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In this paper we prove a KAM theorem for the defocusing
NLS equation in one space dimension with periodic boundary
conditions. The novelty of our result is that it is valid not only
near the zero solution, but on the entire Sobolev space H N (T,C)

with N ∈ Z�1. In particular, the invariant tori which persist under
small Hamiltonian perturbations might be far away from the zero
potential.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Consider the defocusing nonlinear Schrödinger equation (dNLS) in one space dimension

i∂t u = −∂2
x u + 2|u|2u (1.1)

on the Sobolev space H N
C

≡ H N (T,C) of complex valued functions on R of period one,

H N
C

=
{

u(x) =
∑
j∈Z

û je
2π i jx: ‖u‖N < ∞

}
,

where
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‖u‖N =
(

|û0|2 +
∑
j �=0

j2N |û j|2
) 1

2

,

and û j , j ∈ Z, denote the Fourier coefficients of u. It is an integrable PDE and according to [12],
admits global Birkhoff coordinates. Indeed, recall from [12] that the (complex) NLS equation can be
viewed as a Hamiltonian system with phase space H N

c = H N
C

× H N
C

and Poisson bracket

{F , G}(φ1, φ2) = −i

1∫
0

(∂φ1 F∂φ2 G − ∂φ2 F∂φ1 G)dx

where ∂φi F denotes the L2-gradient of F with respect to φi (i = 1,2). The Hamiltonian equations of
motion are given by

∂tφ1 = −i∂φ2 HNLS, ∂tφ2 = i∂φ1 HNLS

where

HNLS(φ1, φ2) =
1∫

0

(
∂xφ1∂xφ2 + φ2

1φ2
2

)
dx.

The defocusing NLS equation (1.1) is then obtained by restricting the complex NLS equation to the
invariant subspace H N

r = {φ ∈ H N
c | φ2 = φ̄1}. Note that H N

r is a real subspace of H N
c . To describe the

Birkhoff coordinates introduce the model space

hN
r = {

(q, p) = (q j, p j) j∈Z: q j, p j ∈ R; ‖q‖N + ‖p‖N < ∞}
where

‖p‖N =
(

p2
0 +

∑
j �=0

j2N |p j|2
) 1

2

.

The corresponding complex Hilbert space is denoted by hN
c . The space hN

r is endowed with the Poisson
structure induced by the standard symplectic form

∑
j∈Z

dq j ∧ dp j . In [12] one finds a detailed proof
of the following result on Birkhoff coordinates for (1.1).

Theorem 1.1. There exists a real analytic map Φ : H0
r → h0

r with the following properties

(B1) Φ is canonical, i.e. for any C1-functions F , G on h0
r , {F ◦ Φ, G ◦ Φ} = {F , G} ◦ Φ .

(B2) For any N ∈ Z�0, the restriction of Φ , Φ|H N
r

: H N
r → hN

r , is a real analytic diffeomorphism.

(B3) Φ defines global Birkhoff coordinates for NLS on H1
r . That is, on h1

r , the transformed NLS Hamiltonian
HNLS ◦ Φ−1 is a real analytic function of the actions I j = 1

2 (p2
j + q2

j ), j ∈ Z.
(B4) The differential of Φ at φ = 0, d0Φ , is the Fourier transform.

To state our KAM theorem, we need first to introduce some more notations. Let us denote by Tτ ,
τ ∈ R, the flow of translation on L2

c , i.e. for any φ ∈ L2
c , Tτ φ(x) = φ(x+τ ). Note that τ → Tτ (φ) solves

the linear PDE ∂τ φ = ∂xφ. Actually the latter is a Hamiltonian PDE

∂τ φ1 = −i∂φ2(iH2), ∂τ φ2 = i∂φ1(iH2)
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where H2 is the Hamiltonian

H2(φ1, φ2) =
1∫

0

φ2∂xφ1 dx

which is the second Hamiltonian in the NLS-hierarchy – see e.g. [12, Section 4]. In particular, H2 Pois-
son commutes with HNLS ,

{H2, HNLS} = 0.

Actually, a large class of Hamiltonians Poisson commutes with H2. Indeed, consider a Hamiltonian of
the form

P (φ) =
1∫

0

F
(
x, φ1(x),φ2(x)

)
dx

where F = F (x, ζ,η) is a polynomial in two complex variables ζ,η, F (x, ζ,η) = ∑
finite aij(x)ζ iη j, with

coefficients aij in C∞(T,C). As H1
c ↪→ C0(T,C

2) by the Sobolev embedding theorem, for any N � 1,
the functional P is defined on H N

c . Note that for i = 1,2, ∂φi P = f i(x, φ1(x),φ2(x)) with f1 = ∂ζ F ,
f2 = ∂η F and that (∂φ1 P , ∂φ2 P ) ∈ H N

c for any φ in H N
c . By a straightforward computation,

{P , H2} = −i

1∫
0

(∂φ1 P · ∂φ2 H2 − ∂φ2 P · ∂φ1 H2)dx

= −i

1∫
0

(∂φ1 P · ∂xφ1 + ∂φ2 P · ∂xφ2)dx

= −i

1∫
0

d

dx
F
(
x, φ(x)

)
dx + i

1∫
0

(∂x F )
(
x, φ(x)

)
dx.

As F (x, φ(x)) is 1-periodic,
∫ 1

0
d

dx F (x, φ(x))dx vanishes. Furthermore,

1∫
0

(∂x F )
(
x, φ(x)

)
dx =

∑
finite

1∫
0

(∂xai j)(x)φ1(x)iφ2(x) j dx.

Hence {P , H2} vanishes identically iff all the coefficients aij of the polynomial F are constant. More
generally, {P , H2} vanishes identically for any Hamiltonian P on its domain of definition if it is of the
form

P (φ) =
1∫

0

F
(
φ1(x),φ2(x)

)
dx (1.2)

where F (ζ,η) is an arbitrary analytic function on some domain of C
2.
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Next we need to introduce notation to parametrize finite-dimensional tori invariant under the
defocusing NLS. For I A = (I j) j∈A ∈ R

A
>0 with A ⊆ Z finite and R

A
>0 = (R>0)

A , denote by TI A the torus
in h0

r given by

TI A = {
(q j, p j) j∈Z: q2

j + p2
j = 2I j ∀ j ∈ A; p j = q j = 0 ∀ j ∈ Z \ A

}
and by T I A its image by Φ−1, T I A = Φ−1(TI A ). For Π ⊆ R

A
>0 a compact subset of positive Lebesgue

measure, denote by TΠ and TΠ the sets

TΠ =
⋃

I A∈Π

TI A and TΠ = Φ−1(TΠ).

We will consider Hamiltonian perturbations HNLS + εK on H N
r , N ∈ Z�1, with the following assump-

tions on K :

(P1) K is analytic on some open neighborhood U ≡ UΠ of TΠ in H N
c and real valued on U ∩ H N

r ;
(P2) the L2-gradients ∂φ1 K , ∂φ2 K are bounded as functions from U to H N

C
and verify the normaliza-

tion condition

sup
{‖∂φ1 K‖N + ‖∂φ2 K‖N : φ ∈ U

}
� 1;

(P3) {K , H2} ≡ 0.

Examples of Hamiltonians satisfying conditions (P1)–(P3) are polynomials in φ1, φ2 of the form

∑
finite

1∫
0

aijφ1(x)iφ2(x) j dx

where the complex coefficients aij are constant and satisfy aij = ā ji .

Our KAM theorem states that for any A ∈ Z finite and for any ε > 0 sufficiently small, many of
the NLS-invariant tori T I A persist under perturbation of the NLS Hamiltonian by εK with K satisfying
(P1)–(P3). Moreover, these tori and their linear flows are only slightly deformed. Let us now state
our KAM theorem in a more formal way. Denote by T

A the |A|-dimensional torus (R/2πZ)A and by
meas(W ) the Lebesgue measure of a Lebesgue measurable subset W ⊆ R

A .

Theorem 1.2. Let N ∈ Z�1 and let A ⊆ Z be a finite index set. Furthermore let Π ⊆ R
A
>0 be a compact subset

of positive Lebesgue measure. Then for any Hamiltonian K satisfying (P1)–(P3), there exists ε0 > 0 so that the
following holds:

(KAM1) there exists a family of closed subsets Πε ⊆ Π , |ε| � ε0 , with limε→0 meas(Π \ Πε) = 0;
(KAM2) for any |ε| � ε0 , there exists a Lipschitz family of real analytic torus embeddings

Ξε : T
A × Πε → U ∩ H N

r ;
(KAM3) for any |ε| � ε0 , there exists a Lipschitz map

fε :Πε → R
A

such that for any |ε| � ε0 , I A ∈ Πε , and θA ∈ T
A , the curve t �→ Ξε(θA + t fε(I A), I A) is a quasi-

periodic solution of

∂tφ1 = −i∂φ2 HNLS − iε∂φ2 K , ∂tφ2 = i∂φ1 HNLS + iε∂φ1 K .
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Related work. Theorem 1.2 confirms that the KAM type theorem of [7], when applied to dNLS, does
not only hold near φ = 0, but is actually valid on the entire phase space. In [8], Geng and You prove
an abstract KAM result in spaces with exponential weights near an equilibrium solution of certain
linear integrable PDEs for a special class of perturbations. They then apply their theorem, among
other equations, to the beam equation and to a class of nonlinear Schrödinger equations in arbitrary
space dimension. We note that the existence of quasi-periodic solutions of such equations was proved
earlier in [2], by the C-W-B method. At the same time, Theorem 1.2 complements the KAM type
theorem proved in [10] where instead of imposing condition (P3), dNLS is studied on various invariant
subspaces of H N

r , including the subspace of odd functions and the one of even functions of H N
r . The

perturbations considered in [10] are assumed to induce Hamiltonian vector fields which are tangent
to the subspaces considered so that the perturbed equation evolves on these subspaces. For further
results on Hamiltonian perturbations of nonlinear Schrödinger equations, see [1–9] and [13–17].

To prove Theorem 1.2 one has to overcome the difficulties caused by the asymptotics of the NLS
frequencies (ω j) j∈Z . In fact, for j ∈ Z large, ω j ∼ ω− j , i.e., ω j and ω− j are in ‘near resonance’. In
earlier work (see [14,10]), NLS-invariant subspaces of H N

r were considered so that the near resonances
mentioned above are no longer relevant when dNLS is restricted to these subspaces. In [8], Geng and
You overcome the difficulties caused by these near resonances by imposing a symmetry condition on
the perturbations – cf. [8], condition (A4). Condition (P3), introduced above, is a coordinate-free way
of formulating their condition (A4). In Section 2 we express condition (P3) in Birkhoff coordinates.
It allows to apply a KAM theorem with symmetries, a version of a by now standard abstract KAM
theorem of the type obtained in [18] (cf. also [7]), which we state in Section 4. Taking into account
the properties of the frequencies of dNLS, discussed in Section 3, Theorem 1.2 is then proved in
Section 5. In subsequent work we plan to apply the arguments used in the proof of Theorem 1.2 to
other equations as well. In Section 6 we prove the KAM theorem with symmetries stated in Section 4.

2. H2-symmetry

Let us consider a real analytic Hamiltonian P, defined on an open neighborhood U ⊆ H N
C

of the
form introduced in Section 1 with Π ⊆ R

A
>0 where A ⊆ Z is finite. We want to compute the Poisson

bracket {P , iH2} in Birkhoff coordinates (q, p) = (q j, p j) j∈Z . For this purpose it is convenient to intro-
duce action–angle coordinates I A = (I j) j∈A , θ ≡ θA = (θ j) j∈A and complex coordinates w = (w j) j∈B ,
z = (z j) j∈B where B = Z \ A. Note that for j ∈ A, one has I j > 0 and hence the angle variable θ j is
well defined mod 2π . The coordinates q, p are related to I A , θA , w, and z as follows: for j ∈ A

(q j, p j) = √
2I j(cos θ j,− sin θ j),

where I j = (p2
j + q2

j )/2 whereas for j ∈ B ,

w j = 1√
2
(q j − ip j), z j = 1√

2
(q j + ip j).

Note that for any j ∈ B , dw j ∧ dz j = i dq j ∧ dp j and w j z j = I j whereas for j ∈ A one has dθ j ∧ dI j =
dq j ∧dp j . Assume that P : U → C is a real analytic Hamiltonian. Then the Taylor expansion of P ◦Φ−1

at I A = ξ ∈ Π , w = 0, z = 0 is of the form

∑
Pk�mneik·θ y�wmzn (2.1)
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where y = I A − ξ and where k, �,m,n are integer vectors, k ∈ Z
A , � ∈ Z

A
�0, m,n ∈ Z

B
�0 with

|m|, |n| < ∞. Here |m| = ∑
j∈B m j and in (2.1) we have used the multi-index notation

y� =
∏
j∈A

y
� j

j , k · θ =
∑
j∈A

k jθ j, wm =
∏
j∈B

w
m j

j .

Further introduce the sequence ν = (ν j) j∈Z where ν j = j, for any j ∈ Z. With the notation νA =
(ν j) j∈A and νB = (ν j) j∈B one then has

k · νA =
∑
j∈A

jk j and m · νB =
∑
j∈B

jm j.

By Theorem 1.1, there exists a neighborhood W of H0
r in H0

c so that the Birkhoff map Φ is defined
on W and has range V := Φ(W ) ⊆ h0

c so that for any N � 0,

Φ : W ∩ H N
c → V ∩ hN

c (2.2)

is a bi-analytic diffeomorphism.

Proposition 2.1.

(i) On h1
c ∩ V , iH2 ◦ Φ−1(q, p) = ∑

j∈Z
2π j I j . In particular, for I A = ξ + y one has iH2 ◦ Φ−1(q, p) =

2π(c + ∑
j∈A jy j + ∑

j∈B jw j z j), where c = ∑
j∈A jξ j .

(ii) Let P : U → C be given as above. Then, at any point I A = ξ ∈ Π , w = 0, z = 0, the function {P ◦
Φ−1, iH2 ◦ Φ−1} admits a Taylor expansion in y = I A − ξ , w, z of the form

{
P ◦ Φ−1, iH2 ◦ Φ−1} = 2π i

∑
k,�,m,n

(
k · νA + (n − m) · νB

)
Pk�mneik·θ y�wmzn.

Proof. (i) follows from [11], Proposition 3.4 and the remark following it and (ii) results from a
straightforward computation, taking into account that the Birkhoff coordinates are canonical. �

As an immediate consequence of Proposition 2.1 one has the following

Corollary 2.1. For P : U → C with {P , H2} ≡ 0, the coefficients of the Taylor expansion (2.1) of P ◦ Φ−1 at
I A = ξ ∈ Π , w = 0, z = 0 satisfy for any k ∈ Z

A , � ∈ Z
A
�0 , m,n ∈ Z

B
�0

if Pk�mn �= 0 then k · νA + (n − m) · νB = 0. (2.3)

Proof. As Φ and hence Φ−1 are canonical one has 0 = {P , H2} ◦ Φ−1 = {P ◦ Φ−1, H2 ◦ Φ−1}. The
claimed statement then follows from item (ii) of Proposition 2.1. �

As an illustration of implications of (2.3), consider P in Corollary 2.1 with the property that P ◦Φ−1

admits an expansion of the form

∑
|k|�K , j∈B

pkje
ik·θ w j z− j. (2.4)

It then follows from (2.3) that pkj = 0 for any j ∈ B with 2| j| > K maxi∈A |i|. In particular, the sum in
(2.4) is finite.
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3. NLS frequencies

Let W and V be the open neighborhoods introduced in Section 2 – see (2.2). Note that HNLS ◦Φ−1

is well-defined on V ∩ h1
c and analytic there. By Theorem 1.1, HNLS ◦ Φ−1 only depends on the action

variables I j , j ∈ Z, and it then follows that HNLS ◦ Φ−1 is a real analytic function of I j , j ∈ Z. For any
j ∈ Z,

ω j := ∂I j HNLS ◦ Φ−1

is called the jth NLS frequency of the (defocusing) NLS. We note that due to Theorem 1.1, the fre-
quencies are analytic functions on V N

I for any N ∈ Z�1 where V N
I ⊆ �1,2N(Z,C) denotes the open

neighborhood of �1,2N (Z,R) given by

V N
I :=

{
I =

( p2
j + q2

j

2

)
j∈Z

: (q j, p j) j∈Z ∈ V ∩ hN
c

}
. (3.1)

Here �
1,α
C

≡ �1,α(Z,C) denotes the Banach space consisting of all complex sequences v = (v j) j∈Z

with

‖v‖�1,α = |v0| +
∑
j �=0

| j|α|v j| < ∞.

The expansion of HNLS ◦Φ−1 at I = 0 is calculated in [14]. It leads to the following asymptotic expan-
sion of the frequencies in a neighborhood of I = 0 in �1,2(Z,C) (see [10, Corollary 3.2])

ω j = 4π2 j2 + 4
∑
i �= j

I i + 2I j + O
(

I2)

and of their partial derivatives

∂Ii ω j = 4 − 2δi j + O(I). (3.2)

As an application one obtains the following results (cf. [10]).

Proposition 3.1. For any ∅ �= A ⊆ Z with |A| < ∞, the following functions, when restricted to R
A
�0 , satisfy

(i) det
(
(∂Ii ω j)i, j∈A

)∣∣
I=0 �= 0; in particular det

(
(∂Ii ω j)i, j∈A

) �≡ 0;
(ii) for any k ∈ Z

A and a,b ∈ B,
(M1) k · ωA ± ωa �≡ 0;
(M2) k · ωA ± (ωa + ωb) �≡ 0;
(M3) if in addition a �= b then k · ωA + ωa − ωb �≡ 0.

Proof. (i) It follows from (3.2) that

det
(
(∂Ii ω j)i, j∈A

)∣∣
I=0 = −(−2)|A|(2|A| − 1

) �= 0.

(ii) Let A′ := A ∪ {a} and k± ∈ Z
A′

with k±
j = k j for j ∈ A and k±

a = ±1. In particular, k± �= 0. As

by (i), det((∂Ii ω j)i, j∈A′ ) doesn’t vanish identically on R
A′
�0, it follows that there exists j ∈ A′ so that

∂I j (
∑

i∈A kiωi ± ωa) doesn’t vanish identically. This proves (M1). The statements (M2) and (M3) are
proved in a similar way. �
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Remark 3.1. Consider the case (M2) with a = b. Let A′ = A ∪ {a}, k± ∈ A′ with k±
j = k j for any j ∈ A

and k±
a = ±2. Then k± �= 0. Hence again, ∂I j (

∑
i∈A kiωi ± 2ωa) cannot vanish identically for all j ∈ A′

at the same time.

Proposition 3.1 will allow us to prove Kolmogorov’s and Melnikov’s conditions for NLS on the entire
phase space – see Section 5 for details. Finally we state the asymptotics of the frequencies derived
in [10]. There, they are stated for potentials of real type, φ ∈ H1

r . The proof of Theorem 5.10 in [10]
shows that the asymptotics actually hold on W ∩ H1

c .

Proposition 3.2. For φ ∈ W ∩ H1
c or equivalently, for I in V 1

I ,

ω j = 4π2 j2 + O(1) (3.3)

locally uniformly on W ∩ H1
c . Hence by [13], Theorem A.3, and by Theorem 1.1,

V 1
I → �∞(Z,C), I �→ (

ω j − 4 j2π2)
j∈Z

is real analytic.

Note that the asymptotics (3.3) imply that

ω j − ω− j = O(1). (3.4)

It means that the frequencies ω j and ω− j are not well separated as | j| → ∞. This causes the ad-
ditional difficulties, alluded to in the introduction, when estimating the measure of the set of good
parameters in the proof of Theorem 1.2.

4. An infinite-dimensional KAM theorem with symmetries

Theorem 1.2 is derived from an abstract KAM Theorem with parameters in infinite dimension, first
obtained by Kuksin [15] and then further developed by Pöschel [18], cf. also [13]. We need a version
of this result taking into account the occurrence of near resonance (3.4). Following the exposition in
[13] and [18], consider small perturbations of a family of infinite-dimensional integrable Hamiltonians
H ≡ H(y, u, v; ξ) with parameter ξ in the normal form

H =
∑
j∈A

ω j(ξ)y j + 1

2

∑
j∈B

Ω j(ξ)
(
u2

j + v2
j

)
, (4.1)

on the phase space

MN := T
A × R

A × �2,N × �2,N

with coordinates (x, y, u, v) where A ⊆ Z with |A| < ∞, B = Z \ A, N ∈ Z�1 and where T
A =

R
A/2πZ

A denotes the |A|-dimensional torus, conveniently indexed by the set A. Here �2,N ≡
�2,N (B,R) denotes the Hilbert space of all real sequences u = (u j) j∈B with

‖u‖2
N =

∑
j∈B

〈 j〉2N |u j|2 < ∞,

where 〈 j〉 = 1 ∨ | j|. The ‘internal’ frequencies, ω = (ω j) j∈A , as well as the ‘external’ ones, Ω =
(Ω j) j∈B , are real valued and depend on the parameter ξ ∈ Π ⊂ R

A and Π is a compact subset
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of R
A of positive Lebesgue measure. The symplectic form on MN is the standard one given by∑

j∈A dx j ∧ dy j + ∑
j∈B du j ∧ dv j . The Hamiltonian equations of motion of H are therefore

ẋ = ω(ξ), ẏ = 0, u̇ = Ω(ξ)v, v̇ = −Ω(ξ)u,

where for any j ∈ B , (Ω(ξ)u) j = Ω j(ξ)u j . Hence, for any parameter ξ ∈ Π , on the |A|-dimensional
invariant torus,

T0 = T
A × {0} × {0} × {0},

the flow is rotational with internal frequencies ω(ξ) = (ω j(ξ)) j∈A . In the normal space, described
by the (u, v) coordinates, we have an elliptic equilibrium at the origin, whose frequencies are
Ω(ξ) = (Ω j(ξ)) j∈B . Hence, for any ξ ∈ Π , T0 is an invariant, rotational, linearly stable torus for the
Hamiltonian H . Our aim is to prove the persistence of this torus under small perturbations H + P
of the integrable Hamiltonian H for a large Cantor set of parameter values ξ . To this end we make
assumptions on the frequencies of the unperturbed Hamiltonian H and on the perturbation P .

Assumption A (Frequencies).

(A1) The map ξ �→ ω(ξ) between Π and its image ω(Π) is a homeomorphism which, together with
its inverse, is Lipschitz continuous.

(A2) There exists a real sequence (Ω j) j∈B , independent of ξ ∈ Π, of the form

Ω j = | j|d + a1| j|d1 + · · · + aD | j|dD (4.2)

where d = d0 > d1 > · · · > dD � 0 with D ∈ Z�0,d > 1, and a1, . . . ,aD ∈ R, so that ξ �→
(Ω j − Ω j) j∈B is a Lipschitz continuous map on Π with values in �∞,−δ ≡ �∞,−δ(B,R) for some
0 � δ < 1 ∧ (d − 1).

(A3) For any (k, e) in Z := {(k, e) ∈ Z
A × Z

B \ (0,0): |e| � 2; k · νA + e · νB = 0} with e �= 0

meas
{
ξ ∈ Π : k · ω(ξ) + e · Ω(ξ) = 0

} = 0. (4.3)

Recall that for integer vectors such as e, the norm |e| is given by |e| = ∑
j∈B |e j|. Furthermore, we

note that Assumption (A1) implies that (4.3) holds for e = 0.

The second set of assumptions concerns the perturbing Hamiltonian P and its vector field, X P =
(∂y P ,−∂x P , ∂v P ,−∂u P ). We use the notation iξ X P for X P evaluated at ξ . Finally, we denote by MN

C

the complexification of the phase space MN , MN
C

= (C/2πZ)A × C
A × �

2,N
C

× �
2,N
C

. Note that at each
point of MN

C
, the tangent space is given by

P N
C

:= C
A × C

A × �
2,N
C

× �
2,N
C

.

Assumption B (Perturbation).

(B1) There exists a neighborhood V of T0 in MN
C

such that P is a function on V × Π and its Hamil-
tonian vector field defines a map

X P : V × Π → P N
C

. (4.4)

Moreover, iξ X P is real analytic on V for each ξ ∈ Π , and iw X P is uniformly Lipschitz on Π for
each w ∈ V . (Here iξ X P denotes the vector field X P , evaluated at the parameter value ξ ; iw X P
is defined similarly.)
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(B2) {P , S} = 0 where

S = a + b
∑
j∈A

jy j + c
∑
j∈B

j
(
u2

j + v2
j

)
/2 (4.5)

with a ∈ R and b, c ∈ R \ {0}.

To state the KAM theorem we need to introduce some domains and norms. For s > 0 and r > 0
we introduce the complex T0-neighborhoods

D(s, r) = {|�x| < s
} × {|y| < r2} × {‖u‖N + ‖v‖N < r

} ⊂ MN
C
.

Here, for z in R
A or C

A , |z| = max j∈A |z j |. For a vector Y in P N
C

with components (Yx, Y y, Yu, Y v)

introduce the weighted norm

‖Y ‖r,N = |Yx| + 1

r2
|Y y| + 1

r
‖Yu‖N + 1

r
‖Y v‖N .

Such weights are convenient when estimating the components of a Hamiltonian vector field X P =
(∂y P ,−∂x P , ∂v P ,−∂u P ) on D(s, r) in terms of r. For a vector field Y : V × Π → P N

C
we then define

the norms

‖Y ‖sup
r,N;V ×Π

= sup
(w,ξ)∈V ×Π

∥∥Y (w, ξ)
∥∥

r,N ,

‖Y ‖lip
r,N;V ×Π

= sup
ξ,ζ∈Π
ξ �=ζ

‖�ξζ Y ‖sup
r,N;V

|ξ − ζ | ,

where �ξζ Y = iξ Y − iζ Y , and

‖iξ Y ‖sup
r,N;V = sup

w∈V

∥∥Y (w, ξ)
∥∥

r,N .

In a completely analogous way, the Lipschitz semi-norm of the map F :Π → �∞,−δ is defined as

|F |lip
Π,�∞,−δ = sup

ξ,ζ∈Π
ξ �=ζ

‖�ξζ F‖�∞,−δ

|ξ − ζ | .

Finally, let 1 � M < ∞ be a constant satisfying

|ω|lipΠ + |Ω|lip
Π,�∞,−δ � M. (4.6)

Note that if Assumption A and Assumption B hold such an M exists.

Theorem 4.1. Suppose H is a family of Hamiltonians of the form (4.1) defined on the phase space MN ,
N ∈ Z�1 , and depending on parameters in Π so that Assumption A is satisfied with d and δ. Furthermore,
assume that s > 0. Then there exist a positive constant γ depending on the finite subset A ⊂ Z of (4.1), d, δ,
the frequencies ω and Ω of H, and s such that for any perturbed Hamiltonian H + P with P satisfying As-
sumption B on a neighborhood V of T0 in MN

C
, with D(s, r) ⊆ V for some r > 0, and the smallness condition
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ε := ‖X P ‖sup
r,N;D(s,r)×Π

+ α

M
‖X P ‖lip

r,N;D(s,r)×Π
� αγ (4.7)

for some 0 < α < 1, the following holds. There exist

(i) a closed subset Π∗ ⊂ Π , depending on the perturbation P , with meas(Π \ Π∗) → 0 as α → 0,

(ii) a Lipschitz family of real analytic torus embeddings Ψ : T
A × Π∗ → MN ,

(iii) a Lipschitz map f :Π∗ → R
A,

such that for any ξ ∈ Π∗ , Ψ (TA × {ξ}) is an invariant torus of the perturbed Hamiltonian H + P at ξ and the
flow of H + P on this torus is given by

T
A × R → MN , (x, t) �→ Ψ

(
x + t f (ξ), ξ

)
.

Thus for any x ∈ T
A and ξ ∈ Π∗ , the curve t �→ Ψ (x + t f (ξ), ξ) is a quasi-periodic solution for the Hamilto-

nian iξ (H + P ). Moreover, for any ξ ∈ Π∗ , the embedding Ψ (·, ξ) : T
A → MN is real analytic on D(s/2) =

{|�x| < s/2}, and

‖Ψ − Ψ0‖sup
r,N; D(s/2)×Π∗ + α

M
‖Ψ − Ψ0‖lip

r,N; D(s/2)×Π∗ � cε

α
,

| f − ω|sup
Π∗ + α

M
| f − ω|lipΠ∗ � cε,

where

Ψ0 : T
A × Π → T0, (x, ξ) �→ (x,0,0,0)

is the trivial embedding, and c is a positive constant which depends on the same parameters as γ .

Remark 4.1.

(i) Note that (4.2) implies that for any j ∈ B with − j ∈ B , one has Ω− j = Ω j . Theorem 4.1 continues
to hold under a weaker version of (4.2) where the coefficients for j > 0 and j < 0 might take
different values, a±

1 , . . . ,a±
D . However for the applications we have in mind, condition (A2) as

stated suffices. Furthermore, it is straightforward to verify that Theorem 4.1 also continues to
hold if δ and/or some of the exponents in (4.2) are negative. We add the condition δ � 0 and
dD � 0 for convenience.

(ii) Theorem 4.1 remains true if S in Assumption (B2) is replaced by
∑

j∈A ρ( j)y j + ∑
j∈B ρ( j)(u2

j +
v2

j )/2 where (ρ( j)) j∈Z is a real sequence, satisfying for some constants κ0 > 0, κ1 > 0 and
Cρ > 0,

∣∣ρ( j) − ρ(− j)
∣∣ � Cρ | j|κ1 > 0, ∀| j| � κ0 > 0.

It turns out that Theorem 4.1 can be shown by adapting the proofs of Theorem A and Corollary C
in [18], taking into account the symmetry condition (B2). The latter condition is used in an essential
way to obtain the claimed measure estimate of Theorem 4.1 – see Section 6.4.

We conclude this section with a brief outline of the KAM proof in the presence of symmetries.
As in the case without symmetries, it employs the rapidly converging iteration scheme of Newton
type, involving an infinite sequence of coordinate transformations. At the νth step of the scheme, a
Hamiltonian Hν + Pν is considered where Hν is a Hamiltonian of the form (4.1), and Pν is a small
perturbation satisfying the symmetry condition {Pν, S} = 0. In the case considered, the Hamiltonian
S is in normal form, given by the expression (4.5). One then constructs a canonical transformation
Ψν with the property that (Hν + Pν) ◦ Ψν takes the form Hν+1 + Pν+1 where Hν+1 is again of the
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form (4.1) and Pν+1 is a much smaller error term than Pν , satisfying in addition {Pν+1, S} = 0. The
composition of the infinite sequence of coordinate changes Ψ0,Ψ1, . . . transforms the initial Hamilto-
nian H + P – at least formally – into a normal form H∞ . For the construction of these coordinate
transformations a set of parameters ξ has to be excluded. The measure of this set is then estimated,
using that {Pν, S} = 0 for any ν . Let us now describe the construction of the transformation Ψν in
more detail. For brevity, we drop the index ν in Hν, Pν, Rν and write

H + P = H + R + (P − R),

where R is obtained from P by truncating its Fourier and Taylor series expansion. From {P , S} = 0
one deduces that {R, S} = 0 as well. The canonical transformation Ψν is constructed as the time-1-
map of the flow Xt

F of a Hamiltonian vector field X F ,Ψν = Xt
F |t=1, where the Hamiltonian F satisfies

{F , S} = 0. To find such a Hamiltonian F , one expands (H + P ) ◦ Xt
F with respect to t at t = 0. Recall

that for any Hamiltonian G ,

d

dt
G ◦ Xt

F = {G, F } ◦ Xt
F .

Hence

R ◦ X1
F = R +

1∫
0

{R, F } ◦ Xt
F dt

and

H ◦ X1
F = H + {H, F } +

1∫
0

(1 − t)
{{H, F }, F

} ◦ Xt
F dt.

Altogether, one thus has

(H + R) ◦ Ψν = H + R + {H, F } +
1∫

0

{
(1 − t){H, F } + R, F

} ◦ Xt
F dt.

The latter integral is of quadratic order in R and F and will be part of the new error term. The aim
is to determine F in such a way that H+ := H + R + {H, F } is again of the form (4.1) and {F , S} = 0.
Setting Ĥ := H+ − H , this amounts to solve the system of linear equations

{F , H} + Ĥ = R and {F , S} = 0 (4.8)

for F and Ĥ with Ĥ being of the form (4.1), and R given as above. We will explicitly construct a
solution F , Ĥ of (4.8). It then follows that

(1 − t){H, F } + R = (1 − t)Ĥ + t R,

and hence

(H + P ) ◦ Ψν = H+ + Q + (P − R) ◦ Ψν (4.9)

with
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Q =
1∫

0

{
(1 − t)Ĥ + t R, F

} ◦ Xt
F dt. (4.10)

Then H+ is the new normal form Hν+1 and Q + (P − R) ◦ Ψν the new perturbative term Pν+1. Note
that the term Q is of quadratic order in R , F , Ĥ . Furthermore, one has S ◦ Xt

F = S as

d

dt

(
S ◦ Xt

F

) = {S, F } ◦ Xt
F = 0 and S ◦ Xt

F

∣∣
t=0 = S. (4.11)

Hence {
(P − R) ◦ Ψν, S

} = {
(P − R) ◦ Ψν, S ◦ Ψν

} = {P − R, S} ◦ Ψν = 0

and, with G(t) := (1 − t)Ĥ + t R ,

{Q , S} =
1∫

0

{{
G(t), F

} ◦ Xt
F , S ◦ Xt

F

}
dt

=
1∫

0

{{
G(t), F

}
, S

} ◦ Xt
F dt.

As Ĥ and S are both in normal form one has {Ĥ, S} = 0. Together with the already established iden-
tities {F , S} = 0 and {R, S} = 0, one then concludes by the Jacobi identity that {Q , S} = 0. Altogether
it follows that {Pν+1, S} = 0. In Section 6, we complete the proof of Theorem 4.1.

5. Proof of Theorem 1.2

In this section we show how Theorem 1.2 can be deduced from Theorem 4.1, using similar ar-
guments as in [13] – see also [10]. Recall the set-up of Theorem 1.2. The subset A ⊆ Z is of finite
cardinality, Π ⊆ R

A
>0 is compact and of positive Lebesgue measure, TΠ is a union of A-tori in

h0
r indexed by ξ ∈ Π , and TΠ = Φ−1(TΠ) ⊆ ⋂

N�0 H N
r . Consider the perturbed NLS Hamiltonian

Hε = HNLS + εK , where K is a real analytic map, K : U → C, with U ≡ UΠ a complex neighborhood
of TΠ in H N

c for some N ∈ Z�1, so that properties (P1)–(P3) of Theorem 1.2 hold.
As a first step we apply the Birkhoff map Φ−1 of Theorem 1.1,

Φ−1 :hN
r → H N

r .

Since Φ−1 is real analytic, there is a complex neighborhood V of TΠ in the complexification of hN
r ,

which is mapped bi-analytically onto the neighborhood U of TΠ . If necessary, we choose U and/or V
smaller. Hence we have the following diagram where each arrow represents a bi-analytic diffeomor-
phism given by an approximate restriction of Φ−1:

TI ⊂ TΠ ⊂ V ⊂ hN
c

T I ⊂ TΠ ⊂ U ⊂ H N
c .

Now we consider the transformed Hamiltonian Hε ◦ Φ−1. Define H̃NLS := HNLS ◦ Φ−1 and K̃ := K ◦
Φ−1|V so that

Hε ◦ Φ−1 = H̃NLS + ε K̃ .
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Then Hε ◦ Φ−1 is real analytic on V ⊃ TΠ . Let us first look at the integrable Hamiltonian H̃NLS . By
Theorem 1.1, H̃NLS depends on (q, p) only through the actions, I j = (q2

j + p2
j )/2, j ∈ Z. As in Section 3,

we view H̃NLS as a real analytic function of the I = (I j) j∈Z defined on V N
I where V N

I has been
introduced in (3.1). Using Taylor’s formula and the definition of the frequencies, ω j(I) := ∂I j H̃NLS(I),
we obtain

H̃NLS
(

I0 + J
) = H̃NLS

(
I0) +

∑
j∈Z

ω j
(

I0) J j + Q (5.1)

where Q := ∑
i, j∈Z

Q ij(I0, J ) J i J j and

Q ij
(

I0, J
) :=

1∫
0

(1 − t)∂Ii ω j
(

I0 + t J
)

dt.

Note that ∂Ii ω j = ∂Ii ∂I j H̃NLS(I) and hence the Q ij are symmetric in i and j. Using the asymptotics
of ω j and the analyticity properties of (ω j − 4π2 j2) j∈Z of Proposition 3.2 it follows from Cauchy’s
estimate (see e.g. [13, Lemma A.2]) that

sup
j∈Z

∣∣∣∣∑
i∈Z

Q ij
(

I0, J
)

J i

∣∣∣∣ � C‖ J‖�1,2N

and hence

|Q | =
∣∣∣∣∑

i, j

Q i j
(

I0, J
)

J i J j

∣∣∣∣ � C‖ J‖2
�1,2N (5.2)

uniformly in I0 on some complex neighborhood of TΠ and ‖ J‖�1,2N sufficiently small. Furthermore,
by assumption (P2), the Hamiltonian vector field XK of K , given by XK = −i(∂φ2 K ,−∂φ1 K ), is defined
on U and of order 1, ‖XK ‖N = O (1). The Hamiltonian vector field of the transformed Hamiltonian
K̃ = K ◦ Φ−1,

XK̃ = (
Φ−1)∗

XK = dΦ · XK ◦ Φ−1,

is then defined on V . In view of Theorem 1.1, we may shrink V , if necessary, so that dΦ ◦ Φ−1 is
uniformly bounded on V . Hence

‖XK̃ ‖N = O (1) (5.3)

uniformly on V .
As a second step we introduce symplectic polar coordinates near the tori in the family TΠ . For

each ξ = (ξ j) j∈A ∈ Π we then introduce new coordinates by setting for j ∈ A

√
2(ξ j + y j)e−ix j := q j + ip j,

√
2(ξ j + y j)eix j := q j − ip j

whereas for j ∈ B , the Birkhoff coordinates q j , p j play the role of u j , v j of Section 4,

u j := q j, v j := p j.
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For each ξ ∈ Π , this transformation is real analytic and symplectic on D(s, r) ⊆ V for all s > 0 and
r > 0 sufficiently small. In the following we fix such an s, while we keep the freedom of choosing
r smaller later in the proof. Using the expansion of H̃NLS in (5.1) and setting I0 to be element with
components ξ j for j ∈ A and 0 for j ∈ B , the integrable Hamiltonian H̃NLS in the new coordinates is,
up to a constant depending only on ξ , given by H + Q with

H = H(y, u, v; ξ) =
∑
j∈A

ω j(ξ)y j +
∑
j∈B

Ω j(ξ)
(
u2

j + v2
j

)
/2, (5.4)

where Ω j(ξ) := ω j(ξ) for j ∈ B , and, according to (5.1), Q ≡ Q (y, u, v; ξ) is given by

Q =
∑
i, j

Q i j(ξ, J ) J i J j with J j = y j ( j ∈ A) and J j = (
u2

j + v2
j

)
/2 ( j ∈ B), (5.5)

where we have identified I0 with ξ . We want to apply Theorem 4.1 for H , defined by (5.4), P := Q +
ε K̃ , and S := iH2 ◦ Φ−1. We now verify Assumptions (A1)–(A3) and (B1)–(B2). Concerning (A1), recall
that by Proposition 3.1, det(( ∂ωi

∂ξ j
)i, j∈A) �≡ 0 on Π . Since this determinant is a real analytic function,

it is nonzero almost everywhere on Π . In particular, for any given η > 0 we may excise from Π a
relatively open subset Πη with meas(Πη) < η such that on Π \Πη the above determinant is uniformly
bounded away from zero. Moreover, we may cover Π \Πη by finitely many closed subsets Πι , so that
on each subset the map ξ → ω(ξ) is a bianalytic homeomorphism onto its image in R

A . Henceforth
it suffices to consider each such parameter set Πι one at a time.

Next let us verify (A2). The external frequencies Ω j , j ∈ B , may be written as Ω j(ξ) = Ω j + Ω̃ j(ξ)

with Ω j = 4π2 j2 and

Ω̃ j(ξ) := Ω j − Ω j = ∂I j H̃NLS(ξ) − 4π2 j2.

By Proposition 3.2, Ω̃ : ξ �→ (Ω̃ j(ξ)) j∈B maps Π into �∞(B;R) and is analytic on a complex neigh-
borhood of Π with values in �∞(B,C). Hence Ω̃ is also Lipschitz by Cauchy’s estimate. In summary,
Assumption (A2) is satisfied with d = 2 and δ = 0.

To see that Assumption (A3) holds note that by Proposition 3.1, k · ω(ξ) + e · Ω(ξ) �≡ 0 for every
k ∈ Z

A and e ∈ Z
B with 1 � |e| � 2. Since each such expression is real analytic in ξ , its zero set is a

set of measure zero and (A3) follows.
Toward Assumption (B2), first note that by Proposition 2.1(i), iH2 ◦Φ−1 is of the form S , described

in (B2). As Φ−1 is canonical and Q , given by (5.5), is in normal form, it follows that {Q , iH2 ◦ Φ−1}
= 0. Furthermore, in view of Assumption (P3), {K ◦ Φ−1, iH2 ◦ Φ−1} = {K , iH2} ◦ Φ−1 = 0. Altogether
we have shown that {

P , iH2 ◦ Φ−1} = {
Q + ε K̃ , iH2 ◦ Φ−1} = 0

and Assumption (B2) follows.
It remains to check Assumption (B1). As already mentioned, the perturbation P consists of two

parts

P = Q + ε K̃ .

In view of the definition (5.5), the Hamiltonian vector field of Q is given by

X Q = (∂y Q ,0, ∂v Q ,−∂u Q ).

To estimate the size of X Q we apply Cauchy’s estimate to each of its components. From the estimate
(5.2) together with the bounds |y| < r2 and ‖u‖N + ‖v‖N < r one then gets that ‖X Q ‖sup

r,N;D(s,r)×Π
�

ι
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cr2. As Q analytically extends to some complex neighborhood of Π , again by Cauchy’s estimate, one
obtains a similar bound for the Lipschitz semi-norm of X Q ,

‖X Q ‖lip
r,N;D(s,r)×Πι

� cr2.

Taking the weight factors in the norm ‖ · ‖r,N into account and using (5.3), one gets the following
estimate for the second term in P , ‖XK̃ ‖sup

r,N;D(s,r)×Πι
� c

r2 . Arguing as for Q , one obtains a bound of

the same form for the Lipschitz semi-norm, ‖XK̃ ‖lip
r,N;D(s,r)×Πι

� c
r2 . Altogether, we thus have shown

that for any 0 < α � M and r > 0 small enough,

‖X Q +ε K̃ ‖sup
r,N;D(s,r)×Πι

+ α

M
‖X Q +ε K̃ ‖lip

r,N;D(s,r)×Πι
� C

(
r2 + ε

r2

)
. (5.6)

In particular, we have verified Assumption (B1) with V in (4.4) given by D(s, r).
To meet the smallness condition (4.7) of Theorem 4.1 for P = Q + ε K̃ choose r and α as follows

r2 = √
ε, α = 2C

γ

√
ε, (5.7)

with ε so small that α < 1. Here, C is taken from the preceding estimate, and γ is taken from
Theorem 4.1. We then obtain

C

(
r2 + ε

r2

)
= 2C

√
ε = γ α.

The estimate (5.6) then implies that (4.7) holds. The conclusions of Theorem 1.2 now follow from the
ones of Theorem 4.1. Let us only comment on the measure theoretic statement of Theorem 1.2. By
Theorem 4.1 and the choice (5.7) of α, for each Πι there exists Πι,ε ⊆ Πι so that

meas(Πι \ Πι,ε) → 0 as ε → 0.

Finitely many sets Πι cover the parameter domain Π up to a set of measure η. By first choosing η
and then ε small enough we can assure that

meas

(
Π \

⋃
ι

Πι,ε

)
→ 0 as ε → 0.

The proof of Theorem 1.2 is now complete. �
6. Proof of Theorem 4.1

The aim of this section is to prove Theorem 4.1. It is based on the proof of a KAM theorem without
symmetries presented in [18].

6.1. Linearized equation

In this subsection we study the linear system (4.8)

{F , H} + Ĥ = R and {F , S} = 0 (6.1)
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where H , S , R are given Hamiltonians and F , Ĥ are to be determined. It is convenient to introduce
complex coordinates w = (w j) j∈B , z = (z j) j∈B defined by

w = 1√
2
(u − iv) and z = 1√

2
(u + iv).

In these complex coordinates, the Hamiltonians H ≡ H(y, w, z; ξ) and S = S(y, w, z) are given by

H =
∑
j∈A

ω j y j +
∑
j∈B

Ω j w j z j,

S = a + b
∑
j∈A

jy j + c
∑
j∈B

jw j z j .

Here ω j = ω j(ξ) and Ω j = Ω j(ξ) depend on the parameter ξ and a,b, c are real constants with
b �= 0, c �= 0. In the sequel we will assume that the constants a, b, c are given by a = 0, b = c = 1
– the case where a ∈ R, b, c ∈ R \ {0} are arbitrary is proved in the same way. H is assumed to be
regular on the domain D(s, r) × Π in the sense that for each ξ ∈ Π , iξ H ≡ H(· ; ξ) is real analytic on
D(s, r) and H(y, w, z; ·) is Lipschitz in ξ , uniformly on D(s, r). The Hamiltonian R = R(x, y, w, z; ξ) is
also assumed to be regular on D(s, r) × Π and to be of the form

R =
∑

2|l|+|m+n|�2

Rklmneikx yl wmzn. (6.2)

Here and in the sequel, a sum such as in (6.2) extends over all integer vectors k ∈ Z
A , l ∈ Z

A
�0,

and m,n ∈ Z
B
�0. Hence R is a polynomial in y, w, z of degree two – the y j , j ∈ A, being variables

of degree two – whose coefficients depend regularly on x and ξ in the sense above. Moreover, the
Hamiltonian vector field XR ≡ XR(x, y, w, z; ξ) associated with R is assumed to be a regular map

XR : D(s, r) × Π → P N
C

(6.3)

and R is assumed to satisfy the symmetry conditions

{R, S} = 0. (6.4)

The latter identity means that for any k ∈ Z
A , l ∈ Z

A
�0, m,n ∈ Z

B
�0 and ξ ∈ Π

Rklmn · (k · νA + (n − m) · νB
) = 0. (6.5)

The mean value [R] of R is defined by

[R] =
∑

|l|+|m|=1

R0lmm yl wmzm.

Note that [R] is of the same form as H . To shorten notation we drop the subscripts N and Π in
‖ · ‖sup

r,N;D(s,r)×Π
and write ‖ · ‖lip

r,D(s,r) instead of ‖ · ‖lip
r,N;D(s,r)×Π

as well as |ω|lip , |Ω|lip
�∞,−δ instead of

|ω|lipΠ , |Ω|lip
Π,�∞,−δ . In the sequel, we will always assume that Ω satisfies condition (A2) of Section 4,

i.e., Ω = Ω + Ω̃ where Ω is independent of ξ with

Ω j = | j|d + · · · for some d > 1
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and Ω̃ = Ω − Ω is a Lipschitz map, Ω̃ :Π → �∞,−δ(B,R) for some 0 � δ < d − 1. Finally, for any
e ∈ Z

B with finite support we define

|e|δ :=
∑
j∈B

〈 j〉δ|e j|.

Lemma 6.1. Let α > 0, s > 0, r > 0 and assume that H and R are regular on D(s, r) × Π and that R satisfies
(6.3) and (6.4). Moreover assume that for any ξ ∈ Π and any (k, e) ∈ Z

∣∣k · ω(ξ) + e · Ω(ξ)
∣∣ � αA−1

k · 1 ∨ |e|
1
2
δ (6.6)

where the sequence (Ak)k∈ZA ⊆ R satisfies Ak � 1. Then the linear system (6.1) has a unique solution F , Ĥ
when normalized by [F ] = 0, [Ĥ] = Ĥ . The following estimates hold:

‖XĤ‖sup
r,D(s,r) � ‖XR‖sup

r,D(s,r), ‖XĤ‖lip
r,D(s,r) � ‖XR‖lip

r,D(s,r)

and for any 0 < σ � s

‖X F ‖sup
r,D(s−σ ,r) � 16Bσ

α
‖XR‖sup

r,D(s,r),

‖X F ‖lip
r,D(s−σ ,r) � 25Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
,

where M � 1 satisfies M � |ω|lip + |Ω|lip
�∞,−δ and Bσ = (2|A| ∑

k∈ZA 〈k〉4 A4
k e−2|k|σ )

1
2 .

Proof. We are looking for solutions F and Ĥ of (6.1) which admit expansions of the form

F =
∑

2|l|+|m+n|�2

Fklmneik·x yl wmzn

and

Ĥ =
∑

|k|+|m|=1

Ĥ0lmm yl wmzm.

Use that {x j, y j} = 1 for any j ∈ A and {w j, z j} = 1 for any j ∈ B and that all other brackets between
coordinate functions vanish to conclude

{
eik·x yl wmzn, y j

} = ik je
ik·x yl wmzn (6.7)

and

{
eik·x yl wmzn, w j z j

} = i(n j − m j)eik·x yl wmzn. (6.8)

It then follows that

{F , H} =
∑

i Fklmn
(
k · ω + (n − m) · Ω)

eik·x yl wmzn.
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One then finds by comparison of coefficients that the system (6.1) admits the solution F and Ĥ given
by

i Fklmn =
{

Rklmn
k·ω+(n−m)·Ω , if Rklmn �= 0 and (k,n − m) �= (0,0),

0, otherwise,

Ĥ0lmm = R0lmm. (6.9)

By (6.5), one has Rklmn(k ·νA + (n −m) ·νB) = 0. Thus the small divisor conditions (6.6) guarantee that
Fklmn is well defined for any k, l, m, n. Furthermore [F ] = 0 and [Ĥ] = Ĥ . When normalized in this
way, F and Ĥ are uniquely determined. Clearly, one has {Ĥ, S} = 0 and

{F , S} =
∑

i Fklmn
(
k · νA + (n − m) · νB

)
eik·x yl wmzn

which by the definition of F equals

∑ Rklmn(k · νA + (n − m) · νB)

k · ω + (n − m) · Ω eik·x yl wmzn.

In view of (6.5) it then follows that {F , S} = 0. To derive the claimed estimates we decompose R =
R0 + R1 + R2 and write

R0 = R00 = R000 + R001; R1 = R10 + R01; R2 = R20 + R11 + R02

where Ra comprises all terms with |m + n| = a,

R000 =
∑

Rk000eik·x, R001 =
∑
j∈A

R001
j y j =

∑
|l|=1

Rkl00eik·x yl

and Rab are given by

R10 =
∑
j∈B

R10
j w j, R01 =

∑
j∈B

R01
j z j,

R20 =
∑

i, j∈B

R20
i j wi w j, R11 =

∑
i, j∈B

R11
i j zi w j, R02 =

∑
i, j∈B

R02
i j zi z j.

The coefficients Rab
j and Rab

i j are given by the corresponding derivatives of R with respect to the

components of w and z at w = 0, z = 0 and depend on x and ξ whereas the coefficients R001
j are

given by ∂y j R|y=0 and also depend on x and ξ . So e.g. for any j ∈ B ,

R10
j = ∂w j R|w=0, z=0 =

∑
Rk0m j0eik·x and m j = (δ ji)∈B .

The functions F and Ĥ are decomposed in a similar way. The linear system {F , H} + Ĥ = R then may
be written as follows {

F ab, H
} = Rab − [

Rab], Ĥab = [
Rab]

and it suffices to obtain the claimed estimates for each of the Hamiltonians F ab , Ĥab individually. By
the definition of Ĥab , the claimed estimates for Ĥ held trivially. Concerning the terms F ab , they all
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can be treated in a similar fashion. So we concentrate on F 10 and F 11 only. Let us begin with F 10.
We want to estimate X F 10 = (0,−∂x F 10,0, i∂w F 10) in terms of XR . It is convenient to introduce the
notation Ṙ = (Ṙ j) j∈B with

Ṙ j ≡ R10
j =

∑
k

Ṙkje
ik·x = ∂w j R|w=0, z=0.

By the definition of the norm ‖ · ‖sup
r,D(s,r) one has

‖Ṙ‖sup
D(s) � r‖XR‖sup

r,D(s,r) (6.10)

where D(s) := {x ∈ C
A/2πZ

A: |�x| < s}. By assumption, Ṙ : D(s) → �2,N ≡ �2,N (B,C) is analytic and
has a Fourier expansion with Fourier coefficients (Ṙkj) j∈B , k ∈ Z

A, satisfying the L2-bound

∑
k∈ZA

∥∥(Ṙkj) j∈B
∥∥2

N e2|k|s � 2|A|(‖Ṙ‖sup
D(s)

)2
.

Actually, due to the symmetry conditions (6.5), for each k ∈ Z
A , Ṙkj = 0, and hence Ḟkj = 0, for any

j ∈ B except possibly for j = j(k) = k · νA .
For any k ∈ Z

A , Ṙkj(k) :Π → C is Lipschitz and the corresponding coefficient Ḟkj(k) of Ḟ is given
by

iḞkj(k) = Ṙkj(k)

k · ω − Ω j(k)

.

By the small divisors assumption (6.6), |k · ω − Ω j(k)| � αA−1
k for any k ∈ Z

A . Hence

∥∥(Ḟkj) j∈B
∥∥

N � Ak

α

∥∥(Ṙkj) j∈B
∥∥

N (6.11)

and thus

‖Ḟ ‖sup
D(s−σ )

�
∑

k

∥∥(Ḟkj) j∈B
∥∥

N e|k|(s−σ )

� 1

α

(∑
k

A2
k e−2|k|σ

) 1
2
(∑

k

∥∥(Ṙkj) j∈B
∥∥2

N e2|k|s
) 1

2

� Bσ

α
‖Ṙ‖sup

D(s)

or, as Ḟ = ∂w F 10,

1

r

∥∥∂w F 10
∥∥sup

D(s−σ )
� Bσ

α
‖XR‖sup

r,D(s,r).

The other nonzero component of X F 10 is given by ∂x F 10 = ∑
k ik(

∑
j∈B Ḟkj w j)eik·x . As by (6.11),

∣∣∣∣∑
j∈B

Ḟkj w j

∣∣∣∣ �
∥∥(Ḟkj) j∈B

∥∥
N‖w‖N � Ak

α

∥∥(Ṙkj) j∈B
∥∥

N‖w‖N ,
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one gets

1

r

∥∥∂x F 10
∥∥sup

D(s−σ ,r) �
∑

k

Ak

α
|k|∥∥(Ṙkj) j∈B

∥∥
N e|k|(s−σ ) � Bσ

α
‖Ṙ‖sup

D(s).

It then follows from (6.10) that

1

r2

∥∥∂x F 10
∥∥sup

D(s−σ ,r) � Bσ

α
‖XR‖sup

r,D(s,r).

Altogether, we have proved that

‖X F 10‖sup
r,D(s−σ ,r) � 1

r2

∥∥∂x F 10
∥∥sup

D(s−σ ,r) + 1

r

∥∥∂w F 10
∥∥sup

r,D(s−σ ,r) � 2Bσ

α
‖XR‖sup

r,D(r,s).

Next we want to estimate ‖X F 10‖lip
r,D(s−σ ,r). Let αk := k ·ω −Ω j(k) and � ≡ �ξζ for ξ, ζ ∈ Π . Then, for

any k ∈ Z
A and with j ≡ j(k),

i�Ḟkj = �
(
α−1

k Ṙkj
) = α−1

k �(Ṙkj) + Ṙkj�
(
α−1

k

)
and

−�
(
α−1

k

) = �αk

αk(ξ) · αk(ζ )
= k · �ω − �Ω j

αk(ξ) · αk(ζ )
.

By the small divisors assumption (6.6), |αk| � αA−1
k 〈 j〉 δ

2 . Recall that Ω j = Ω j + Ω̃ j , where �Ω j =
�Ω̃ j = O (| j|δ). One then gets

∣∣�α−1
k

∣∣ �
A2

k

α2

(
|k||�ω| + |�Ω j|

〈 j〉δ
)

and thus

∥∥(�Ḟkj) j∈B
∥∥

N � Ak

α

∥∥(�Ṙkj) j∈B
∥∥

N + A2
k

α2

(|k||�ω| + |�Ω|�∞,−δ

)∥∥(Ṙkj) j∈B
∥∥

N . (6.12)

Summing up to the Fourier series as before we obtain

‖�Ḟ ‖D(s−σ ) � Bσ

α
‖�Ṙ‖sup

D(s) + Bσ

α2

(|�ω| + |�Ω|�∞,−δ

)‖Ṙ‖sup
D(s).

Dividing this inequality by |ξ − ζ | and taking the supremum over ξ �= ζ in Π yields, with Ḟ = ∂w F 10,

1

r

∥∥∂w F 10
∥∥lip

D(s−σ )
= 1

r
‖Ḟ ‖lip

D(s−σ ) � Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)

where we used that M � |ω|lip + |Ω|lip∞,−δ .

�
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Now let us estimate the Lipschitz semi-norm of the other nonzero component ∂x F 10 of X F 10 . Note
that

�∂x F 10 =
∑

k

ik

(∑
j∈B

�Ḟkj w j

)
eik·x.

Hence by (6.12)

1

r

∥∥�∂x F 10
∥∥sup

D(s−σ ,r)

�
∑

k

|k|∥∥(�Ḟkj) j∈B)
∥∥

N e|k|(s−σ )

�
∑

k

|k|e|k|(s−σ )

(
Ak

α

∥∥(�Ṙkj) j∈B
∥∥

N + A2
k

α2

(|k||�ω| + |�Ω|�∞,−δ

)∥∥(Ṙkj) j∈B
∥∥

N

)

and thus by the definition of Bσ

1

r2

∥∥�∂x F 10
∥∥sup

D(s−σ ,r) � Bσ

α
‖�Ṙ‖sup

D(s) + Bσ

α2

(|�ω| + |�Ω|�∞,−δ

)‖Ṙ‖sup
D(s)

leading as above to the estimate

1

r2

∥∥∂x F 10
∥∥lip

D(s−σ ,r) � Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
.

Altogether we have shown

‖X F 10‖lip
r,D(s−σ ,r) � 2Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
.

Let us now turn our attention to the term F̈ = F 11. We want to estimate

X F 11 = (
0,−∂x F 11,−i∂z F 11, i∂w F 11).

Recall that R̈ ≡ R11 = ∑
i, j R11

i j zi w j . For convenience, let R̈i j := R11
i j and denote the operator corre-

sponding to (R̈i j)i, j∈B by R̈. Note that R̈i j = ∂w j ∂zi R|w=0,z=0. Due to the special form of R , R̈ can
be viewed as the Jacobian of ∂z R|z=0 with respect to w at w = 0. In particular, it can be viewed as a
linear operator on �2,N ≡ �2,N(B,C). Hence by the Cauchy estimate for analytic maps between Banach
spaces (cf. [18, Lemma A.3])

‖R̈‖sup
D(s) � 1

r
‖∂z R‖sup

D(s,r) � ‖XR‖sup
r,D(s,r) (6.13)

where ‖R̈‖ denotes the operator norm on �2,N (B,C). This is equivalent to the statement that R̃ =
(〈i〉−N R̈i j〈 j〉N )i, j∈B is a bounded operator on �2 ≡ �2(B,C). Expanding R̃ into its Fourier series with
operator valued coefficients R̃k = (R̃k,i j)i, j∈B , k ∈ Z

A , one gets as before

∑
A

‖R̃k‖2e2|k|s � 2|A|(‖R̃‖sup
D(s)

)2
k∈Z
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where now ‖R̃k‖ denotes the operator norm of R̃k : �2 → �2. The corresponding coefficient F̃k =
(F̃k,i j)i, j∈B is given by (cf. (6.9))

iF̃k,i j =
{

R̃k,i j
k·ω+Ωi−Ω j

, if R̃k,i j �= 0 and |k| + |i − j| �= 0,

0, otherwise.
(6.14)

Note that by the symmetry conditions (6.5), R̃k,i j �= 0 implies that j = i +k ·νA . Hence for any k ∈ Z
A ,

in each row and in each column of the infinite matrix (R̃k,i j)i, j∈B – and thus also of the infinite ma-
trix (F̃k,i j)i, j∈B – there is at most one nonzero entry. Therefore the operator norm of R̃k = (R̃k,i j)i, j∈B
can be computed to be

‖R̃k‖ = sup
i, j∈B

|R̃k,i j|.

By (6.5)–(6.6), R̃k,i j �= 0 with |k| + |i − j| �= 0 implies that |k · ω + Ωi − Ω j | � αA−1
k . Hence ‖F̃k‖ �

Ak
α ‖R̃k‖ uniformly on Π . Summing up over k leads to

‖F̃ ‖sup
D(s−σ ) � Bσ

α
‖R̃‖sup

D(s).

Going back to the operator norm of linear operators on �2,N one gets, in view of (6.13),

1

r

∥∥∂z F 11
∥∥sup

D(s−σ ,r) = sup
‖w‖N<r

1

r
‖F̈ w‖sup

D(s−σ ) � ‖F̈ ‖sup
D(s−σ ) � Bσ

α
‖R̈‖sup

D(s)

� Bσ

α
‖XR‖sup

r,D(s,r). (6.15)

Similarly one has

1

r

∥∥∂w F 11
∥∥sup

D(s−σ ,r) � Bσ

α
‖XR‖sup

r,D(s,r).

To estimate 1
r2 ‖∂x F 11‖sup

D(s−σ ,r) note that ∂x F 11 = i
∑

k k(
∑

i, j F̈i j zi w j)eik·x . As |∑i, j F̈i j zi w j | �
‖F̈ ‖‖z‖N‖w‖N , it follows from (6.15) and the definition of Bσ

1

r2

∥∥∂x F 11
∥∥sup

D(s−σ ,r) � Bσ

α
‖XR‖sup

r,D(s,r).

Altogether we thus have proved that

‖X F 11‖sup
r,D(s−σ ,r) � 3Bσ

α
‖XR‖sup

r,D(s,r).

Next we want to estimate ‖X F 11‖lip
r,D(s−σ ,r) . The Lipschitz estimate of F̈ is obtained in a similar fashion

as the one of Ḟ . Indeed, let

j ≡ j(i,k) := i + k · νA and αk,i := k · ω + Ωi − Ω j.

Then

i�F̃k,i j = α−1�R̃k,i j + R̃k,i j�α−1.
k,i k,i
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The small divisors assumption (6.6) then implies that

|αk,i| � αA−1
k

(〈i〉δ + 〈 j〉δ) 1
2 .

Using that

|�(Ωi − Ω j)|
〈i〉δ + 〈 j〉δ � |�Ωi|

〈i〉δ + |�Ω j|
〈 j〉δ

one gets as above

∣∣�α−1
k,i

∣∣ �
A2

k

α2

(
|k||�ω| + |�Ωi|

〈i〉δ + |�Ω j|
〈 j〉δ

)
�

A2
k

α2

(|k||�ω| + 2|�Ω|�∞,−δ

)
and therefore, uniformly on Π ,

‖�F̃k‖ � Ak

α
‖�R̃k‖ + A2

k

α2

(|k||�ω| + 2|�Ω|�∞,−δ

)‖R̃k‖.

Summing up over k this leads to

‖�F̃ ‖sup
D(s−σ ) � Bσ

α
‖�R̃‖sup

D(s) + Bσ

α2

(|�ω| + 2|�Ω|�∞,−δ

)‖R̃‖sup
D(s).

Going back to the operator norm of linear operators on �2,N one gets

‖�F̈ ‖sup
D(s−σ ) � Bσ

α
‖�R̈‖sup

D(s) + Bσ

α2

(|�ω| + 2|�Ω|�∞,−δ

)‖R̈‖sup
D(s). (6.16)

Dividing this inequality by |ξ − ζ | and taking the supremum over ξ �= ζ in Π yields

‖F̈ ‖lip
D(s−σ ) � 2Bσ

α

(
‖R̈‖lip

D(s) + M

α
‖R̈‖sup

D(s)

)
.

Finally arguing as in (6.15) one concludes that

1

r

∥∥∂z F 11
∥∥lip

D(s−σ ,r) = sup
‖w‖N<r

1

r
‖F̈ w‖lip

D(s−σ ,r) � 2Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
. (6.17)

Similarly one has

1

r

∥∥∂w F 11
∥∥lip

D(s−σ ,r) � 2Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
.

To estimate 1
r2 ‖∂x F 11‖lip

D(s−σ ,r) note that

−i∂x�F 11 =
∑

k

k

(∑
i, j

�F̈i j zi w j

)
eik·x.

As |∑i, j �F̈i j zi w j | � ‖�F̈ ‖‖z‖N‖w‖N it follows from (6.16) and the definition of Bσ
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1

r2

∥∥∂x�F 11
∥∥sup

D(s−σ ,r) �
∑

k

|k|‖�F̈k‖e|k|(s−σ )

� Bσ

α
‖�R̈‖sup

D(s) + Bσ

α2

(|�ω| + 2|�Ω|�∞,−δ

)‖R̈‖sup
D(s).

With the same arguments which lead to (6.17) one then concludes that

1

r2

∥∥∂x F 11
∥∥lip

D(s−σ ,r) � 2Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
.

Altogether we thus have proved that

‖X F 11‖lip
r,D(s−σ ,r) � 6Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)
.

All the other components F ab admit the same type of estimates. More precisely, ‖X F 0‖sup
r,D(s−σ ,r) ,

‖X F 20‖sup
r,D(s−σ ,r) , ‖X F 11‖sup

r,D(s−σ ,r) and ‖X F 02‖sup
r,D(s−σ ,r) are each bounded by 3Bσ

α ‖XR‖sup
r,D(s,r) whereas

‖X F 10‖sup
r,D(s−σ ,r) and ‖X F 01‖sup

r,D(s−σ ,r) are bounded by 2Bσ
α ‖XR‖sup

r,D(s,r) . Altogether, one gets

‖X F ‖sup
r,D(s−σ ,r) � 16Bσ

α
‖XR‖sup

r,D(s,r).

Similarly, by the estimates above, one obtains

‖X F ‖lip
r,D(s−σ ,r) � 25Bσ

α

(
‖XR‖lip

r,D(s,r) + M

α
‖XR‖sup

r,D(s,r)

)

as claimed. �
Following [18], the estimates may be compactly written as follows. For λ � 0, define for a param-

eter dependent vector field Y : D(s, r) × Π → P N
C

with components (Yx, Y y, Yu, Y v) and parameter
ξ ∈ Π ,

‖Y ‖λ
r,D(s,r) := ‖Y ‖sup

r,D(s,r) + λ‖Y ‖lip
r,D(s,r).

Furthermore, let ‖Y ‖∗
r,D(s,r) stand for either ‖Y ‖sup

r,D(s,r) or ‖Y ‖lip
r,D(s,r) .

Corollary 6.1. Under the assumptions of Lemma 6.1, one has for 0 < σ � s and 0 � λ � α
M

‖XĤ‖∗
r,D(s,r) � ‖XR‖∗

r,D(s,r),

and

‖X F ‖λ
r,D(s−σ ,r) � 41Bσ

α
‖XR‖λ

r,D(s,r).

Moreover, if Ak = 〈k〉τ , then

Bσ � b · σ−(2τ+|A|+2) (6.18)

with some constant b � 1 depending only on A and τ .
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6.2. KAM step

At the νth step of the iteration scheme we are given a Hamiltonian Hν + Pν where Hν is in normal
form and Pν is a small perturbation satisfying {Pν, S} = 0. More precisely, Hν and Pν are assumed
to be regular on D(sν, rν) × Πν , with 0 < sν � sν−1 and 0 < rν � rν−1 in the sense defined at the
beginning of Section 6.1. Furthermore, Πν ⊆ Π is a compact subset and Hν is of the form

Hν = ων · y + Ων w · z,

with ων = (ων
j ) j∈A and Ων w = (Ων

j w j) j∈B satisfying |ων |lip + |Ων |lip
�∞,−δ � Mν and the small divisors

condition on Πν

∣∣k · ων + e · Ων
∣∣ � αν A−1

k · 1 ∨ |e|
1
2
δ (6.19)

for any (k, e) ∈ Z where Ak = 〈k〉τ . The perturbation Pν satisfies in addition the symmetry condition
{Pν, S} = 0. In this subsection we now drop the index ν and write ‘+’ for ‘ν + 1’ to simplify notation.
Thus P = Pν and P+ = Pν+1 and so on. In the following, C stands for a constant which depends only
on A and τ – actually the dependence on τ only enters through the constant b in (6.18). Furthermore
we assume that the perturbation is so small that we can choose 0 < η < 1

16 and 0 < σ < s
2 with

σ � 1, such that

‖X P ‖sup
r,D(s,r) + α

M
‖X P ‖lip

r,D(s,r) � ασκη2

c0
(6.20)

where κ = 2τ + |A| + 3 and c0 � 1 is a sufficiently large constant depending only on A and τ , which
will be specified later and will enter the smallness condition of the perturbation P in Theorem 4.1,
encoded in γ .

Approximation of P
We now approximate P by its Taylor polynomial R of degree two in y, w, and z of the form (6.2).

This leads to corresponding approximations of the partial derivatives ∂x P , ∂y P , ∂w P , and ∂z P which
constitute the Hamiltonian vector field X P . As in the proof of Lemma 6.1, we represent R in the form∑

0�i+ j�2 Rij . The components of the Hamiltonian vector fields XRij can then be expressed in terms
of the derivatives up to order 2 of components of X P evaluated at y = 0, w = 0, z = 0. Since P (·; ξ)

is analytic, Cauchy’s estimate then leads to the estimate

‖XR‖∗
r,D(s,r) � C‖X P ‖∗

r,D(s,r), (6.21)

where we recall that C stands for a constant which depends only on A and τ . Next we need to
estimate how accurate XR approximates X P . We claim that

‖X P − XR‖∗
ηr,D(s,4ηr) � Cη‖X P ‖∗

r,D(s,r). (6.22)

To prove this inequality note that

X P − XR = (
∂y(P − R),−∂x(P − R),−i∂z(P − R), i∂w(P − R)

)
.

Let us begin by estimating ∂y P − ∂y R . As ∂y R = ∂y P |y=0,w=0,z=0 one has
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∂y P − ∂y R =
1∫

0

(y · ∂y)(∂y P )(x, ty, t w, tz)dt

+
1∫

0

(w · ∂w)(∂y P )(x, ty, t w, tz)dt +
1∫

0

(z · ∂z)(∂y P )(x, ty, t w, tz)dt.

Here y · ∂y = ∑
j∈A y j∂y j and w · ∂w , z · ∂z are defined similarly. By Cauchy’s estimate one has

∥∥(y · ∂y)(∂y P )
∥∥sup

D(s,4ηr) � C
(4ηr)2

((1 − 4η)r)2
‖∂y P‖sup

D(s,r) � Cη2‖∂y P‖sup
D(s,r).

Similarly one gets

∥∥(w · ∂w)(∂y P )
∥∥sup

D(s,4ηr),
∥∥(z · ∂z)(∂y P )

∥∥sup
D(s,4ηr) � Cη‖∂y P‖sup

D(s,r).

As ‖∂y P‖sup
D(s,r) � ‖X P ‖sup

r,D(s,r) , it then follows that

‖∂y P − ∂y R‖sup
D(s,4ηr) � Cη‖X P ‖sup

r,D(s,r).

In a similar way one shows that

‖∂y P − ∂y R‖lip
D(s,4ηr) � Cη‖X P ‖lip

r,D(s,r).

Next let us estimate the component ∂w P − ∂w R. Note that

∂w P (x, y, w, z) = ∂w P (x,0, w, z) +
1∫

0

y · ∂y(∂w P )(x, ty, w, z)dt.

The error term
∫ 1

0 y · ∂y(∂w P )(x, ty, w, z)dt is not part of XR and Cauchy’s estimate leads to

1

ηr

∥∥∥∥∥
1∫

0

y · ∂y(∂w P )(x, ty, w, z)dt

∥∥∥∥∥
sup

D(s,4ηr)

� 1

ηr

(4ηr)2

((1 − 4η)r)2
‖∂w P‖sup

D(s,r)

� Cη
1

r
‖∂w P‖sup

D(s,r) � Cη‖X P ‖sup
r,D(s,r).

Now expand ∂w P (x,0, w, z),

∂w P (x,0, w, z) − ∂w P (x,0,0,0) =
1∫

0

d

dt
∂w P (x,0, t w, tz)dt =: I.

As d
dt ∂w P (x,0, t w, tz) = w · ∂w(∂w P )(x,0, t w, tz) + z · ∂z(∂w P )(x,0, t w, tz) we get

I = w · ∂w(∂w P )(x,0,0,0) + z · ∂z(∂w P )(x,0,0,0) + II + III + IV
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where

II =
1∫

0

(1 − s)(w · ∂w) · (w̃ · ∂w)(∂w P )(x,0, sw, sz)ds|w̃=w ,

III =
1∫

0

(1 − s)(z · ∂z) · (z̃ · ∂z)(∂w P )(x,0, sw, sz)ds|z̃=z,

IV = 2

1∫
0

(1 − s)(z · ∂z)(w · ∂w)(∂w P )(x,0, sw, sz)ds.

The error terms II, III, IV are not part of XR and by Cauchy’s estimate for second derivatives one gets

1

ηr
‖II‖sup

D(s,4ηr) � 1

ηr

(ηr)2

((1 − 4η)r)2
‖∂w P‖sup

D(s,r) � Cη‖X P ‖sup
r,D(s,r).

For III and IV similar estimates are obtained. Altogether we then get

1

ηr
‖∂w P − ∂w R‖sup

D(s,4ηr) � Cη‖X P ‖sup
r,D(s,r).

In a similar way one shows that

1

ηr
‖∂w P − ∂w R‖lip

D(s,4ηr) � Cη‖X P ‖lip
r,D(s,r).

By the same arguments one also has

1

ηr
‖∂z P − ∂z R‖∗

D(s,4ηr) � Cη‖X P ‖∗
r,D(s,r).

Finally, we need to consider ∂x P − ∂x R . First expand ∂x P with respect to y,

∂x P (x, y, w, z) = ∂x P (x,0, w, z) + (y · ∂y)(∂x P )(x,0, w, z) + V

where

V :=
1∫

0

(1 − t)(y · ∂y)( ỹ · ∂y)(∂x P )(x, sy, w, z)ds| ỹ=y

is not part of ∂x R . By Cauchy’s estimate one gets

1

(ηr)2
‖V ‖sup

D(s,4ηr) � C

(ηr)2

(ηr)4

((1 − 4η)r)4
‖∂x P‖sup

D(s,r) � Cη2 1

r2
‖∂x P‖sup

D(s,r) � Cη2‖X P ‖sup
r,D(s,r).

As R is an affine function of y it follows that the term VI in the expansion

(y · ∂y)(∂x P )(x,0, w, z) = (y · ∂y)(∂x P )(x,0,0,0) + VI
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is not part of ∂x R where

VI :=
1∫

0

(w · ∂w)(y · ∂y)(∂x P )(x,0, t w, tz)dt +
1∫

0

(z · ∂z)(y · ∂y)(∂x P )(x,0, t w, tz)dt.

Arguing as above one has

1

(ηr)2
‖VI‖sup

D(s,4ηr) � C

(ηr)2

(ηr)3

((1 − 4η)r)3
‖∂x P‖sup

D(s,r) � Cη · ‖X P ‖sup
r,D(s,r).

The remaining term ∂x P (x,0, w, z) has to be expanded in w and z up to order 2. The remainder term
VII can then be written in terms of integrals and Cauchy’s estimate can be applied to show that

1

(ηr)2
‖VII‖sup

D(s,4ηr) � Cη‖X P ‖sup
r,D(s,r).

Altogether we thus have proved that

‖X P − XR‖sup
ηr,D(s,4ηr) � Cη‖X P ‖sup

r,D(s,r).

In a similar way one shows that

‖X P − XR‖lip
ηr,D(s,4ηr) � Cη‖X P ‖lip

r,D(s,r)

and (6.22) is established.

Solution of linearized equation
Since the small divisors assumption (6.19) are supposed to hold, we can solve the linear system

{F , H} + Ĥ = R, {F , S} = 0

with the help of Lemma 6.1. By Corollary 6.1 and the estimates (6.21) we obtain

‖XĤ‖∗
r,D(s,r) � C‖X P ‖∗

r,D(s,r) (6.23)

and, for any 0 � λ � α
M ,

‖X F ‖λ
r,D(s−σ ,r) � Cα−1σ 1−κ‖X P ‖λ

r,D(s,r) (6.24)

where we recall that κ = 2τ +|A|+3. By the construction of F and the estimates of X F of Lemma 6.1
it follows that X F is a real analytic map X F : D(s − σ , r) → P N

C
where P N

C
= (P N

C
,‖ · ‖r,N). At each

point x = (x, y, w, z) ∈ D(s − σ , r), the differential dX F defines a bounded linear operator on P N
C

.
Note that the ‖ · ‖r,N -distance in P N

C
between D(s − 2σ , r

2 ) and the boundary of D(s − σ , r) can be
estimated from below by σ ∧ 1

2 � σ
2 . Hence by Cauchy’s estimate

‖dX F ‖sup
r,D(s−2σ , r )

� Cσ−1‖X F ‖sup
r,D(s−σ ,r) (6.25)
2
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where for any x ∈ D(s − 2σ , r
2 ), ‖dx X F ‖ denotes the operator norm on P N

C
,

‖dx X F ‖ = sup
‖Y ‖r,N�1

‖dx X F · Y ‖r,N .

Similarly, one sees that

‖dX F ‖lip
r,D(s−2σ , r

2 )
� Cσ−1‖X F ‖lip

r,D(s−σ ,r). (6.26)

Canonical transformation
The preceding estimates together with (6.20) and (6.24) imply that for any 0 � λ � α

M

1

σ
‖X F ‖λ

r,D(s−σ ,r),‖dX F ‖λ
r,D(s−2σ , r

2 )
� Cc−1

0 η2. (6.27)

Note that the ‖ · ‖r,N -distance of D(s − 3σ , r
4 ) to the boundary of D(s − 2σ , r

2 ) is at least σ ∧ 1
23 �

σ
8 . Now choose c0 in (6.20) sufficiently large to insure that for any |t| � 1 the flow Xt

F exists on
D(s − 3σ , r

4 ) and maps D(s − 3σ , r
4 ) into D(s − 2σ , r

2 ). Similarly, the flow Xt
F maps D(s − 4σ , r

8 ) into
D(s − 3σ , r

4 ). By [14, Lemma A.4], together with the estimate (6.27) above we have

∥∥Xt
F − id

∥∥∗
r,D(s−3σ , r

4 )
� C‖X F ‖∗

r,D(s−σ ,r). (6.28)

Since the ‖ · ‖r,N distance of D(s − 4σ , r
8 ) to the boundary of D(s − 3σ , r

4 ) is at least σ ∧ 1
25 � σ/32,

it then follows from Cauchy’s estimate that

∥∥dXt
F − Id

∥∥∗
r,D(s−4σ , r

8 )
� Cσ−1‖X F ‖∗

r,D(s−σ ,r). (6.29)

In particular, we notice that for any −1 � t � 1, Xt
F : D(s − 3σ , r

4 ) × Π → D(s − 2σ , r
2 ) is regular and

for any ξ ∈ Π , Xt
F (·; ξ) defines a canonical coordinate transformation.

New Hamiltonian
Taking the pull back of H + P by the canonical transformation Φ = Xt

F |t=1 one obtains the Hamil-
tonian H+ + P+ , defined on D(s − 3σ , r

4 ), where H+ = H + Ĥ and, by (4.9)–(4.10)

P+ = (P − R) ◦ X1
F +

1∫
0

{
(1 − t)Ĥ + t R, F

} ◦ Xt
F dt.

We have already verified at the end of Section 4 that S ◦ X1
F = S and {P+, S} = 0. We now want to

estimate the ‖ · ‖r,N -norm of the vector field X P+ in terms of the size of X P . First note that X P+ is
given by

X P+ = (
X1

F

)∗
(X P − XR) +

1∫
0

(
Xt

F

)∗[X
(1−t)Ĥ+t R , X F ]dt.

It is shown in [14, pp. 130–132], that for any 0 � t � 1, 0 < η < 1
16 , 0 � λ � α

M and any vector field
Y : D(s − 2σ ,4ηr) → P N

C
,
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∥∥(
Xt

F

)∗
Y
∥∥λ

ηr,D(s−5σ ,ηr) � C‖Y ‖λ
ηr,D(s−2σ ,4ηr). (6.30)

By (6.22), one has ‖X P − XR‖∗
ηr,D(s,4ηr) � Cη‖X P ‖∗

r,D(s,r) and hence in view of (6.30),

∥∥(
Xt

F

)∗
(X P − XR)

∥∥λ

ηr,D(s−5σ ,ηr) � Cη‖X P ‖λ
r,D(s,r). (6.31)

It remains to consider the commutator [XG , X F ] where G ≡ G(t) = (1−t)Ĥ +t R . Note that [XG , X F ] =
dX F · XG − dXG · X F . Hence at each point x in D(s − 2σ , r

2 ), ‖dx X F ‖ denotes the operator norm of
dx X F : P N

C
→ P N

C
with respect to the norm ‖ · ‖r,N . By (6.24)–(6.26),

1

σ
‖X F ‖λ

r,D(s−σ ,r), ‖dX F ‖λ
r,D(s−2σ , r

2 )
� Cα−1σ−κ‖X P ‖λ

r,D(s,r)

whereas by (6.21), ‖XG‖∗
r,D(s,r) � C‖X P ‖∗

r,D(s,r). By Cauchy’s estimate one then also has

‖dXG‖∗
r,D(s−σ , r

2 )
� Cσ−1‖X P ‖∗

r,D(s,r).

Combining the above estimates yields

∥∥[XG , X F ]∥∥sup
r,D(s−2σ , r

2 )
� Cα−1σ−κ

(‖X P ‖sup
r,D(s,r)

)2
. (6.32)

Furthermore, as

∥∥[XG , X F ]∥∥lip
r,D(s−2σ , r

2 )
� ‖dX F ‖lip

r,D(s−2σ , r
2 )

‖XG‖sup
r,D(s−2σ , r

2 )

+ ‖dX F ‖sup
r,D(s−2σ , r

2 )
‖XG‖lip

r,D(s−2σ , r
2 )

+ ‖dXG‖lip
r,D(s−2σ , r

2 )
‖X F ‖sup

r,D(s−2σ , r
2 )

+ ‖dXG‖sup
r,D(s−2σ , r

2 )
‖X F ‖lip

r,D(s−2σ , r
2 )

one also concludes that

∥∥[XG , X F ]∥∥lip
r,D(s−2σ , r

2 )
� Cα−1σ−κ‖X P ‖lip

r,D(s,r) · ‖X P ‖sup
r,D(s,r)

+ Cα−1σ−κ · Mα−1 · (‖X P ‖sup
r,D(s,r)

)2
. (6.33)

Using that for any vector Y in P N
C

, ‖Y ‖∗
ηr,N � η−2‖Y ‖∗

r,N it then follows from (6.30), (6.32), and (6.33)
and the fact that 4ηr < r

2

∥∥(
Xt

F

)∗[XG , X F ]∥∥λ

ηr,D(s−5σ ,ηr) � Cη−2α−1σ−κ‖X P ‖sup
r,D(s,r)‖X P ‖λ

r,D(s,r)

� Cη−2α−1σ−κ
(‖X P ‖λ

r,D(s,r)

)2

for any 0 � λ � α
M and any 0 � t � 1. Combined with (6.31) it leads to the following estimate of the

new error term X P+ ,

‖X P+‖λ
ηr,D(s−5σ ,ηr) � Cη−2α−1σ−κ

(‖X P ‖λ
r,D(s,r)

)2 + Cη‖X P ‖λ
r,D(s,r). (6.34)
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New normal form
We already have seen that H+ = H + Ĥ where by (6.23), ‖XĤ‖∗

r,D(s,r) � C‖X P ‖∗
r,D(s,r). Note that Ĥ

is of the form

Ĥ(y, w, z; ξ) = ω̂(ξ) · y + Ω̂(ξ)w · z

and hence

|ω̂|∗ � C‖X P ‖∗
r,D(s,r). (6.35)

Taking into account that 1
r sup‖w‖N <r ‖Ω̂(ξ)w‖N = |Ω̂(ξ)|�∞ , it also follows that

|Ω̂|∗�∞ � C‖X P ‖∗
r,D(s,r). (6.36)

In order to bound the small divisors for the new frequencies ω+ = ω+ ω̂ and Ω+ = Ω + Ω̂ for k ∈ Z
A

with |k| � K with K to be chosen later in the proof. Observe that for any (k, e) ∈ Z with |k| � K , using
that |e| � 2

|k · ω̂ + e · Ω̂|sup � |k||ω̂|sup + |e||Ω̂|sup
�∞ � (K + 2)C‖X P ‖sup

r,D(s,r) � α̂A−1
k

where α̂ satisfies α̂ > C‖X P ‖sup
r,D(s,r) · (K + 2)max|k|�K |Ak|. It turns out that one can choose α̂ so that

α+ := α − α̂ > 0 – see Lemma 6.3. With the small divisors assumption (6.19) it then follows that for
any (k, e) ∈ Z with |k| � K , ω+ , Ω+ satisfy on Πν

|k · ω+ + e · Ω+| � α+ A−1
k · 1 ∨ |e|

1
2
δ . (6.37)

6.3. Iteration and proof of Theorem 4.1

To iterate the KAM step infinitely many times we now choose sequences for all the relevant pa-
rameters. Following [18], we choose a geometric sequence for σ , choose the η’s to minimize the error
estimate (6.34) and change α and M only slightly.

Let c1 be twice the maximum of all those constants C obtained during the KAM step which depend
only on A ⊂ Z and τ . For any ν ∈ Z�0 set

αν = α0

2

(
1 + 2−ν

)
, Mν = M0

(
2 − 2−ν

)
, λν = αν

Mν

with 0 < α0 < 1 and M0 � 1 satisfying M0 � |ω|lipΠ + |Ω|lip
Π,�∞,−δ . Then (αν)ν�0 is decreasing and

(Mν)ν�0 increasing. Hence (λν)ν�0 is decreasing as well and

λ0/4 � λν � λ0. (6.38)

Furthermore, with κ = 2τ + |A| + 3,

σν+1 = σν

2
, εν+1 = c1ε

4
3
ν

κ 1
3

, η3
ν = εν

ανσ
κ
ν
(ανσν )
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and

sν+1 = sν − 5σν, rν+1 = ηνrν, Dν = D(sν, rν).

The initial values s0, σ0 satisfy 0 < s0 � 10 and σ0 = s0/40 � 1
4 , implying that s0 > s1 > · · · > s0/2,

and γ0 the smallness condition

γ0 �
(
c0 + 2κ+3c1

)−3
(6.39)

where c0 appears in (6.20). Finally let Kν = K02ν and K τ+1
0 = 1

c1γ0
. The smallness condition of the

perturbation is expressed by the inequality

ε = ε0 � γ0α0σ
κ
0 . (6.40)

Then one has the following bounds for the sequence (εν)ν�0.

Lemma 6.2. For any ν � 0,

(i) εν � γ0ανσ
κ
ν 2−ν ;

(ii) εν+1 � 2−κ−3εν and
∑∞

0 εν � 2ε0;
(iii) α−1

ν σ 1−κ
ν εν � α−1

0 σ 1−κ
0 ε02−ν .

Proof. (i) The claimed estimate is proved by induction. For ν = 0, the estimate holds by assump-
tion (6.40). To prove the induction step, note that by definition, εν+1 = c1εν(α−1

ν σ−κ
ν εν)1/3. By the

induction hypotheses, (α−1
ν σ−κ

ν εν)1/3 � (γ02−ν)1/3 and by the smallness condition of γ0, one has

c1
(
α−1

ν σ−κ
ν εν

)1/3 � c1
(
γ02−ν

)1/3 � c1
1

c12κ+3
� 2−κ−3 (6.41)

which together with the induction hypothesis implies

εν+1 � 2−κ−3 · γ0ανσ
κ
ν 2−ν = γ0 · 2−2αν · (2−1σν

)κ · 2−ν−1 � γ0αν+1σ
κ
ν+12−ν−1.

(ii) By the definition of εν+1, εν+1/εν = c1(α
−1
ν σ−κ

ν εν)
1
3 . As by (6.41) εν+1/εν � 2−κ−3 item (ii)

follows.
(iii) The claimed estimate clearly holds in the case ν = 0. To prove the induction step first note

that by (ii), εν+1/εν � 2−κ−3. Hence

εν+1α
−1
ν+1σ

1−κ
ν+1

ενα
−1
ν σ 1−κ

ν

= εν+1

εν
· αν

αν+1
·
(

σν+1

σν

)1−κ

� 2−3 (6.42)

and the claimed estimate for εν+1 then follows from the induction hypothesis. �
In [18], a version of the following Iterative Lemma is proved. It can be proved in the same way as

in [18] and hence we omit its proof.

Lemma 6.3. Suppose that Hν + Pν is regular on Dν × Πν in the sense defined at the beginning of Section 6.1
where Hν = ων(ξ) · y +Ων(ξ)w · z is a regular Hamiltonian on Dν ×Πν in normal form satisfying |ων |lipΠν

+
|Ων |lip ∞,−δ � Mν and
Πν,�
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∣∣k · ων(ξ) + e · Ων(ξ)
∣∣ � αν A−1

k · 1 ∨ |e|
1
2
δ , ∀ξ ∈ Πν, ∀(k, e) ∈ Z, (6.43)

and where Pν satisfies {Pν, S} = 0 and

‖X Pν ‖λν
rν ,Dν

� εν. (6.44)

Then there exist a regular map Φν+1 : Dν+1 × Πν → Dν with Φν+1(·, ξ), being a real analytic symplec-
tic coordinate transformation on Dν+1 for any ξ ∈ Πν , and a closed subset Πν+1 of Πν , Πν+1 = Πν \⋃

|k|>Kν , (k,e)∈Z Rν+1
ke (αν+1), where

Rν+1
ke (αν+1) = {

ξ ∈ Πν :
∣∣k · ων+1(ξ) + e · Ων+1(ξ)

∣∣ < αν+1 A−1
k · 1 ∨ |e|

1
2
δ

}
such that (Hν + Pν) ◦ Φν+1 = Hν+1 + Pν+1 satisfies the same assumptions as Hν + Pν , but with ν + 1 in
place of ν .

Remark 6.1. We point out that the dependence of the set Rν+1
ke (αν+1) on the perturbation P is not

indicated in the notation. We will see in Section 6.4 that the measure of this set can be bounded in
terms of αν+1 independently of the perturbation.

By (6.28)–(6.29) together with (6.24) and the assumption (6.44) we obtain the following estimates.

1

σν
‖Φν+1 − id‖λν

rν ,Dν+1
,‖dΦν+1 − Id‖λν

rν ,Dν+1
� c1α

−1
ν σ−κ

ν εν, (6.45)

whereas by (6.35)–(6.36) together with assumption (6.44) one gets

∣∣ων+1 − ων
∣∣λν

Πν
,
∣∣Ων+1 − Ων

∣∣λν

Πν,�∞ � c1εν. (6.46)

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Given the assumptions of Theorem 4.1, we want to apply Lemma 6.3 (Iterative
Lemma) with ν = 0. Set

s0 := s; r0 := r; α0 := α; M0 := M; ε0 := ε

and

D0 = D(s, r); H0 := H; P0 := P

with s, r, α, M , ε, H , and P given as in Theorem 4.1. As in the Iterative Lemma, choose σ0 = s0/40,
λ0 = α0/M0, and γ0 and assume that ε0 := ε = ‖X P0‖λ0

r0,D0
� γ0α0σ

κ
0 . Setting γ := γ0σ

κ
0 one then

gets

ε0 = ‖X P ‖λ0
r,D(s,r) � γ0α0σ

κ
0 = αγ .

In particular, inequality (4.7) of Theorem 4.1 with γ chosen as above is satisfied. By Assumption (B2),
{P0, S} = {P , S} = 0. Furthermore for ν = 0, the small divisors condition (6.43) holds on

Π0 := Π \
⋃

(k,e)∈Z
R0

ke(α0)
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where

R0
ke(α0) = {

ξ ∈ Π :
∣∣k · ω(ξ) + e · Ω(ξ)

∣∣ < α0 A−1
k · 1 ∨ |e|

1
2
δ

}
.

Thus the Iterative Lemma applies and we obtain a decreasing sequence of domains Dν × Πν and
regular maps Φν : Dν × Πν−1 → Dν−1, ν � 1, with the properties listed in Lemma 6.3. Set Φν :=
Φ1 ◦· · ·◦Φν : Dν ×Πν−1 → D0. In particular, (H0 + P0)◦Φν = Hν + Pν and the estimates (6.45)–(6.46)
hold. To prove the convergence of the sequence Φν , note that the sequence (rν)ν�0 is decreasing.
Thus for any Y ∈ P N

C
one has ‖Y ‖rν ,N � ‖Y ‖rν+1,N . Hence for a linear operator T : (P N

C
,‖ · ‖rν+1,N ) →

(P N
C

,‖ · ‖rν ,N)

‖T ‖rν+1,rν ≡ sup
‖x‖rν+1,N �1

‖T x‖rν ,N � sup
‖x‖rν ,N �1

‖T x‖rν ,N ≡ ‖T ‖rν .

By the mean value theorem one has

∥∥Φν+1 − Φν
∥∥sup

r0,Dν+1
�

∥∥dΦν
∥∥sup

rν ,r0,Dν
· ‖Φν+1 − id‖sup

rν ,Dν+1

where for any x ∈ Dν+1, dxΦ
ν is viewed as a linear map (P N

C
,‖ · ‖rν ,N) → (P N

C
,‖ · ‖r0,N). In view of

the chain rule dΦν = dΦ1 ◦ · · · ◦ dΦν and thus by the considerations above,

∥∥dΦν
∥∥sup

rν ,r0,Dν
�

ν∏
μ=1

‖dΦμ‖sup
rμ−1,Dμ

�
∏
μ�0

(
1 + 2−μ−2) � 2

where we used that by (6.45), for any μ � 1,

‖dΦμ‖sup
rμ,Dμ

� 1 + ‖dΦμ − Id‖sup
rμ−1,Dμ

� 1 + c1α
−1
μ−1σ

−κ
μ−1εμ−1

and by Lemma 6.2,

c1α
−1
μ−1σ

−κ
μ−1εμ−1 � c1γ02−(μ−1) � c1

1

(2κ+3c1)3
2−μ+1 � 2−μ−2.

Similarly, one argues for the Lipschitz semi-norm,

∥∥Φν+1 − Φν
∥∥lip

r0,Dν+1
�

∥∥dΦν
∥∥lip

rν ,r0,Dν
‖Φν+1 − id‖sup

rν ,Dν+1
+ ∥∥dΦν

∥∥sup
rν ,r0,Dν

‖Φν+1 − id‖lip
rν ,Dν+1

and shows as for ‖dΦν‖sup
rν ,r0,Dν

that ‖dΦν‖lip
rν ,r0,Dν

is uniformly bounded. As already pointed out at
the beginning of this subsection, one has α0

4M0
� λν � λ0 and hence

∥∥Φν+1 − Φν
∥∥λ0

r0,Dν+1
� C‖Φν+1 − id‖λν

rν ,Dν+1
.

Combined with (6.45) this leads to

∥∥Φν+1 − Φν
∥∥λ0

r0,Dν+1
� Cc1ενα

−1
ν σ 1−κ

ν . (6.47)

Therefore, (Φν)ν�1 converges uniformly on
⋂

ν�0(Dν × Πν) = D(s/2,0) × Π∗ to a Lipschitz con-

tinuous family of real analytic torus embeddings Ψ : T
A × Π∗ → MN . Here Π∗ = ⋂

ν�0 Πν and
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D∗ ≡ D(s/2,0) = D(s/2) × {0} × {0} × {0} ⊆ MN . Recall from the statement of Theorem 4.1 that
Φ0 ≡ Ψ0 denotes the trivial torus embedding T

A × Π∗ → T0. Then by (6.47)

‖Ψ − Ψ0‖λ0
r0,D∗ �

∞∑
0

∥∥Φν+1 − Φν
∥∥λ0

r0,D∗ � Cc1

∞∑
0

α−1
ν σ 1−κ

ν εν.

By Lemma 6.2,
∑∞

0 α−1
ν σ 1−κ

ν εν � 2α−1
0 (

s0
40 )1−κε0 and hence ‖Ψ −Ψ0‖λ0

r0,D∗ � cε/α as claimed in The-

orem 4.1. Taking into account (6.40) and the estimate (6.46) one sees that the frequencies ων(ξ) ∈ R
A

and Ων(ξ) ∈ �∞,−δ converge uniformly on Π∗ to Lipschitz continuous functions f :Π∗ → R
A respec-

tively Ω∗ :Π∗ → �∞,−δ . Furthermore, letting ω0 denote the frequency vector ω of the unperturbed
Hamiltonian H , it follows that f (ξ) − ω(ξ) = ∑∞

ν=0(ω
ν+1(ξ) − ων(ξ)) can be estimated as

| f − ω|λ0
Π∗ � C

∞∑
0

∣∣ων+1 − ων
∣∣λν

Πν
� C

∞∑
0

εν.

By Lemma 6.2(ii),
∑∞

0 εν � 2ε0. As ε0 = ε we thus have shown that | f − ω|λ0
Π∗ � Cε as claimed in

Theorem 4.1. On the embedded tori, the flow of the perturbed Hamiltonian H + P can be computed
as follows. First note that

∥∥XH+P ◦ Φν − dΦν · XHν

∥∥sup
r0,Dν×Π∗ �

∥∥dΦν
∥∥

rν ,r0,Dν×Π∗
∥∥(

Φν
)∗

XH+P − XHν

∥∥sup
rν ,Dν×Π∗

� C‖X Pν ‖sup
rν ,Dν×Π∗ .

In the limit, one thus obtains that XH+P ◦ Ψ = dΨ · XH∗ on D(s/2,0) where

H∗(y, w, z; ξ) := f (ξ) · y + Ω∗(ξ)w · z.

It thus follows that for any x ∈ T
A and ξ ∈ Π∗

Xt
H+P

(
Ψ (x; ξ)

) = Ψ
(
x + t f (ξ); ξ)

as claimed in Theorem 4.1. It remains to show the claims of item (i) of Theorem 4.1, concerning the
set Π \ Π∗ . This will be done in the subsequent Section 6.4. �
6.4. Set of excluded parameters

The aim of this subsection is to prove item (i) of Theorem 4.1. While we again follow the line
of arguments used in [13] and [18], there are notable differences due to the near resonances of the
frequencies of the unperturbed Hamiltonian which we will point out in the course of the proof.

The KAM iteration leads to a decreasing sequence (Πν)ν�0 of closed subsets of the parameter
space Π. Recall that Π \ Π∗ = Π \ (

⋂
ν�0 Πν) where

Π0 =
⋃

k∈ZA

(k,e)∈Z

R0
ke(α0) and Πν =

⋃
|k|>Kν
(k,e)∈Z

Rν
ke(αν) for ν � 1.

Recall that Z ⊆ Z
A × Z

B is given by

Z = {
(k, e) ∈ Z

A × Z
B \ {

(0,0)
}

: |e| � 2; k · νA + e · νB = 0
}
,
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Kν is given by Kν = (c1γ0)
−τ−12ν , and for (k, e) ∈ Z

A × Z
B ,

Rν
ke(αν) = {

ξ ∈ Πν−1:
∣∣k · ων(ξ) + e · Ων(ξ)

∣∣ < αν A−1
k · 1 ∨ |e|

1
2
δ

}
with Π−1 = Π . Here ων = (ων

j ) j∈A and Ων = (Ων
j ) j∈B are the frequencies obtained in the KAM it-

eration with ω0 = ω, Ω0 = Ω denoting the ones of the unperturbed Hamiltonian H . We will prove
that by choosing γ0 sufficiently small – and hence K0 sufficiently large – meas(Π \ Π∗) can be es-
timated as claimed. Note that the set Π0 is defined in terms of the frequencies of H whereas for
ν � 1 the set Πν depends on the perturbation P . To estimate meas(Π \ Π∗) we need to make some
preparations. It is convenient to extend the frequencies ων , Ων , defined on Πν−1, to all of Π . Indeed,
each component of ων+1 − ων :Πν → R

A and of Ων+1 − Ων :Πν → �∞ has a Lipschitz continuous
extension from Πν to Π which preserves its minimum, maximum, and Lipschitz semi-norm – see e.g.
[13, Lemma M.5]. Since we use the sup norm for ων+1 − ων and Ων+1 − Ων we obtain in this way
extensions (ων+1 − ων)̌ of ων+1 − ων and (Ων+1 − Ων)̌ of Ων+1 − Ων to all of Π satisfying

∣∣(ων+1 − ων
)̌ ∣∣λν

Π
= ∣∣ων+1 − ων

∣∣λν

Πν
; ∣∣(Ων+1 − Ων

)̌ ∣∣λν

Π,�∞ = ∣∣Ων+1 − Ων
∣∣λν

Πν,�∞ . (6.48)

Now define ω̌ν+1, Ω̌ν+1 by telescoping sums

ω̌ν+1 = ω +
ν∑

μ=0

(
ωμ+1 − ωμ

)̌
and Ω̌ν+1 = Ω +

ν∑
μ=0

(
Ωμ+1 − Ωμ

)̌
.

Then ω̌ν :Π → R
A and Ω̌ν − Ω :Π → �∞ are Lipschitz continuous extensions of ων respectively

Ων − Ω . Moreover, by Lemma 6.2(ii),
∑∞

0 εμ � 2ε0 and hence it follows from (6.46) and (6.48) that
for any ν � 0,

∣∣ω̌ν+1 − ω
∣∣λν

Π
,
∣∣Ω̌ν+1 − Ω

∣∣λν

Π,�∞ � c1

ν∑
0

εμ � 2c1ε0.

As by (6.38), λ0/4 � λν � λ0, one then has∣∣ω̌ν − ω
∣∣λ0/4
Π

,
∣∣Ω̌ν − Ω

∣∣λ0/4
Π,�∞ � 2c1ε0.

In particular,

∣∣ω̌ν − ω
∣∣lip
Π

,
∣∣Ω̌ν − Ω

∣∣lip
Π,�∞ � 8c1ε0

λ0
.

Recall that λ0 = α0/M0, ε0 � γ0α0σ
κ
0 , σ0 � 1/4, and γ0 � (2κ+3c1)

−3. Thus

2c1ε0 � α0/2 and
8c1ε0

λ0
� 8c1σ

κ
0 M0γ0.

By Assumption (A1), there exists a constant 1 � L < ∞ satisfying

L �
∣∣ω−1

∣∣lip
ω(Π)

. (6.49)

Now require that γ0 is chosen so small that in addition to (6.39), one has

8c1σ
κ
0 M0γ0 � 1/2L. (6.50)
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Then, for any ν � 0,

∣∣ω̌ν − ω
∣∣sup
Π

,
∣∣Ω̌ν − Ω

∣∣sup
Π,�∞ � α/2 and

∣∣ω̌ν − ω
∣∣lip
Π

,
∣∣Ω̌ν − Ω

∣∣lip
Π,�∞ � 1/2L

and for any (k, e) ∈ Z
A × Z

B , Rν
ke(αν) is contained in

Řke(αν) := {
ξ ∈ Π :

∣∣k · ω̌ν(ξ) + e · Ω̌ν(ξ)
∣∣ < αν A−1

k · 1 ∨ |e|
1
2
δ

}
.

In addition, we assume that M = M0 � 1 bounds the frequencies,

|ω|sup
Π + |Ω − Ω|sup

Π,�∞,−δ � M and |ω|lipΠ + |Ω|lip
Π,�∞,−δ � M. (6.51)

It turns out that we need not to distinguish between the different values of ν in ω̌ν and Ω̌ν . In the
sequel we only use the fact that ω̌ν and Ω̌ν are Lipschitz maps ω′ and Ω ′ , defined on Π , which
satisfy the following inequalities

∣∣ω′ − ω
∣∣sup
Π

+ ∣∣Ω ′ − Ω
∣∣sup
Π,�∞ � α/2 and

∣∣ω′ − ω
∣∣lip
Π

+ ∣∣Ω ′ − Ω
∣∣lip
Π,�∞ � 1/2L. (6.52)

Henceforth we consider functions ω′ , Ω ′ which satisfy these estimates – they may even depend on k
and e – and for any (k, e) ∈ Z

A × Z
B define

R′
ke(α) = {

ξ ∈ Π :
∣∣k · ω′(ξ) + e · Ω ′(ξ)

∣∣ < αA−1
k · 1 ∨ |e|

1
2
δ

}
.

First we derive the following estimate for meas(R′
ke(α)).

Lemma 6.4. For any (k, e) ∈ Z
A × Z

B \ {(0,0)} with |k| � 6LM|e|δ
meas

(
R′

ke(α)
)
� 12L(LMρ)|A|−1α|k|− 1

2 A−1
k

where ρ = diam(Π) denotes the diameter of Π .

Proof. Taking into account Assumption (A1) we introduce the unperturbed frequencies ζ = ω(ξ) as
new parameters with domain Π̇ = ω(Π) and consider the resonance zones Ṙke = ω(R′

ke) in Π̇ .
Writing ω̇ and Ω̇ for the pull back of ω′ and Ω ′ by ω−1, we then have by (6.49), (6.52)

|ω̇ − id|lip
Π̇

�
∣∣ω′ − ω

∣∣lip
Π

· ∣∣ω−1
∣∣lip
Π̇

� 1/2.

In view of (6.49), (6.51), (6.52) and using that L � 1, M � 1, the Lipschitz semi-norm of Ω̇ can be
bounded as follows

|Ω̇|lip
Π,�∞,−δ �

(∣∣Ω ′ − Ω
∣∣lip
Π,�∞,−δ + |Ω|lip

Π,�∞,−δ

)∣∣ω−1
∣∣lip
Π̇

�
(

1

2L
+ M

)
L � 2LM. (6.53)

To estimate meas(Ṙke(α)), let g(ζ ) := k · ω̇(ζ ) + e · Ω̇(ζ ). Choose a vector v ∈ {−1,1}A such that
k · v = |k| and write any vector in R

A as a linear combination of v and an element w in the orthogonal
complement v⊥ of v . Introduce the following affine function of the real variable r, ζ = ζ(r) := rv + w .
For any t > s with ζ(t), ζ(s) in Π̇ one has

k · ω̇(ζ )|ts = k · ζ |ts + k · (ω̇(ζ ) − ζ
)∣∣t

s � |k|(t − s) − 1 |k|(t − s) = 1 |k|(t − s). (6.54)

2 2
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Moreover by (6.53) and the assumption 6LM|e|δ � |k|,

∣∣e · Ω̇(ζ )|ts
∣∣ = ∣∣e · (Ω̇(

ζ(t)
) − Ω̇

(
ζ(s)

))∣∣
� |e|δ|Ω̇|lip

Π̇,�∞,−δ (t − s) � 2LM|e|δ(t − s) � 1

3
|k|(t − s). (6.55)

Altogether we have shown that uniformly for w ∈ v⊥ with rv + w|r=t,s ∈ Π̇ ,

g(rv + w)|ts � 1

6
|k|(t − s).

It follows that for each point w ∈ v⊥ so that rv + w ∈ Π̇ for some r ∈ R, the set

{
r ∈ R: rv + w ∈ Π̇; ∣∣g(rv + w)

∣∣ < η
}

is contained in an interval I w of length meas(I w) � 12η|k|−1. With η = αA−1
k · 1 ∨ |e|

1
2
δ and Fubini’s

theorem one then concludes that

meas
(

Ṙke(α)
)
�

12αA−1
k

|k| · 1 ∨ |e|
1
2
δ · (diam Π̇)|A|−1.

As 6LM|e|δ � |k| and LM � 1 one then gets for any e ∈ Z
B

meas
(

Ṙke(α)
)
� 12α|k|− 1

2 A−1
k · (diam Π̇)|A|−1.

Going back to the original parameter domain Π by the inverse ω−1 of the frequency map and noting
that diam(Π̇) � |ω|lipΠ ρ with ρ denoting the diameter diam(Π) of Π it then follows that

meas
(

R′
ke(α)

)
�

(∣∣ω−1
∣∣lip
Π̇

)|A|
meas

(
Ṙke(α)

)
� 12L|A|(Mρ)|A|−1α|k|− 1

2 A−1
k

as claimed. �
It is convenient to introduce Λ := {e ∈ Z

B : 1 � |e| � 2} and

Λr := {
e ∈ Λ: e = (δaj) j∈Z − (δ−aj) j∈Z, a ∈ Z \ {0}}.

By a slight abuse of terminology we refer to Λr as the subset of resonant sites of Λ. It turns out that
the estimates involving resonant sites have to be dealt with separately. Recall that the unperturbed
frequencies satisfy |Ω − Ω|sup

Π,�∞,−δ � M where for j ∈ B ,

Ω j = | j|d + a1| j|d1 + · · · + aD | j|dD

with d ≡ d0 > d1 > · · · > dD � 0, a1, . . . ,aD ∈ R, and d > 1, 0 � δ < 1 ∧ (d − 1).
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Lemma 6.5. There exists E � 1 depending only on M and the approximation Ω of the unperturbed frequencies
Ω so that for any e ∈ Λ \ Λr with |e|∗ := max j∈B{| j|: e j �= 0} � E

∣∣e · Ω ′(ξ)
∣∣ � 1

8
|e|d−1 ∀ξ ∈ Π.

Proof. We only prove the claimed estimate for e ∈ Λ \ Λr with e · Ω ′(ξ) of the form Ω ′
i (ξ) − Ω ′

j(ξ)

for some i, j ∈ B with j �= −i which is the most subtle case. Write Ω ′
i = Ωi + (Ω ′

i − Ωi) and Ωi =
Ω i + (Ωi − Ω i) and use that |Ω ′ − Ω|sup

Π,�∞ � α/2 and |Ω − Ω|sup
Π,�∞,−δ � M to conclude that

∣∣e · Ω ′∣∣ � |Ω i − Ω j| − α − M
(〈i〉δ + 〈 j〉δ).

Without loss of generality assume that i = |i| > j = | j|. As 0 < α < 1 � M and i � 1 it then follows
that

∣∣e · Ω ′∣∣ � |Ω i − Ω j| − 3Miδ � id − jd −
D∑

l=1

|al|
(
idl − jdl

) − 3Miδ.

For j = 0 we get, with C = ∑D
l=1 |al|,

∣∣e · Ω ′∣∣ � id − Cid1 − 3Miδ.

Choosing E � 1 sufficiently large and using that in this case |e|d−1 = |i|d−1 + 1 and d1, δ < d it then
follows that for any e with |e|∗ � E

∣∣e · Ω ′∣∣ � 1

8
|e|d−1 ∀ξ ∈ Π.

If j � 1 note that ix − jx is monotone increasing in x � 0 and hence

∣∣e · Ω ′∣∣ � id − jd − C
(
id1 − jd1

) − 3Miδ.

Using that id − jd = (i − j)(id−1 + jd−1) + jid−1 − i jd−1 and as d � 1,

id − jd + jid−1 − i jd−1 = i
(
id−1 − jd−1) + j

(
id−1 − jd−1) � 0

it then follows that

2
(
id − jd) � (i − j)

(
id−1 + jd−1) � (i − j)id−1.

On the other hand

id1 − jd1 =
i∫

j

d1xd1−1 dx � d1 · (i − j) · 1 ∨ id1−1.

Altogether we then get
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∣∣e · Ω ′∣∣ � 1

4
(i − j)id−1

(
1 − 4Cd1

1 ∨ id1−1

id−1

)
+ 1

4
id−1(1 − 12Miδ−d+1)

� 1

8

(
id−1 + jd−1)(2 − 4Cd1

1 ∨ id1−1

id−1
− 12Miδ−d+1

)
.

Choosing E � 1 larger, if necessary, it follows also in this case that for any e with |e|∗ � E

∣∣e · Ω ′(ξ)
∣∣ � 1

8
|e|d−1 ∀ξ ∈ Π

as claimed. �
Lemma 6.6. For any e ∈ Λ\Λr with |e|∗ � E and E given as in Lemma 6.5 and for any k ∈ Z

A and 0 < α < 1
16

with R′
ke(α) �= ∅ one has

|k| � 1

16
(1 + M)−1|e|d−1.

Proof. Again we only prove the claimed estimate for e ∈ Λ \ Λr with e · Ω ′(ξ) of the form
Ω ′

i (ξ)−Ω ′
j(ξ) for some i, j ∈ B with j �= −i which is again the most subtle case. Since by assumption

R′
ke(α) �= ∅ there exists ξ ∈ Π such that

∣∣k · ω′(ξ) + Ω ′
i (ξ) − Ω ′

j(ξ)
∣∣ < αA−1

k |e|
1
2
δ .

By Lemma 6.5 one then concludes that for any e ∈ Λ \ Λr with |e|∗ � E

|k|∣∣ω′∣∣sup
Π

�
∣∣Ω ′

i − Ω ′
j

∣∣ − ∣∣k · ω′ + Ω ′
i − Ω ′

j

∣∣ � 1

8
|e|d−1 − α|e|

1
2
δ .

As α < 1
16 and, by assumption, d − 1 > δ, it then follows that |k||ω′|sup

Π � 1
16 |e|d−1. On the other hand,

by (6.51) and (6.52),

∣∣ω′∣∣sup
Π

�
∣∣ω′ − ω

∣∣sup
Π

+ |ω|sup
Π � α

2
+ M � 1 + M

yielding |k| � 1
16 (1 + M)−1|e|d−1 as claimed. �

Introduce

Enr := (
2Ed−1−δ

) ∨ (
6 · 48 · LM(1 + M)

)
and Knr := 6LM max

|e|d−1−δ�Enr

|e|δ

where the subscript index nr stands for ‘nonresonant’.

Lemma 6.7. For any 0 < α < 1
16 and (k, e) ∈ Z

A ×Z
B with e ∈ Λ\Λr and either |k| � Knr or |e|d−1−δ � Enr,

meas
(

R′
ke(α)

)
� 12L(LMρ)|A|−1α|k|− 1

2 A−1
k .
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Proof. Without loss of generality assume that R′
ke(α) �= ∅. If |e|d−1−δ � Enr , then by the definition

of Enr , |e|d−1−δ � 2Ed−1−δ which in view of 0 � |e| � 2 implies that |e|∗ � E . By Lemma 6.6 one
then gets |k| � 1

16 (1 + M)−1|e|d−1. Note that |e|d−1−δ|e|δ � 3|e|d−1. Together with the assumption
|e|d−1−δ � Enr � 6 · 48 · LM(1 + M) it then follows that

|k| � 1

16
(1 + M)−1 1

3
· 6 · 48 · LM(1 + M)|e|δ � 6LM|e|δ.

If |e|d−1−δ < Enr , then |k| � Knr � 6LM|e|δ . So in both cases, Lemma 6.4 applies, yielding the claimed
estimate. �

Next we treat the case of a resonant site, e ∈ Λr . Let C A = 1 ∨ maxi∈A |i| and introduce

Er := 2(6LMC A)(d−1−δ)/(1−δ) and Kr := 6LM max
e∈Λr|e|d−1−δ�Er

|e|δ

where the subscript index r stands for ‘resonant’.

Lemma 6.8. For any (k, e) ∈ Z with e ∈ Λr and either |k| � Kr or |e|d−1−δ � Er

meas
(

R′
ke(α)

)
� 12L(LMρ)|A|−1α|k|− 1

2 A−1
k .

We remark that in the proof of Lemma 6.8 the assumption δ < 1 of Assumption (A2) is used in an
essential way.

Proof. Note that for e ∈ Λr , |e|d−1−δ = 2|i|d−1−δ . Using that 0 � δ < 1 it then follows that
|e|d−1−δ � Er implies |i|1−δ � 6LMC A . On the other hand, as (k, e) ∈ Z , it follows that 2|i| = |k · νA | �
|k|C A which then leads to

|k| � C−1
A 2|i| = C−1

A 2|i|δ|i|1−δ � 6LM|e|δ.
If |e|d−1−δ < Er , then by assumption |k| � Kr and hence |k| � 6LM|e|δ as well. Thus in both cases we
can again apply Lemma 6.4 to get the claimed estimate. �

It is convenient to combine the statements of Lemma 6.4 for e = 0, Lemma 6.7, and Lemma 6.8.
Introduce

E∗ = Er ∨ Enr and K∗ = Kr ∨ Knr . (6.56)

Corollary 6.2. For any (k, e) ∈ Z \ Z∗ with e ∈ Λ and for any (k,0) ∈ Z ,

meas
(

R′
ke(α)

)
� 12L(LMρ)|A|−1α|k|− 1

2 A−1
k ,

where

Z∗ := {
(k, e) ∈ Z : 0 � |k| < K∗; 0 � |e|d−1−δ < E∗

}
.

To continue, introduce for any k ∈ Z
A the resonance sets

R′
k(α) :=

⋃
(k,e)∈Z\Z∗

R′
ke(α).
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Remark 6.1. Note that for any 0 < α < 1/16, R′
0(α) = ∅. Indeed, let (0, e) ∈ Z \ Z∗ . If e ∈ Λr , then 0 =

k · νA + e · νB = 2i for some i ∈ Z with i,−i ∈ B . But i = 0 contradicts that e ∈ Λr . It remains to treat
the case e ∈ Λ \ Λr . The assumption (0, e) /∈ Z∗ implies that |e|d−1−δ � E∗ . As E∗ � Enr � 2Ed−1−δ it
follows that |e|∗ � E . By Lemma 6.6 it then follows that R′

0e(α) = ∅.

The case k �= 0 is treated in the following lemma. Recall that ρ denotes the diameter of Π .

Lemma 6.9. Assume that 0 < α < 1/16. Then, for any k ∈ Z
A \ {0},

meas
(

R′
k(α)

)
� Cρ|A|−1α|k|− 1

2 +1∨2(d−1)−1
A−1

k

where C is a constant depending on L, M, A, d, δ and the coefficients in the expansion of Ω .

Proof. First note that

R′
k(α) = R′0

k (α) ∪ R′ r
k (α) ∪ R′nr

k (α)

where

R′0
k (α) =

{
R′

k0(α) if (k,0) ∈ Z \ Z∗,
∅ if (k,0) ∈ Z∗,

and

R′ r
k (α) =

⋃
e∈Λr

(k,e)∈Z\Z∗

R′
ke(α); R′nr

k (α) =
⋃

e∈Λ\Λr
(k,e)∈Z\Z∗

R′
ke(α).

By Corollary 6.2,

meas
(

R′0
k (α)

)
� 12L(LMρ)|A|−1α|k|− 1

2 A−1
k . (6.57)

Toward R′ r
k (α) note that for (k, e) ∈ Z \ Z∗ with e ∈ Λr it follows that

0 < 2|i| = |k · νA | � C A |k|.
Hence

�
{
(k, e) ∈ Z \ Z∗: e ∈ Λr

}
� C A |k| (6.58)

and thus again by Corollary 6.2,

meas
(

R′ r
k (α)

)
� 12C A L(LMρ)|A|−1α|k| · |k|− 1

2 A−1
k . (6.59)

To estimate meas(R′nr
k (α)) we argue as follows. Consider (k, e) ∈ Z \ Z∗ with R′

ke(α) �= ∅ and e ∈
Λ \ Λr . If |e|d−1−δ � E∗ , then |e|∗ � E and hence by Lemma 6.6,

|k| � 1

16
(1 + M)−1|e|d−1

and thus
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�
{

e ∈ Λ \ Λr: (k, e) ∈ Z; |e|d−1−δ � E∗; R′
ke(α) �= ∅}

� �
{

e ∈ Λ \ Λr: |e|d−1 � 16(1 + M)|k|}
� 3 · 9 · (16(1 + M)

)2(d−1)−1 |k|2(d−1)−1
. (6.60)

Finally

�
{

e ∈ Λ \ Λr: (k, e) ∈ Z \ Z∗; 1 � |e|d−1−δ � E∗
}

� 3 · (2E(d−1−δ)−1

∗ + 1
)2

.

Altogether, we then get again from Corollary 6.2 that meas(R′nr
k (α)) is bounded by

3
(
9
(
16(1 + M)

)2(d−1)−1 |k|2(d−1)−1 + (
2E(d−1−δ)−1

∗ + 1
)2) · 12L(LMρ)|A|−1α|k|− 1

2 A−1
k . (6.61)

Combining (6.57), (6.59), (6.61) leads to the claimed estimate for meas(R′
k(α)). �

Proof of Theorem 4.1(i). First we need to choose the parameters K0, τ , and α. Recall that K0 is
given by K0 = (c1γ0)

−τ−1 where γ0 satisfies the smallness condition (6.39) and (6.50). In view of the
definition, Ak = 〈k〉τ , and of Lemma 6.9, choose τ � |A|+ 1

2 +1∨2(d−1)−1. Furthermore, if necessary,
choose 0 < γ0 smaller so that K0 � K∗ where K∗ is given by (6.56). Finally let 0 < α < 1/16. With
these choices we now estimate meas(Π \ Π∗). Write Π \ Π∗ = ⋃4

i=1 Ξ i
α where

Ξ1
α =

⋃
|k|<K∗

(k,e)∈Z, e �=0

R0
ke(α0), Ξ2

α =
⋃

|k|<K∗
(k,0)∈Z

R0
ke(α0),

and

Ξ3
α =

⋃
|k|�K∗
(k,e)∈Z

R0
ke(α0), Ξ4

α =
⋃
ν�1

⋃
|k|>Kν
(k,e)∈Z

Rν
ke(αν).

We will estimate meas(Ξ i
α), 1 � i � 4, separately. First note that in view of (6.58) and (6.60), for each

0 � |k| < K∗ , the set {e ∈ Λ: (k, e) ∈ Z; R0
ke(α) �= ∅} is finite. Hence Ξ1

α is a finite union of resonance
sets R0

ke(α). By its definition, R0
ke(α) is a closed subset of the compact set Π ⊆ R

A and monotone
increasing with respect to α. Furthermore, by Assumption (A3), meas(R0

ke(0)) = 0. Hence it follows
that

lim
α→0

meas
(
Ξ1

α

) = 0.

By Corollary 6.2

meas
(
Ξ2

α

)
�

∑
k �=0

12L(LMρ)|A|−1α|k|− 1
2 A−1

k � Cρ|A|−1α ·
∑
k �=0

|k|− 1
2 A−1

k (6.62)

and by Lemma 6.9,

meas
(
Ξ3

α

)
� meas

( ∑
|k|�K

R0
k(α)

)
�

∑
|k|�K

Cρ|A|−1α|k|− 1
2 +1∨2(d−1)−1

A−1
k . (6.63)
∗ ∗



4112 T. Kappeler, Z. Liang / J. Differential Equations 252 (2012) 4068–4113
By the choice of τ � |A| + 1
2 + 1 ∨ 2(d − 1)−1, one then gets

meas
(
Ξ2

α

) + meas
(
Ξ3

α

)
� Cρ|A|−1α

(∑
k �=0

|k|− 1
2 A−1

k +
∑

|k|�K∗
|k|− 1

2 +1∨2(d−1)−1
A−1

k

)

� 2Cρ|A|−1α
∑
k �=0

1

|k|1+|A| � CC ′ρ|A|−1α (6.64)

where C ′ is a constant only depending on |A|. Toward meas(Ξ4
α), recall that Rν

ke(αν) ⊆ Rν
ke(α) as

αν � α, for any ν � 1. As K∗ � K0 < Kν for any ν � 1 one concludes that for any nonempty resonance
set Rν

ke(αν) in Ξ4
α one has (k, e) ∈ Z \ Z∗ . Lemma 6.9 then implies that

meas
(
Ξ4

α

)
�

∑
ν�1

∑
|k|>Kν

Cρ|A|−1α|k|− 1
2 +1∨2(d−1)−1

A−1
k � CC ′ρ|A|−1α

∑
ν�1

1

Kν
. (6.65)

By the choice of Kν , Kν = K02ν , one then gets

meas
(
Ξ4

α

)
� CC ′ρ|A|−1α

∑
ν�1

K −1
0 /2ν � CC ′K −1

0 ρ|A|−1α.

In particular it follows that

4∑
i=2

meas
(
Ξ i

α

) = O (α), α → 0.

This finishes the proof of item (i) of Theorem 4.1. �
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