%. Now choose cg in (6.20) sufficiently large to insure that for any |t| < 1 the flow XtF exists on
D(s—30, %) and maps D(s — 30, ) into D(s — 20, ). Similarly, the flow XL maps D(s — 4o, §) into
D(s — 30, 7). By [14, Lemma A.4], together with the estimate (6.27) above we have

|XE = id)} pis—s0.2) < CIXFIF Do) (6.28)

Since the || - ||; ny distance of D(s — 4o, %) to the boundary of D(s — 30, ﬁ) is at least o A 21—5 >0/32,
it then follows from Cauchy’s estimate that

t * -1
ldXe =1} p_ap.z) < COTHXEN Dis—o1)- (6.29)
In particular, we notice that for any —1 <t <1, XtF :D(s — 30, %) x IT— D(s— 20, %) is regular and

for any & € I, XtF(-; &) defines a canonical coordinate transformation.

New Hamiltonian
Taking the pull back of H + P by the canonical transformation @ = XtF|f:1 one obtains the Hamil-

tonian Hy + P, defined on D(s — 30, %), where H, = H + H and, by (4.9)-(4.10)
1
P, =(P—R)oX} +f{(1 —O)H +tR, F} o Xk dt.
0

We have already verified at the end of Section 4 that S o X} =S and {P4, S} = 0. We now want to
estimate the || - ||, y-norm of the vector field Xp, in terms of the size of Xp. First note that Xp, is
given by

1
Xp, = (X})"(Xp — Xp) +/(x;)*[x(1_t),q+m, Xpldt.
0

and any vector field

It is shown in [14, pp. 130-132], that for any 0 <t <1,0<n < 1]—6, 0< A< %

Y:D(s —20,4nr) — Pg,
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t
” X YHnr D(s—50,nr) X C”Y”nr,D(s—ZGAnr)' (6.30)
By (6.22), one has || Xp — XR”nr Dis,anr) S C?’]”Xp”r DEs.r) and hence in view of (6.30),
t *
” (XF) (Xp _XR)“r]r D(s—50 ) > Cn”XP“r D(s,n)- (6.31)

It remains to consider the commutator [X¢, Xf] where G =G(t) = (1— t)I:I +tR. Note that [X;, XF] =
dXfp - X¢ —dXc¢ - Xp. Hence at each point ¢ in D(s — 20, %), llde XF|| denotes the operator norm of
d. Xp : PY — PY with respect to the norm | - || n. By (6.24)-(6.26),

-1 __— A
_”XF”r D(s—o,r)° ||dXF||r D(s—20, )SCOl o K”XP”r,D(sqr)

whereas by (6.21), || X¢|* < ClIXpllE DG By Cauchy’s estimate one then also has

r,D(s,r)

-1
ldX¢ ”:,D(sfa,g) <Co ”XP”:’D(S,ry

Combining the above estimates yields

(X6, X1} D25 < Co o™ (IXp 17 B e ) - (6:32)
Furthermore, as
11X X1 oo o) S IAXEND o XD oo )
) 2 , ) , )
FIAXE D 5 1) IXG I a0 1) + XG0 o) IXEID G o 1)
+1AXGI D a0 1) IXE I D 20 1)
one also concludes that
X X611 gy < Ca ™l DXy 10 1B
+Ca o™ Mo (IXp 1B ) (6.33)

Using that for any vector Y in P(C, yy*
and the fact that 4nr < 5

N S ‘2||Y||;“,N it then follows from (6.30), (6.32), and (6.33)

£\ * A -2 —-1,_—k sup A
“ (XF) [Xc, XF]“r]r,D(s—Sa,nr) SOy oo T Xell ,Ds, r)”XP ”T,D(S,T)

<C7l a G (”XP”r D(g r))

forany 0 < A < M and any 0 <t < 1. Combined with (6.31) it leads to the following estimate of the
new error term Xpy,

||XP+||7]rD(g 50,1 S <Cn~ a7 o (||XP||rD(gr)) +CT)||XP||?\,D(”)~ (6.34)
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New normal form

We already have seen that Hy = H + A where by (6.23), [ X Hr Disr) S C”Xp”r DEs.r)- Note that A
is of the form
H(y, w,z,£) =d(E) -y + 2E)w -z
and hence
| < CIXP I pes.r- (6.35)
Taking into account that 1 - SUD |y <r ||.Q($)w||N = |Q(€)|[oo it also follows that
2[5 < CIXp I} pis - (6.36)

In order to bound the small divisors for the new frequencies w; = w+® and 2, =2+ 2 forkez?
with |k| < K with K to be chosen later in the proof. Observe that for any (k, e) € Z with |k| < K, using
that |e| <2

k- @+ e 217 < [KIOIMP + ell 2132 < (K +2)CIXp I} .,y < AA

where & satisfies & > C|| Xp ||if1£(s r - (K +2) max < |Agl. It turns out that one can choose & so that
oy :=«a — & >0 - see Lemma 6.3. With the small divisors assumption (6.19) it then follows that for
any (k,e) € Z with k| <K, w4, 24 satisfy on [T,

1
k-wy+e- 24 >a A -1V ]e|Z. (6.37)
6.3. Iteration and proof of Theorem 4.1

To iterate the KAM step infinitely many times we now choose sequences for all the relevant pa-
rameters. Following [18], we choose a geometric sequence for o, choose the n’s to minimize the error
estimate (6.34) and change o and M only slightly.

Let c1 be twice the maximum of all those constants C obtained during the KAM step which depend
only on ACZ and 7. For any v € Z3 set

o o
@ ==2(142"%), My=Mo(2—-27"), Ary=—>
2 M,
with 0 < g <1 and Mg > 1 satisfying Mg > lellp + |Q|11"_‘;[oo‘_5. Then (ay)y>o is decreasing and
(My)y>0 increasing. Hence (1,)y>0 is decreasing as well and
ro/4 < Ay < Ap. (6.38)

Furthermore, with ¥k =21 + |A| + 3,

Oy _ ciey 3 €y

Oyl ==, €vpl=——, m=—
2 (0y0)3 ayoy
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and

Sy+1 =Sy — 30y, Fy41 =MNoly, Dy = D(sy, ).

The initial values sg, op satisfy 0 < sp < 10 and ¢ = s9/40 < 1mply1ng that so > s1 > -+ > sp/2,
and y;p the smallness condition

vo < (co+23¢)) (6.39)

where ¢ appears in (6.20). Finally let K, = K¢2" and I(S“ = ﬁ The smallness condition of the
perturbation is expressed by the inequality

€=¢€¢p< )/oOloO'(’)(. (6.40)
Then one has the following bounds for the sequence (€,)y>0.
Lemma 6.2. Forany v > 0

(i) ev < yoayo27Y;

(ii) €v41 <27% 3¢, and Y 5% €, < 2€0;
(ifi) oy lo) ey <oy log K27V
Proof. (i) The claimed estimate is proved by induction. For v = 0, the estimate holds by assump-
tion (6.40). To prove the induction step, note that by definition, €,41 = c1€, () 10, % €,)!/3. By the
induction hypotheses, (a; 10, “€,)1/3 < (277)1/3 and by the smallness condition of yp, one has

1

a0 ) <ar(n2 )P <o <

QK3 (6.41)

which together with the induction hypothesis implies
€41 <273 a0k 27 =y - 272 - (2_1O’V)K v )/O(XU+]O—1/)(+12_U_1.

(ii) By the definition of €)1, €,+1/€y =1 (av*]a;"ev)%. As by (6.41) €)41/€y < 2753 jtem (ii)
follows.

(iii) The claimed estimate clearly holds in the case v = 0. To prove the induction step first note
that by (ii), €y41/€v <2773, Hence

-1 11—« 1-k
€v410, O €yy1 o Ov+1 _
v+17v+1 _ Sv4T v v+ <2 3 (6.42)

Slgl—k T € Oy oy

€y, Oy
and the claimed estimate for €,1 then follows from the induction hypothesis. O

In [18], a version of the following Iterative Lemma is proved. It can be proved in the same way as
in [18] and hence we omit its proof.

Lemma 6.3. Suppose that H,, + P, is regular on D, x IT, in the sense defined at the beginning ofSectzon 6.1
where H, = w" (§) -y + 2V (§)w - z is a regular Hamiltonian on D, x IT,, in normal form satisfying |w" |

li
12117 goer-s < My and
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1
k-’ +e-2VE)| > oz,)Ak_1 ‘1Vviely, Vé&el,, Vk.e)eZ, (6.43)
and where P, satisfies {P,, S} = 0 and
1Xp, 17" . < €. (6.44)
Then there exist a regular map ®y4+1:Dy41 x I, — D, with ®,41(-, §), being a real analytic symplec-

tic coordinate transformation on D,1 for any & € II,, and a closed subset I, 1 of ITy, ITy+1 = IT) \
+1
U=k, keyez Rie (@v+1), where

1
Rig o) = {5 € Myt [k- 0" @) +e- 2" ®)] < v A -1V felf )

such that (Hy + Py) o @41 = Hy41 + P41 satisfies the same assumptions as H, + Py, but with v 4+ 1 in
place of v.

Remark 6.1. We point out that the dependence of the set RE: l(ocwr]) on the perturbation P is not
indicated in the notation. We will see in Section 6.4 that the measure of this set can be bounded in
terms of o1 independently of the perturbation.

By (6.28)-(6.29) together with (6.24) and the assumption (6.44) we obtain the following estimates.

1 . A A — —
S vr I p, Ao — I <crerylop e, (6.45)
whereas by (6.35)-(6.36) together with assumption (6.44) one gets
Ay Ay
0"t — ¥ |2V - 27| . <crén. (6.46)

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Given the assumptions of Theorem 4.1, we want to apply Lemma 6.3 (Iterative
Lemma) with v = 0. Set

S 1=S; ro:=Tr; o =0 Mo := M; €p:=¢€
and
Do = D(s,r); Hg :=H,; Po:=P
with s, r, &, M, €, H, and P given as in Theorem 4.1. As in the Iterative Lemma, choose og = so/40,

Ao = ag/Mo, and yp and assume that € := € = || Xp, ||f§ Dy S Yootooy . Setting y := ypo one then
gets

A
€0 = I Xpll:ps.r) < Yootoog =y .

In particular, inequality (4.7) of Theorem 4.1 with y chosen as above is satisfied. By Assumption (B2),
{Po, S} ={P, S} = 0. Furthermore for v =0, the small divisors condition (6.43) holds on

Mo:=m\ (] RY(x0)
(k,e)eZ
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where

1
R (o) = {6 € IT: [k-w(&) +e-2(5)| <aoA, ' -1V elZ}).

Thus the Iterative Lemma applies and we obtain a decreasing sequence of domains D, x IT, and
regular maps &, :D, x IT,_1 — D,_q, v > 1, with the properties listed in Lemma 6.3. Set ®" :=
®Pqo---0®Py,: D, x IT,_1 — Do. In particular, (Hy+ Pg)o®" = H, + P,, and the estimates (6.45)-(6.46)
hold. To prove the convergence of the sequence &V, note that the sequence (r,),>o is decreasing.

Thus for any Y € P} one has |Y|lr,,n < IYllr,,,,n. Hence for a linear operator T : (PY, || - lIr,,;.N) —
PE - lryn)
ITlr, o, = sup  NTzllr,,n<  sup  [[Tellr, N=Tllr,-
lellry g NS el N <1

By the mean value theorem one has

v+l v |SUp v |[Sup ) L gpsup
”(D @ ”rO,D\,H < Hd¢ Hrv,ro,DV [®v41 ld”r\,,DH]
where for any r € Dy41, d @ is viewed as a linear map (P, [ - [Ir,.n) = (P¥, I - lrg,n)- In view of

the chain rule d®” =d®; o---od®, and thus by the considerations above,
%
v || sup sup =2
Hd@ ”rv,ro,DV < 1_[ ||d¢”’||r[1717D/l. S 1_[ (l +27 ) <2
p=1 ©>0

where we used that by (6.45), for any u > 1,

sup sup —1 —

ld®ylly,p, <1+ ld®y —1dll. 7 p, <1 +c1aﬂ_1auf]eu_1

and by Lemma 6.2,

1

—pu+1 < 27#72
1 (2K+3C1)3 =

1 (-1
cre, ! 0k €1 <cryo2 =D <

Similarly, one argues for the Lipschitz semi-norm,

v+1 v ||lip v ||lip ) v ||SUP . lip
[&7 =@V 0, <NV vy p 1 Pver —1IET A+ 1dDV L5 o @0 —id]

and shows as for ||dd>”||iri0 D, that ||dq§"||f5j ro.Dy is uniformly bounded. As already pointed out at
the beginning of this subsection, one has 4"‘700 < Ay < Ap and hence

v+1 v||*o : Ay

|t =@V 0y, <ClPvir —idly) -
Combined with (6.45) this leads to
1 A -1 _1—
o+t =¥ 0 | < Cerevey o)™ (6.47)

Therefore, (®"),>1 converges uniformly on ﬂv>0(DU x IT,) = D(s/2,0) x IT, to a Lipschitz con-
tinuous family of real analytic torus embeddings ¥ :T4 x IT, — MN. Here IT, = ﬂv>0 IT, and



T. Kappeler, Z. Liang / J. Differential Equations 252 (2012) 4068-4113 4103

Dy = D(s/2,0) = D(s/2) x {0} x {0} x {0} € MN. Recall from the statement of Theorem 4.1 that
@0 = ¥, denotes the trivial torus embedding T# x IT, — Tg. Then by (6.47)

o o0
Ao v+1 v||*o -1, 1-«
1@ — w0y <D " — o I p, < Cc1 Y a0y My,
0 0

By Lemma 6.2, 3% oy ol ¥ e, < 2015 (33)' €9 and hence || —%Hﬁ;} p, <c€/a as claimed in The-

orem 4.1. Taking into account (6.40) and the estimate (6.46) one sees that the frequencies w" (¢£) € RA
and 2V (¢) € £°~% converge uniformly on I7, to Lipschitz continuous functions f : IT, — R# respec-
tively £2*: T, — ¢°~%, Furthermore, letting @° denote the frequency vector @ of the unperturbed
Hamiltonian H, it follows that f(&) — @(§) = > oo (@ " 1(§) — w”(§)) can be estimated as

o0

[e.¢]
If —olR <CY | -0y <CY e
0 0

By Lemma 6.2(ii), Zg° €, < 2€p. As €g = € we thus have shown that |f — a)lﬁ.}’* < Ce as claimed in
Theorem 4.1. On the embedded tori, the flow of the perturbed Hamiltonian H + P can be computed
as follows. First note that

sup

[Xisp 00 —d0” X [22 <0, o [07) Kissr — X, [

ry,Dy X ITy

sup
< C”va”rv,Dva*‘

In the limit, one thus obtains that Xyip o ¥ =d¥ - Xy, on D(s/2,0) where
Hi(y.w,z;6):=f() -y + 2" E)w-z
It thus follows that for any x € T4 and & € IT,
Xipp (P 6) =¥ (x+tf(£); §)

as claimed in Theorem 4.1. It remains to show the claims of item (i) of Theorem 4.1, concerning the
set IT \ I1,. This will be done in the subsequent Section 6.4. O

6.4. Set of excluded parameters

The aim of this subsection is to prove item (i) of Theorem 4.1. While we again follow the line
of arguments used in [13] and [18], there are notable differences due to the near resonances of the
frequencies of the unperturbed Hamiltonian which we will point out in the course of the proof.

The KAM iteration leads to a decreasing sequence (/1,)y>o of closed subsets of the parameter
space I1. Recall that IT\ IT, = IT \ (ﬂu>0 I1,) where

Iy = U R,?e(ao) and 171, = U Rpe(ay) forv>1.

kezA |k|> Ky
(k.e)ez (k.e)ez

Recall that Z € Z4 x Z8 is given by

Z={(ke)eZ* x ZP\ {(0,0)}: le| <2; k-vs+e-vp =0},
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K, is given by K, = (c1y0)~*"12", and for (k,e) € Z* x ZB,

1
Rip(en) = (& € Myr: k- 0" ©) +e- 2°@)] <avA' 1V el

with IT_; = I1. Here w’ = (w‘?)jeA and 2V = (.Q‘.’)jeB are the frequencies obtained in the KAM it-

eration with @® = w, 29 = 2 denoting the ones of the unperturbed Hamiltonian H. We will prove
that by choosing yp sufficiently small - and hence Ky sufficiently large - meas(/T \ IT,) can be es-
timated as claimed. Note that the set [Ty is defined in terms of the frequencies of H whereas for
v > 1 the set IT, depends on the perturbation P. To estimate meas(I7 \ IT,) we need to make some
preparations. It is convenient to extend the frequencies w", 2", defined on I7,_1, to all of I1. Indeed,
each component of w”*! — @”: 17, — RA and of 2V*! — 2V : 11, — £ has a Lipschitz continuous
extension from I7, to IT which preserves its minimum, maximum, and Lipschitz semi-norm - see e.g.
[13, Lemma M.5]. Since we use the sup norm for w’*! — @" and 2! — 2V we obtain in this way
extensions (0"t — w") of @'t —w" and (2Vt! — 2V) of 2V — 2V to all of IT satisfying

|(a)v+] _ a)v)v

Now define ®"*1, 2V by telescoping sums

Av

n e =2 =2V . (648)

I1,¢>®

_ |a)v+l _ wv|/1\7vu; |(9v+1 _ _QV)V

% v
HTow+ Z(a)‘“rl —o") and 2"T'=0+ Z(.Q‘”’1 — M)
u=0
Then &":IT — R” and ¥ — 2:IT — £ are Lipschitz continuous extensions of w” respectively

2V — £2. Moreover, by Lemma 6.2(ii), > ¢° €, < 2€p and hence it follows from (6.46) and (6.48) that
for any v >0,

v
e —a)|'1\7” |2V — szw < Zeu < 2¢16p.

0
As by (6.38), Ag/4 < Ay < Ag, One then has
|o¥ a)|'\°/4, V-0 }\?/@‘; < 2¢1 €.
In particular,
0 ol 3" - 2| < 1.

Recall that Ao = atg/Mo, €0 < Yotoo, 00 < 1/4, and yo < (2€F3¢1) 3. Thus

8c1€
2c1€9 < p/2 and 170

< 8c10) MoYo.
0

By Assumption (A1), there exists a constant 1 < L < oo satisfying

L>]o! \ﬁf’(m. (6.49)

Now require that g is chosen so small that in addition to (6.39), one has

8c10{ Moyo < 1/2L. (6.50)
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Then, for any v >0,

2V - Q|

sup

) sup
| e =

|“’ — Qg

Vv lip
—Q|F e <1/2L

<a/2 and |®" a)|
and for any (k,e) € Z* x ZB, R} () is contained in

. v 1
Reeloy) :=1{E € IT: [k-@"(¢) +e- 2V E)| <A -1V el ).

In addition, we assume that M = My > 1 bounds the frequencies,

5P+ 12~ B <M and ol 121 . <M. (651)

It turns out that we need not to distinguish between the different values of v in " and £2°. In the
sequel we only use the fact that @ and £2V are Lipschitz maps «’ and £2’, defined on I7, which
satisfy the following inequalities

W -2 <a2 and |0 —o|r+ |2 - 2P, <172l (652)

|‘0 - a)| mee S 7,00

Henceforth we consider functions w’, £2” which satisfy these estimates - they may even depend on k
and e - and for any (k, e) € ZA x ZP define

1
Rie@)={6 el [k-o/ (&) +e-2'E)| <aA ' -1Vvielf}.
First we derive the following estimate for meas(’R,/(e (o).

Lemma 6.4. For any (k, e) € Z* x ZB\ {(0, 0)} with |k| > 6LM|els
meas(Ry, (@) < 12L(LMp) A k|2 AL
where p = diam(IT) denotes the diameter of I1.

Proof. Taking into account Assumption (A1) we introduce the unperturbed frequencies ¢ = w(&) as
new parameters with domain /7 = w(I7) and consider the resonance zones Rke = a)(R ) in IT.

Writing @ and §2 for the pull back of @’ and £2’ by w™!, we then have by (6.49), (6.52)
. lip lip -1)lip
o —id| ¥ < |0 — | |07z <1/2.

In view of (6.49), (6.51), (6.52) and using that L > 1, M > 1, the Lipschitz semi-norm of £2 can be
bounded as follows

1

2L

|Q|l[l§)eoo_—5 g (|Q/ - Q|lli7pyloo,—8 + |Q|l;;zoo.75)| ! |llp (

+ M)L <2LM.  (6.53)

To estimate meas(Ry(c)), let g@) =k &) +e-£2(). Choose a vector v € {—1,1}4 such that
k-v = |k| and write any vector in R? as a linear combination of v and an element w in the orthogonal
complement v of v. Introduce the following affine function of the real variable r, £ = ¢ () :=r1v + w.
For any ¢ > s with ¢(t), £(s) in IT one has

1 1
k-o@ =kt +k- (@) — )]s = kIt —s) - Sk =)=l —s).  (654)



4106 T. Kappeler, Z. Liang / J. Differential Equations 252 (2012) 4068-4113
Moreover by (6.53) and the assumption 6LM|e|s < |k|,
le- 25| =le- (2(c0) - 2(¢9))]
- lip 1
< lels|$2 (t—s)<2LMle|s(t —s) < §|l<|(t—s)- (6.55)

,00.7%

Altogether we have shown that uniformly for w € v with rv 4+ w|,—s € 11,

f 1
grv+w)s > Elkl(t —5).

It follows that for each point w € v+ so that rv 4+ w € IT for some r € R, the set

{reR:rv+well;

grv+w)| <n}

1
is contained in an interval I,, of length meas(l,) < 12n|k|_1. With n = ocAk_1 -1v |e|52 and Fubini’s
theorem one then concludes that

12aA;! 1 )
——k_1ve|? - (diamT)!AI7T,

meas(RRe (05)) < k]

As 6LM]e|s < |k| and LM > 1 one then gets for any e € Z58
: 1,1 - = AI-1
meas(Rye (@) < 12a[k| "2 A, " - (diam IT) )

Going back to the original parameter domain /T by the inverse w1 of the frequency map and noting
that diam(I7) < |a)|%’p with p denoting the diameter diam(/7) of I7 it then follows that

meas(Rj, (@) < (Jo™! |lli§7)w meas(Rye (@)
<1204 (Mp) AT |2 A7
as claimed. O
It is convenient to introduce A :={e € ZB: 1< |e| <2} and
Ar:=le€ At e = (8aj)jez — (O—qj) jez, A € Z\ {0}}.

By a slight abuse of terminology we refer to A, as the subset of resonant sites of A. It turns out that
the estimates involving resonant sites have to be dealt with separately. Recall that the unperturbed

frequencies satisfy |2 — §|§;im,75 < M where for j € B,

2i=1jI"+a1lj|* +---+ap|j|®

withd=dy>dy > --->dp>0,a1,...,apeR,andd>1,0<5<1A(d—-1).
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Lemma 6.5. There exists E > 1 depending only on M and the approximation £2 of the unperturbed frequencies
£2 so that forany e € A\ A, with |e|, ;= maxecp{|j|: ej #0} > E

1
le-2'&)| > glela1 veer.

Proof. We only prove the claimed estimate for e € A\ A, with e - £2(§) of the form £2{(§) — £2;(§)
for some i, j € B with j # —i which is the most subtle case. Write .Q,/ =i+ (.Qi’ — §2;) and £2; =
Qi+ (£2i — £2) and use that |2’ — 2|75 <a/2 and |2 — 27", <M to conclude that

JIRA
le- Q'] > 12 — 25l —a — M(()° + (j)?).

Without loss of generality assume that i =1i| > j=|jl. As0<a <1< M and i > 1 it then follows
that

D
le- 2| > 12— 21 = 3Mi° > i — j =" |ay (i — j¥) — 3MP°.
=1
For j =0 we get, with szlil laj],

le-2'| =i - ci't —3Mi°.

Choosing E > 1 sufficiently large and using that in this case |e|s_; = |i|%~' + 1 and d, § <d it then
follows that for any e with |e|. > E

le-2'| > %|e|@,_1 VE e IT.
If j > 1 note that i* — j* is monotone increasing in x > 0 and hence
le-2'| =i — j4 —c(i — j) - 3Mi°.
Using that i9 — j9 = (i — j)(@1 4 j4=1) + ji% 1 —ij91 and as d > 1,
i jd 4 jia=1 a1 :i(idfl _]-dfl) _i_]-(idfl _jdfl) >0
it then follows that
2(i = @) = (i — H(d + 4 = (- pid.
On the other hand

i
i — jdi =/d1xd1‘ldx<d1 Si—=j)-1vitt
i

Altogether we then get
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1vidi=1

’eg/’>}l(l_ ) (1—4Cd1 >+%id71(1_12Mi57d+1)

-1

1
> Ly g )<2 aca, V! Vl'

— 12Mi8—4+1 ),
8

Choosing E > 1 larger, if necessary, it follows also in this case that for any e with |e|, > E
, 1
le-2'®)] > glelan VEeIT

as claimed. O

Lemma 6.6. For any e € A\ A, with |e| > E and E given as in Lemma 6.5 and forany k € ZA and 0 < o < 6

6
with R, (@) # @ one has

k| > ! 1+ M) e
= 16 d-1-

Proof. Again we only prove the claimed estimate for e € A \ A, with e - £2'(§) of the form
Q{(&) - SZ; (&) for some i, j € B with j # —i which is again the most subtle case. Since by assumption
’R,’(e (ov) # () there exists & € IT such that

1
k- (&) + 2[(§) — 2j&)| < aA;el?.
By Lemma 6.5 one then concludes that for any e € A\ A, with |e|, > E

sup

1 1
k||’ [7° > |2] — 2] - k- o'+ 2{ — 2}| > glela1 —alel;.

As a < 16 and, by assumption, d — 1 > §, it then follows that |k||w’ |SLlp

by (6.51) and (6.52),

> ie lelg—1. On the other hand,

sup sup (o4

FlofP<Z+M<14+M

|sup
2

@'z <o’ - oly

yielding [k| > £c(1 + M)~ Tle|¢g_7 as claimed. O
Introduce

Enr:= (2E" ') v (6-48-LM(1+M)) and Kn-:=6LM max _|els

|e‘d—1—6<Enr
where the subscript index nr stands for ‘nonresonant’.

Lemma 6.7. Forany 0 < o < 15 and (k, e) € Z x ZB withe € A\ A, and either [k| > Knr or |elq_1_s > Enr,

meas(Rj, (@) < 12L(LMp) A~ k=2 AL,
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Proof. Without loss of generality assume that R;,(cr) # @. If |elg—1—5 > Eyr, then by the definition

of Enr, |eld—1—s > 2E4~1=% which in view of 0 < |e| < 2 implies that |e|, > E. By Lemma 6.6 one
then gets |k| > 16(1 + M) T|e|g_1. Note that |e|g_i_sle|s < 3le|q_1. Together with the assumption
lelg—1—s = Enr > 6-48 - LM(1 + M) it then follows that

1
k| > E(] + M)_ -6-48 - LM(1 4+ M)le|s = 6LM|e|s.

If |le|lg—1—s < Enr, then |k| > K, > 6LM|e|s. So in both cases, Lemma 6.4 applies, yielding the claimed
estimate. O

Next we treat the case of a resonant site, e € A,. Let C4 =1V maxjey |i| and introduce

Er:=2(6LMCx)4-1-9/0=9 and K, :=6LM max e
ee

;
lelg—1-s SEr
where the subscript index r stands for ‘resonant’.
Lemma 6.8. For any (k, e) € Z with e € A, and either |k| > K, or |e|q_1—_5 > Er
meas(R}, (@) < 12L(LMp) A~ 1or[k| =3 A1

We remark that in the proof of Lemma 6.8 the assumption § < 1 of Assumption (A2) is used in an
essential way.

Proof. Note that for e € A, |elg_1_s = 2|i|"17%. Using that 0 < § < 1 it then follows that
lelg—1—s > E, implies |i|'=% > 6LMC,. On the other hand, as (k, e) € Z, it follows that 2|i| = |k - va| <
|k|C4 which then leads to

k| > C;'21i] = C;'21i°i|'~% = 6LM|els.

If le]lg_1_s < Er, then by assumption |k| > K, and hence |k| > 6LM|e|s as well. Thus in both cases we
can again apply Lemma 6.4 to get the claimed estimate. O

It is convenient to combine the statements of Lemma 6.4 for e =0, Lemma 6.7, and Lemma 6.8.
Introduce

E.=EVEy and K.=KrV Kyr. (6.56)
Corollary 6.2. For any (k,e) € Z\ Z, withe € A and for any (k,0) € Z,
meas (R}, (@) < 12L(LMp)!A1= o k|2 AL
where
={(k,e)e Z: 0< |k| <K.; 0< |elg—1-5 < Ex}.
To continue, introduce for any k € Z# the resonance sets

Ri@ =[] Ril@.

(k,e)eZ\ Z,
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Remark 6.1. Note that for any 0 <« < 1/16, Ry(a) = 4. Indeed, let (0,e) € Z\ Z,. If e € A, then 0=
k-va+e-vg=2i for some i € Z with i, —i € B. But i = 0 contradicts that e € A,. It remains to treat
the case e € A\ A,. The assumption (0, e) ¢ Z, implies that |e|q_1_s > E4. As Ey > Epy > 2E9-170 jt
follows that |e|, > E. By Lemma 6.6 it then follows that Ry, (o) = #.

The case k # 0 is treated in the following lemma. Recall that p denotes the diameter of I7.

Lemma 6.9. Assume that 0 < o < 1/16. Then, for any k € Z4 \ {0},
meas(Rp (@) < CpA ak ’%H”(d’l)qu_l
where C is a constant depending on L, M, A, d, § and the coefficients in the expansion of £2.
Proof. First note that
Ri(0) = R2(a) URY (@) URYM (@)
where

Rip(@) if (k,0) € 2\ Z,,

70 _
Ry (o) = {@ if (k, 0) € 2,

and

Ri@= |J Re@: R"@0= |J Ri@.

ecA, eeA\A;
(k,e)e Z\ 2, (k,e)eZ\ Z,
By Corollary 6.2,
meas(R;2 (@) < 12L(LMp) A |k ’%Ak_]. (6.57)

Toward R;{r(a) note that for (k,e) € Z\ Z, with e € A; it follows that
0 <2lil= k- val < Calk].
Hence
t{k.e)e Z\ Z,: e€ A} < Calk| (6.58)
and thus again by Corollary 6.2,
meas(R} () < 12CAL(LMp) A1~k - k|2 AL (6.59)

To estimate meas(R," (&r)) we argue as follows. Consider (k,e) € Z\ Z, with R} (o) # ¥ and e €
A\ Ar. If lelg_1_5 > E,, then |e|, > E and hence by Lemma 6.6,

1
k> —@1+M el
K] 16(-i-)||d1

and thus
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tlec A\ Ap: (k,e) € Z; |elg_1-s > Ex; Ry, (@) # 0}
<tfee A\ A lelg—1 <16(1+ M)lk|}
_ 1)1 -
<39 (16(1 4+ M))* 7V k27" (6.60)

Finally

tlee A\ Ar: (koe) € 2\ Zus 1< Jela—ts <} <3- (E41707 4 1)%

Altogether, we then get again from Corollary 6.2 that meas(R;" («)) is bounded by

_ 11 — -
3(9(16(1 + M))* ™ k2@-D7 4 2E4107 1)) 120 wMp) A k2 ALY (6.61)
Combining (6.57), (6.59), (6.61) leads to the claimed estimate for meas(R,;(oz)). a

Proof of Theorem 4.1(i). First we need to choose the parameters Ko, 7, and «. Recall that Ky is
given by Ko = (c1y0) °~! where yq satisfies the smallness condition (6.39) and (6.50). In view of the
definition, Ay = (k)%, and of Lemma 6.9, choose 7 > |A|+ % +1v2(d—1)"". Furthermore, if necessary,
choose 0 < yp smaller so that Ko > K, where K, is given by (6.56). Finally let 0 < o < 1/16. With

these choices we now estimate meas(I7 \ IT,). Write IT\ [T, = | J{_, £} where

]

1_ 0 =2 _ 0
= U Re@) &= ] R,
k| <K, k| <K,

(k,e)eZ,e#0 (k,00eZ

[x

and

Ei= | R &i=J U Ri(a.

k| =K v>1 [k|>K),
(k,e)eZ (k,e)eZ

We will estimate meas(Eé), 1 <i <4, separately. First note that in view of (6.58) and (6.60), for each

0 < |k| < K, the set {e € A: (k,e) € Z; R,?e(a) # (3} is finite. Hence EO][ is a finite union of resonance
sets ’Rge(oc). By its definition, Rge(oc) is a closed subset of the compact set /7 C R# and monotone

increasing with respect to «. Furthermore, by Assumption (A3), meas(R,?e(O)) = 0. Hence it follows
that

lim meas(&,) =0.

a—0
By Corollary 6.2
meas(£2) < > 12LAMp) ANk T2 A < oM Y kT2 A (6.62)
k+#0 k#0
and by Lemma 6.9,

_ 1 -1
meas(Ej)gmeas( Z Rg(a)) < Z Cp ATk =2 F1V2@=D"" 4 1, (6.63)
k| > K k| =K.
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By the choice of T > |A| + % +1v2(d—1)"", one then gets

meas(&2) + meas(&7) < C,o'A|_1ot(Z |k|_%Ak_l + Z k| ~2 V2@ Ak_1>

k#0 |k| =K
1
[Al-1 - VB
<20pMla Y R <cCph-1g (6.64)
k=0

where C’ is a constant only depending on |A|. Toward meas(EO‘}), recall that Ry, (ay) S Rl‘je(oz) as

oy <o, forany v > 1. As K, < Ko < K, for any v > 1 one concludes that for any nonempty resonance
set Ry, () in Eo‘} one has (k,e) € Z\ Z,. Lemma 6.9 then implies that

_ 1
meas(&y) < Z Z CplAl-1g k|~ 2+1v2@-D) IAk_1 <cCpf1g Z " (6.65)
V1 k=K, v21 Y

By the choice of K, K, = Ko2", one then gets

meas(5g) < CC'p! e Y Ky /2" <Ky o e,
v>1

In particular it follows that
4 .
> “meas(Z}) =0(a). a—0.
i=2

This finishes the proof of item (i) of Theorem 4.1. O
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