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Non-Gaussian Random Wave
Simulation by Two-Dimensional
Fourier Transform and Linear
Oscillator Response to Morison
Force
The one-dimensional fast Fourier transform (FFT) has been applied extensively to simu-
late Gaussian random wave elevations and water particle kinematics. The actual sea
elevations/kinematics exhibit non-Gaussian characteristics that can be represented math-
ematically by a second-order random wave theory. The elevations/kinematics formula-
tions contain frequency sum and difference terms that usually lead to expensive time-
domain dynamic analyses of offshore structural responses. This study aims at a direct and
efficient two-dimensional FFT algorithm for simulating the frequency sum terms. For the
frequency-difference terms, inverse FFT and forward FFT are implemented, respectively,
across the two dimensions of the wave interaction matrix. Given specified wave condi-
tions, the statistics of simulated elevations/kinematics compare well with not only the
empirical fits but also the analytical solutions based on a modified eigenvalue/
eigenvector approach, while the computational effort of simulation is very economical. In
addition, the stochastic analyses in both time domain and frequency domain show that,
attributable to the second-order nonlinear wave effects, the near-surface Morison force
and induced linear oscillator response are more non-Gaussian than those subjected to
Gaussian random waves. �DOI: 10.1115/1.2783888�

Keywords: two-dimensional fast Fourier transform (FFT), wave nonlinearity, Morison
force
ntroduction

In offshore engineering applications, the random sea surface is
sually modeled as a stationary Gaussian process by the linear
uperposition of harmonic wave components �1�. The water par-
icle kinematics �velocity and acceleration� in fluids follow Gauss-
an distributions under the linear wave theory. Nevertheless, nu-

erous field observations and laboratory tests have shown that the
ctual sea elevations tend to exhibit non-Gaussian characteristics.
he wave non-Gaussianities are particularly significant in a severe
ea state and in shallow water that is a non-negligible factor for
he safety considerations of offshore structures. It has been re-
orted by Stansberg �2� that nonlinear wave effects can cause the
xtreme wave crest heights to increase by as much as 10–20% and
he extreme kinematics by about 30%, albeit the energy contribu-
ion of the second-order effects to the wave spectrum is small.

The early theoretical descriptions of wave nonlinearity using a
econd-order correction can be traced to those by Tick �3�,
onguet-Higgins �4�, and Hasselmann �5�. The successive devel-
pment of second-order random wave models may be found, to
ame some, in Sharma and Dean �6�, Huang et al. �7�, Tayfun �8�,
nd Martinsen and Winterstein �9�. The established models have
esulted in many published works on the statistical analysis of the
onlinear random wave elevations, while only limited literatures
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are available for the kinematics. For this reason, the authors will
utilize Langley’s �10� convenient eigenvalue/eigenvector ap-
proach, however, with some modifications.

To obtain more meaningful statistics of wave force and induced
structural response, either time- or frequency-domain stochastic
analyses may be applied. Time-domain Monte Carlo simulations
are used often because of the relatively less mathematical com-
plexity involved �11�. Owing to the rapid development of com-
puter technology, the Gaussian wave elevation and kinematics that
is a single summation of linear wave components can be easily
simulated with limited computational time today. It is true even if
the summation is performed by a conventional loop considering a
large number of frequency components to serve the central limit
theorem for a Gaussian realization. The matrix-vector multiplica-
tion technique �as well as the dot product of two vectors� embed-
ded in modern computer languages has replaced the performance
of time-consuming loops and allows one to save more CPU time
�12�. On the other hand, thanks to the efficient fast Fourier trans-
form �FFT� algorithm developed in 1960s, the Gaussian elevation/
kinematics may be obtained numerically within a few seconds.
The numerical simulation procedures based on one-dimensional
inverse transform of Fourier coefficients were presented by Borg-
man �13� and have been widely applied in offshore engineering.

It appears not that straightforward when dealing with the non-
linear wave simulations. The frequency sum and difference terms
that contain double summations over bifrequencies increase the
computer work dramatically. This problem becomes more serious
when a large number of components are required to capture the
reliable higher-order statistics of wave force and structural re-
sponse �14�. Also, in order to remove sampling uncertainty, doz-
ens or even hundreds of realizations need to be generated �11,15�.

In addition, the total wave force on a slender cylinder of an off-
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hore platform, for instance, demands the integration over local
orison forces at various underwater locations. All these impede

he implementation of stochastic analysis through time-domain
imulations. Hudspeth and Chen �16� extended the one-
imensional Fourier transform to simulate the non-Gaussian
aves by correcting the Fourier coefficients in terms of wave

nteraction matrices. In reality, such a correction on Fourier coef-
cients still involves summations over frequencies and costs com-
uter time to some extent. The similar approach, especially de-
igned for the deep-water non-Gaussian wave simulations, was
uggested by Stansberg �17�. In the deep-water case, the nonlinear
nteraction matrix reduces into a much simpler form termed as
uadratic transfer function �QTF� �17� that allows the frequency-
ifference terms to be calculated along the secondary diagonal of
he QTF matrix.

For the more general cases of finite water depth, this study
dopts two-dimensional fast Fourier transform to simulate the
onlinear portions of not only wave elevation but also kinematics.
he numerical efficiency demonstrated is ensured by the FFT al-
orithm, as revealed by the bi- and trispectral analyses of nonlin-
ar Morison drag effects on an offshore structure �14�. The simu-
ated higher-order statistics of wave elevations are validated by
omparing analytical solutions as well as existing empirical fits.
lso, the developed two-dimensional FFT technique will be ap-
lied to do non-Gaussian realizations of water particle kinematics
nd associated Morison force. The extended comparative studies
ill examine the difference between the linear and second-order
onlinear random wave theories when the response time history of
linear oscillator driven by Morison force is computed.

tatistical Analysis of Elevations/Kinematics
In this section, we follow Langley �10� to obtain analytically

he cumulants of non-Gaussian wave elevations/kinematics. The
riginally proposed approach was for wave elevations only but
pplicable to the water particle velocities as well, while for the
ater particle accelerations, some necessary modifications are re-
uired. Considering the unidirectional wave propagation in a two-
imensional Cartesian plane, the first-order random wave eleva-
ion �1, horizontal water particle velocity u1, and acceleration a1
n the water of a finite depth d have the following linear superpo-
ition forms �10,13�:

�1�x,t� = �
n=1

N

�an cos �n + bn sin �n� �1�

u1�x,z,t� = �
n=1

N

Rn�z��an cos �n + bn sin �n� �2�

a1�x,z,t� = �
n=1

N

�nRn�z��− an sin �n + bn cos �n� �3�

here x is the coordinate for wave propagation direction; z is the
ertical coordinate positive upward for measuring the submerged
ocations below the still water level �SWL�; Rn�z�=�n cosh kn�z
d� / sinh knd is the linear transfer function for velocity; �n is the
iscrete angular wave frequency and kn the wave number, com-
uted by the wave dispersion equation ��n�2=gkn tanh�knd�, with
being the gravity constant and d being the water depth measured

rom the seabed to the SWL; phase �n=−knx+�nt; N is number of
ne-sided harmonic wave components; an and bn are discrete
aussian random variables if �1 is assumed to be stationary and
aussian �10�. These two random variables have the following
roperties:

E�an
2� = E�bn

2� = S�1
��n��� �4�
E�anam� = 0 E�bnbm� = 0 n � m �5�
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E�anbm� = 0 �6�

where S�1
��� is the specified one-sided wave spectrum for Gauss-

ian waves and �� is a discrete frequency interval; E� � is the
expectation operator. Assuming that the wave propagation is ho-
mogeneous in space, x may be set to be zero for simplicity. Intro-
ducing cn

2=an
2+bn

2 and �n=�nt+�n with �n=tan−1�−bn /an�:

�1�t� = �
n=1

N

cn cos��n� �7�

u1�z,t� = �
n=1

N

Rn�z�cn cos��n� �8�

a1�z,t� = − �
n=1

N

�nRn�z�cn sin��n� �9�

The second-order nonlinear portions of random wave elevations
and kinematics are �3–9�

�2�t� = �
n=1

N

�
m=1

N

cncm�vnm cos��n + �m� + wnm cos��n − �m��

�7��

u2�z,t� = �
n=1

N

�
m=1

N

cncm�pnm cos��n + �m� + qnm cos��n − �m��

�8��

a2�z,t� = �
n=1

N

�
m=1

N

cncm�jnm sin��n + �m� + lnm sin��n − �m��

�9��

One of the wide-banded models considering the finite water depth
d was suggested by Sharma and Dean �6�. In Eqs. �7��, �8��, and
�9��, vnm, wnm, pnm, qnm, jnm, and lnm are the nmth entries of
respective interaction matrices. They were given as follows:

vnm =
1

4�Dnm
+ − �knkm − rnrm�

�rnrm

+ rn + rm�
wnm =

1

4�Dnm
− − �knkm + rnrm�

�rnrm

+ rn + rm� �10�

pnm =
g2Dnm

+ �kn + km�cosh knm
+ �d + z�

4�n�m��n + �m�cosh knm
+ h

qnm =
g2Dnm

− �kn − km�cosh knm
− �d + z�

4�n�m��n − �m�cosh knm
− h

�11�

jnm = − pnm��n + �m� lnm = − qnm��n − �m� �12�
where
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Dnm
± =

��rn ± �rm���rm�kn
2 − rn

2� ± �rn�km
2 − rm

2 �� + 2��rn ± �rm�2�knkm � rnrm�

��rn ± �rm�2 − knm
± tanh knm

± d
knm
± = 	kn ± km	 rn = �n

2/g

t can be seen that all interaction matrices are symmetric about n
nd m except for lnm. For example, pnm= pmn and lnm=−lmn. In
ddition, wnm, qnm, and lnm are zeros if n=m. Hence, only the
elocity and acceleration are considered. For wave elevations,
n�z� may be set unity and replace pnm and qnm with vnm and wnm,

espectively.
Combine Eqs. �8� and �8��, the total velocity is expressed as

u�z,t� = u1�z,t� + u2�z,t� �13�

hat in matrix notation is given by

u�z,t� = M xT + x�Q + P�xT + y�Q − P�yT �14�

here P and Q are symmetric matrices whose nmth entries are
nsmpnm and snsmqnm; M is a row vector with the nth element
qual to snRn�z�, sn=�S�1

��n���; x and y are row vectors with
th entries equal to xn=cn cos��n� /sn and yn=cn sin��n� /sn; xT is
he transpose of x. xn and yn are then standard Gaussian variables
ith the same properties as an and bn. Equation �14� may be

educed to

u�z,t� = �M 0��x y�T + �x y��D��x y�T �15�

here 0 is a one by n zero row vector; D is the following matrix:

D = �Q + P 0

0 Q − P
� �16�

ote that the matrix D is real and symmetric and consequently its
iagonalized form is

D = P1 �1 P1
T �17�

here �1 is a diagonal matrix of the real eigenvalues �n of D,
=1, 2 , . . . ,2N; P1 is the matrix of which the columns are ortho-
ormal eigenvectors of D, viz., P1P1

T=I. I is an identity matrix
ith dimensions 2N	2N. It follows that u is simply given by

u�z,t� = �
n=1

2N


n �18a�


n = �nXn + �nXn
2 �18b�

here Xn is the nth entry of �x y�P1; �n is the nth entry of the
ector-matrix multiplication �M 0�P1. The orthonormality of
igenvectors results in

E�Xn
2� = 1 E�XnXm� = 0 n � m �19�

uch that random variables Xn are standard Gaussian and are mu-
ually independent. It follows that u is the sum of quadratic non-
aussian variables 
n, Eq. �18a�. The first four cumulants are
iven as follows �10�:

K1
u = �

n=1

2N

�n �20�

K2
u = �

n=1

2N

�2�n
2 + �n

2� �21�

K3
u = �

2N

�8�n
3 + 6�n

2�n� �22�

n=1
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K4
u = �

n=1

2N

48��n
4 + �n

2�n
2� �23�

The first two cumulants correspond to mean and variance ��u
2�,

respectively. Skewness and kurtosis excess are normalized third-
and fourth-order cumulants:

3
u = K3

u/�u
3 4

u = K4
u/�u

4

The kurtosis excess is also defined as kurtosis minus 3. Thus, for
a Gaussian random variable, the kurtosis excess is 0. Because the
trace of matrix D is zero, the sum of eigenvalues is also zero and
this implies that u has a zero mean �Eq. �20��. It is also noted that
the kurtosis excess of velocity is always non-negative.

According to Eqs. �9� and �9��, the total horizontal water par-
ticle acceleration is

a�z,t� = a1�z,t� + a2�z,t� �24�

Analogous to u, a can be expressed in matrix notation as

a�z,t� = G yT + x�H + L�yT + y�H − L�xT �25�

where H is a symmetric matrix of which the nmth entry is
snsmjnm, while L is a skew-symmetric matrix whose nmth entry is
snsmlnm and G is a row vector whose nth element is −sn�nRn�z�.
Different from the cases of u and �, the frequency-difference
coefficient matrix �H−L� is not symmetric about m and n and the
following formulation is thus introduced:

a�z,t� = �0 G��x y�T + �x y��A��x y�T �26�

where matrix A is

A = � 0 H − L

H + L 0
� �27�

where A is symmetric and has the same property as matrix D. The
diagonalization leads to

A = P2 �2 P2
T �28�

where matrix �2 contains the eigenvalues �n of A �n
=1,2 , . . . ,2N� along its main diagonal and P2 is the orthonormal
eigenvector matrix of A. Similar to u, a is the sum of 2N quadratic
transformations of independent and standard Gaussian variables:

a�z,t� = �
n=1

2N

��nYn + �nYn
2� �29�

where �n is the nth entry of �0 G�P2; random variable Yn is the nth
entry of �x y�P2. Applying Eqs. �20�–�23�, the fist four cumulants
can be calculated by replacing �n with �n and by replacing �n with
�n. Considering that matrix A possesses a zero trace, the mean of
a is zero as well. In addition, it may be shown that the 2N eigen-
values of matrix A have the property that �n=−�2N+1−n and cor-
respondingly 	�n	= 	�2N+1−n	 so that the third-order cumulant of a is

K3
a = �

n=1

2N

�8�n
3 + 6�n

2�n� = 0 �30�

implying that the skewness of horizontal particle acceleration a is
identically equal to zero.

The first four cumulants of the kinematics from Eqs. �20�–�23�
are useful for the polynomial approximation of the Morison drag
force that is necessary for the frequency-domain stochastic analy-

sis of structural responses �18�. The cumulant spectral analysis
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ethod has been developed �18� to estimate efficiently the power,
i-, and trispectra and the associated variance, skewness, and kur-
osis excess of the total wave force and induced deck displace-

ent for an idealized monopod jack-up platform.
To take into account the varying surface induced inundation

ffects �19,20� for the structural superharmonic response, the non-
inear portion of kinematics needs further corrections, especially
or the zone above the SWL. Several wave stretching/
xtrapolation methods have been recommended for this problem
nd a comparative study was conducted for the laboratory mea-
urements of steep waves �21�. On the other hand, without cor-
ecting the nonlinear kinematics, the wave inundation effects may
lso be modeled �18,20� by adding an extra wave load around the
WL to the total force that is integrated from z=−d to the SWL
nly. In this case, the formulations of kinematics in Eqs. �13�–�24�
re valid for z�0.

ast Fourier Transform Simulation of Elevation/
inematics

One-Dimensional Inverse Fast Fourier Transform/Fast Fou-
ier Transform Simulation. In time-domain simulation, the train
f linear random wave elevations of overall M number of time
teps can be expressed according to Eq. �7� by

�1�th� = �
n=0

N−1

cn cos��nth + �n� h = 0,1, . . . ,M − 1 �31�

here th=h�t, �t is a discrete time step. In the deterministic
pectral amplitude simulation �Rice �1� and Borgman �13��, cn is
omputed as

cn = �2S�1
��n��� �32�

nd the phase �n is a sequence of uniformly distributed random
umbers in the interval �0,2��. Equation �31� may be rewritten as

�1�th� = Re��
n=0

N−1

�cnei�n�ei2�nh/M� h = 0,1, . . . ,M − 1 �33�

here i is the imaginary unit and Re� � denotes the real part of a
omplex value inside the square brackets.

While applying the discrete Fourier transform �DFT�, M is usu-
lly equal to N, a number chosen to be an integer power of 2 for
he fast implementation of FFT algorithm. The familiar wave
imulation based on the inverse fast Fourier transform �IFFT� is
y the following expression �13�:

�1�th� =
1

N
Re��

n=1

N

Cnei2��n−1��h−1�/N� h = 1,2, . . . ,N �34�

here the complex Fourier coefficients are computed as

Cn = N�1

2
S�1

��n���ei�n n = 2, . . . ,
N

2
�35a�

and CN+2−n = Cn
* n =

N

2
+ 2, . . . ,N �35b�

here the asterisk “�” denotes complex conjugate. The discrete
equence of wave elevations is then obtained by synthesizing the
FFT of sequence Cn, according to

�1�th� = IFFT�Cn� h,n = 1,2, . . . ,N �36�

quation �35a� implies that the two-sided spectrum is invoked and
hat the Nyquist frequency is at n=N /2+1. In other words, if the
umber of sequence time points is N, the discrete Fourier series
epresentation in the above IFFT procedures involves N /2 har-

onic components, i.e.,
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�1�t� = c0 + �
n=1

N/2

cn cos��nt + �n� �37�

To decrease �t or to remove the high-frequency effect, the Fourier
coefficients in Eqs. �35a� and �35b� are often padded with trailing
zeros. In this case, the number of nonzero-amplitude components
will be fewer than N /2.

Alternatively, Eq. �33� may be rewritten as

�1�th� = Re��
n=0

N−1

�cne−i�n�e−i2�nh/N� h = 0,1, . . . ,N − 1

�38�

that indicates that the sequence of wave elevations is the direct
Fourier transform of the following coefficients:

Cn = cne−i�n = �2S�1
��n���e−i�n n = 0,1, . . . ,N − 1 �39�

i.e.,

�1�th� = Re�FFT�Cn�� h,n = 0, . . . ,N − 1 �40�

Different from the IFFT procedures in Eqs. �34�–�37�, the one-
sided wave spectrum is applied in Eq. �39�. Because �t�f =1/N,
for the same N and the same cutoff frequency, the frequency reso-
lution �f of the forward FFT realization in Eq. �40� will be two
times finer than that of IFFT in Eq. �36�, which in turn makes �t
two times coarser.

To simulate the Gaussian velocity and acceleration, replace the
wave spectrum S�1

��� by the following velocity and acceleration
power spectra, respectively:

Su1
�z,�n� = 	Rn�z�	2S�1

��n�

Sa1
�z,�n� = �n

2Su1
�z,�n�

where Rn�z� is defined following Eq. �3�. The sequence of accel-
eration corresponds to the imaginary part of IFFT/FFT simulation.

Two-Dimensional Fast Fourier Transform Simulation. It can
be seen in Eqs. �7��, �8��, and �9�� that the frequency sum and
difference terms of the nonlinear random wave elevation and ki-
nematics contain double summations over frequency components.
In the following, it will be shown that these double summations
can be realized numerically by two-dimensional fast Fourier trans-
forms rather than conventional lengthy loops. First, let us consider
the general two-dimensional M 	N forward DFT and inverse
DFT pair �22�

F�h,r� = �
n=0

N−1

�
m=0

M−1

f�n,m�e−i2�nh/Ne−i2�mr/M
h = 0, . . . ,N − 1

r = 0, . . . ,M − 1

�41�

f�n,m� =
1

NM �
h=0

N−1

�
r=0

M−1

F�h,r�ei2�nh/Nei2�mr/M
n = 0, . . . ,N − 1

m = 0, . . . ,M − 1

�42�

Matrices F�h ,r� and f�n ,m� are computed by the two-dimensional
FFT/IFFT that is denoted as “FFT2” herein

F�h,r� = FFT2�f�n,m�� f�n,m� = IFFT2�F�h,r�� �43�

that is equivalent to calculating separately FFT/IFFT of each di-
mension of the input matrices �22�:

F�h,r� = FFTn
FFTm�f�n,m��� �44�

f�n,m� = IFFTh
IFFTs�F�h,r��� �45�

where the RHS of Eq. �44�, for instance, indicates that the one-

dimensional FFT is performed firstly column by column �m for
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olumn� for the input matrix f�n ,m�, the result of which is then
reated by one-dimensional FFT row by row �n for row�. There-
ore, the FFT subroutine is called for N	M times. Certainly, the
rder of n and m can be exchanged without changing the output
atrix F�h ,r�.
The frequency sum term of the nonlinear elevations in Eq. �7��

an be rewritten in the discrete form

�2
+�th� = Re��

n=0

N−1

�
m=0

N−1

�cncmvnme−i�ne−i�m�e−i2�nh/Ne−i2�mh/N�
h = 0, . . . ,N − 1 �46�

ompared with Eq. �41�, obviously h=r. Thus, the vector se-
uence �2

+�th� is exactly the real part of the diagonal entries of the
wo-dimensional FFT output matrix, namely,

F�h,r� = FFT2�f+�n,m��
h = 0, . . . ,N − 1

r = 0, . . . ,N − 1
�47�

�2
+�th� = Re�	F�h,r�	h=r� h = 0, . . . ,N − 1

here the frequency sum wave interaction matrix is �Eq. �46��

f+�n,m� = cncmvnme−i�ne−i�m
n = 0, . . . ,N − 1

m = 0, . . . ,N − 1
�48�

imilarly, the frequency-difference term of elevation is express-
ble in the following discrete form:

�2
−�th� = Re��

n=0

N−1

�
m=0

N−1

�cncmwnmei�ne−i�m�ei2�nh/Ne−i2�mh/N�
h = 0, . . . ,N − 1 �49�

hat may be expanded to

�2
−�th� = Re� 1

N�
n=0

N−1 ��
m=0

N−1

�Ncncmwnmei�ne−i�m�e−i2�mh/N�ei2�nh/N
h = 0, . . . ,N − 1 �50�

enote the frequency-difference wave interaction matrix as

f−�n,m� = cncmwnmei�ne−i�m
n = 0, . . . ,N − 1

m = 0, . . . ,N − 1
�51�

hen

�2
−�th� = N Re� 1

N�
n=0

N−1 ��
m=0

N−1

f−�n,m�e−i2�mh/N�ei2�nh/N
h = 0, . . . ,N − 1 �52�

ollowing Eqs. �44� and �45�, we have

F�h,r� = IFFTn
FFTm�f−�n,m���
h = 0, . . . ,N − 1

r = 0, . . . ,N − 1
�53�

�2
−�th� = N Re�	F�h,r�	h=r� h = 0, . . . ,N − 1

here the desired frequency-difference sequence �2
−�th� is the real

art of the diagonal elements of the two-step FFT/IFFT output
atrix times N. Unlike the frequency sum term that may rely on

he direct application of available double FFT subroutines, the
requency-difference sequence has be to calculated by computing
FT and IFFT, respectively, across the two dimensions in Eq. �53�
ith only negligible extra computations.
The above procedures are applicable to simulating nonlinear

inematics as well. The sequence of acceleration corresponds to

he imaginary part of the diagonal entries.
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Results and Discussions
The procedures developed above are applied to a case that was

treated in a previous work �12�. The wave conditions were speci-
fied by a JONSWAP wave spectrum with significant wave height
Hs=12.9 m, water depth d=75 m, peak wave frequency �p
=0.417 rad/s, and peak enhancement factor �=3.3. Based on the
second-order random wave model in Eqs. �7��, �8��, and �9��, as
many as 180 realizations are generated; each realization corre-
sponds to a storm of 20 min duration. Thus, these realizations can
be grouped into sets of 9 to yield 20 sample functions; each
sample function is a 3 h storm. The simulations utilize N=2048
and the frequency resolution ��=0.00511 rad/s. Because nonlin-
ear wave-wave interactions contribute to the high-frequency en-
ergy in the measured wave spectrum and the high-frequency en-
ergy will induce excessive extreme values of waves, it is
important to set a maximum frequency �max for the simulations.
Forristall �23� recommended that �max applied for frequency sum
calculations be four to five times �p, while Stansberg �15� sug-
gested kmaxAext�2; the wave number kmax corresponds to �max
and Aext is the expected extreme wave crest for linear random
wave theory.

Zhang et al. �24�, and Yang and Zhang �25� reported that the
second-order nonlinear random theory �3–9� derived based on the
conventional perturbation method is applicable to a narrow-
banded wave spectrum only and may have a serious divergence
problem in calculating water particle kinematics if the bandwidth
of wave spectrum is broad. Zhang et al. �24� employed phase
modulation method to formulate a hybrid wave model such that
the statistics of calculated wave kinematics is not sensitive to
�max. Here, the peak enhancement factor of JONSWAP spectrum
�=3.3 describes a moderately narrow bandwidth and we have
limited wave-wave interactions below the �max value as suggested
by Stansberg. Consequently, problems of excessive wave/
kinematics extremes and divergences will not appear.

Once the nonlinear random velocity and acceleration are simu-
lated, the Morison force per unit length on a slender member can
be computed from

f�z,t� = f I + fD = CMAIa�z,t� + CDADu�z,t�	u�z,t�	 �54�

where AI=���Deq�2 /4 and AD=�Deq/2; � is water density; Deq is
the equivalent diameter of the circular member; CM and CD are
inertia and drag coefficients, respectively. Note that our focus is
on the nonlinear random wave effects. The wave-structure inter-
action effects that can be taken alternatively into account by ad-
justing the oscillator damping is not included in Eq. �54�. Apply-
ing the standard time integration procedures, the displacement
sequence of the following linear oscillator driven by Morison
force is obtained:

MŸ + CẎ + KY = f�z,t� �55�

The frequency response function of this linear system is

HY f��� =
1

M��0
2 − �2 + 2i��0��

�56�

where M is the oscillator mass, �0 is the free-vibration fre-
quency, and � the damping ratio.

The FFT-based computation is so efficient that no more than
10 s is required for simulating an individual sequence of the non-
linear wave elevations. It is much more efficient than the realiza-
tion using matrix-vector multiplications for the same N and ��
that needs approximately 50 min. Numerically, the one-
dimensional FFT is a process of O�N log2 N� multiplications that
surpasses the standard double-loop approach, a process of O�N2�
multiplications. Practical computations demonstrate that the dif-
ference of computing time in these two processes is even smaller
than �log2 N� /N. Therefore, the two-dimensional FFT scheme pro-

posed for second-order wave/kinematics simulations will further
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utperform the standard triple-loop approach that when taking
nto account the symmetries of frequency sum and difference
erms in Eqs. �7��, �8��, and �9�� is a O�N2�1+N /2�� computa-
ional process.

In Table 1, the higher-order moments of interest, skewness and
urtosis excess, of the non-Gaussian surface elevations are pre-
ented. The comparative study includes

�a� the analytical solutions in Eqs. �22� and �23�
�b� the average of the FFT simulations
�c� the parametric model by Vinje and Haver �26� who de-

rived the coefficient of skewness 3
� based on second-

order Stokes’ expansion

3
� = 34.4Hs/gTp

2

and the coefficient of kurtosis excess in terms of skew-
ness

4
� = 3�3

��2

�d� the empirical fit by Winterstein and Jha �27� who made a
correction on the kurtosis excess of wave elevations con-
sidering the effects of finite water depth d

4
� =

Hs

LP
„5.45�−0.084 + 
exp�7.41�d/Lp�1.22� − 1�−1

…

�57�

where Lp is the wave length corresponding to Tp; Tp
=2� /�p

�e� deep-water analytical solutions �d→��

Fits �c� and �d� have been found to agree well with in-field
easured data by lasers.
It is worth mentioning that analytical solutions computed by the

igenvalue/eigenvector approach require only a limited number of
requency components �80, say� to yield accurate values of skew-
ess and kurtosis excess.

Table 1 demonstrates that analytically, numerically, and empiri-
ally obtained higher-order moments of wave elevations agree
ell for the intermediate-depth water; see �a�–�d�. The kurtosis

xcess given by Vinje and Haver �26� is almost twice the other
hree cases because they included the contribution of third-order
tokes’ wave effects. By contrast, the deep-water statistics appear
maller, implying the more weakly non-Gaussian waves. Thus,
mploying deep-water models will underestimate the higher-order
tatistics of non-Gaussian waves in shallow water. Another impor-
ant parameter affecting the wave non-Gaussian characteristics is
he specified wave height �12�.

Table 2 presents the 3 h mean extreme wave crests normalized
y the standard deviation ���� of elevations. The analytical �� is
alculated by Eq. �21�. The simulated result is the average of all
ample functions. For Gaussian waves, it is known that the largest
mplitude approaches closely to Rayleigh distribution and the ex-
ected mean extreme of crests is estimated as

Aext = ��Amax �58�

able 1 Skewness „�3… and kurtosis excess „�4… of random
ave elevations

3 4

a� 0.1892 0.0545
b� 0.1867 0.0575
c� 0.1993 0.1191
d� 0.1972 0.0535
e� 0.1668 0.0461
here
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Amax = �2 ln N0�1 +
0.577

2 ln N0
� �59�

where N0 is the number of wave amplitudes, usually calculated by
T /Tz; T is duration of wave storm in seconds and Tz is the zero-
crossing period. For the non-Gaussian wave, once its first four
moments are analytically computed �Eqs. �20�–�23��, the mean
extreme of crests may be estimated applying Winterstein’s nonlin-
ear functional transformation �28�:

Aext = K���Amax + h3�Amax
2 − 1� + h4�Amax

3 − 3Amax�� �60�

where K, h3, and h4 are polynomial coefficients solved by equat-
ing mean, variance, skewness, and kurtosis �28�. The cubic trans-
formation in Eq. �60� is required to be monotonic. Another simple
method to empirically predict the mean extreme crest of non-
Gaussian waves was proposed by Kriebel and Dawson �29�:

Aext = Amax�1 + 0.5kpAmax� �61�

where kp is the wave number corresponding to the peak frequency.
It can be observed from Table 2 that the simulated mean extremes
compare well with the analytical results, though the simulated
values appear slightly smaller. The extreme crest predicted by
Kriebel and Dawson is rather close to Winterstein’s, both of which
are around 11.5% higher than the estimation from the Rayleigh
distribution. For the effects of wave steepness and sampling vari-
ability on the wave extremes, see Stansberg �15�.

Figure 1 shows the skewness and kurtosis excess of horizontal
water particle velocities u�z , t� as a function of depth z: Analytical
solutions versus simulation results. The agreement is seen to be
good. The non-Gaussian characteristics of u are significant in the
zone near the still water surface and attenuate rapidly with z, due
to the exponential functions in wave-wave interaction matrices.
As z approaches the sea bottom z=−d, the kurtosis excess of the
drag term u	u	 is fairly close to 8.6667, a value corresponding to
case that u is Gaussian. Thus, in Monte Carlo simulations, the
linear random wave theory can be employed to calculate the dis-
tributed Morison forces near the sea bottom. Note also that the

Table 2 The mean of extreme wave crests „3 H storms…

Aext /��

���=3.25 m�

Predicted by Rayleigh distribution, Eq. �59� 3.851
Linear random waves �FFT simulation� 3.480
Nonlinear random waves �2D FFT/IFFT simulation� 4.182
Winterstein’s model 4.337
Empirical prediction by Kriebel and Dawson 4.273

Fig. 1 Skewness and kurtosis excess of velocity attenuate

with z
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Downloa
kewness of surface elevation is positive �Table 1�, while the ve-
ocity skewness is negative. This has been reported by Hu �30� for
he deep-water case. Hence, when the non-Gaussian velocity u is
xpanded as the cubic polynomials of Gaussian velocity u1, e.g.,
ef. �12�,

u�z,t� � c0�z� + c1�z�
u1�z,t�

�u1

+ c2�z��u1�z,t�
�u1

�2

+ c3�z��u1�z,t�
�u1

�3

�62�

he second-degree polynomial coefficient c2�z� is negative be-
ause of the third-order cumulant of velocity, i.e.,

K3
u = 2c2�3�c1 + 6c3�2 + 4c2

2 + 27c3
2� �63�

t turns out that the skewness of Morison drag term is negative as
ell and the probability distribution of Morison force tends to be

eft skewed �12�. Later in Table 4, the induced linear oscillator
isplacement will be shown to have a negative skewness too.

A jack-up platform �with the natural frequency �0
0.848 rad/s� considered in a previous study �20� is modeled as a

inear oscillator. The damping ratio is 0.07 that includes the struc-
ural, wave-structure interaction and soil foundation effects. We
nvestigate here the displacement response of the oscillator when
riven by a local Morison force 3 m below the SWL. The oscil-
ator mass is assumed to be 1000 kg. The equivalent drag and
nertia coefficients used to calculate Morison force are, respec-
ively, 3.25 and 1.60 and the equivalent diameter of platform legs
s 1.97 m. Figures 2 and 3, respectively, show the power spectra
f force and oscillator displacement. Compared with the linear
andom wave case, the second-order wave effects result in small

Fig. 2 Power spectrum of Morison force „at z=−3 m…
Fig. 3 Power spectrum of oscillator displacement
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increases for the frequencies higher than �p in the force spectrum
that in turn, however, causes the oscillator’s resonant response at
�0�2�p to be amplified by about 15% �Fig. 3�. Without the
second-order nonlinear wave effects, the contribution to the reso-
nance at 2�p arises from drag nonlinearity only. Therefore, appar-
ently the drag nonlinearity becomes stronger due to the wave non-
linearities. This result can be also supported by looking into the
higher-order statistics of both force and oscillator response in
Tables 3 and 4.

In the two tables, the first four cumulants �mean, variance,
skewness, and kurtosis excess� of four cases are compared:

�A� frequency-domain cumulant spectral analysis. Linear ran-
dom wave theory �FL�

�B� FFT time simulations. Linear random wave theory �TL�
�C� frequency-domain cumulant spectral analysis. Second-

order nonlinear random wave theory �FNL�
�D� FFT/IFFT time simulations. Second-order nonlinear ran-

dom wave theory �TNL�

The following observations can be made: �1� The simulated
results compare well with the frequency-domain solutions, espe-
cially for mean and variance values. For kurtosis excess, the
frequency-domain analysis produces slightly higher estimations.
�2� Due to second-order wave effects, variance increases are re-
markable, by around 25% for the force and by around 19% for the
oscillator displacement. �3� The force and displacement skewness
are no longer zeros, because of the negative velocity skewness
aforementioned. �4� For the case of nonlinear random waves, the
Morison force exhibits a much stronger non-Gaussian behavior by
a significantly higher kurtosis excess. �5� The kurtosis excess of
oscillator response gains significant increase too, though this kur-
tosis excess is much lower than that of wave force due to linear
filtering effects. �6� The stronger non-Gaussian behavior of oscil-
lator response for the case of nonlinear random waves can be
noticed also by looking into the response mean extremes �Yext� in
the last column of Table 4: Compared to the linear Gaussian wave
case, the simulated Yext is about 15% higher and rather close to
the prediction based on the first four moments obtained in the
frequency domain and nonlinear transformations �Eqs. �59� and
�60��.

Conclusion
Based on second-order nonlinear random wave theories, an

analytical method is developed in this study to statistically esti-
mate the cumulants of non-Gaussian wave elevations and kine-
matics. To solve the time-consuming numerical simulation prob-
lem incurred by the double-summation frequency sum and

Table 3 Cumulants of Morison force „z=−3 m…

Mean �N� Variance �N2� Skewness Kurtosis excess

�FL� 0 2.0997E+02 0 6.7787
�TL� 7.0709E−03 2.0867E+02 3.5869E−05 6.3222
�FNL� −6.8290E−01 2.5234E+02 −1.5743 11.8701
�TNL� −7.0969E−01 2.5059E+02 −1.4994 10.7292

Table 4 Cumulants and extremes of oscillator displacement

Mean �cm� Varianc �cm2� Skewness
Kurtosis
excess Yext �cm�

�FL� 0 21.9136 0 1.8130 28.275
�TL� 2.1091E−03 22.3940 0.0022 1.7302 28.607
�FNL� −9.4938E−02 26.4359 −0.0843 2.8790 34.222
�TNL� −9.7044E−02 26.8097 −0.1110 2.5084 32.919
NOVEMBER 2007, Vol. 129 / 333
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ifference terms, an efficient approach applying two-dimensional
FT techniques is proposed. The comparisons conducted demon-
trate that the simulated results of wave elevations, including
igher-order moments and mean extreme crests, agree well with
ot only analytical solutions but also empirical fits. The favorable
greement is also observed for horizontal water particle kinemat-
cs by comparing the simulated and analytical cumulants. In ad-
ition, the stochastic response of a linear oscillator driven by a
ear-surface Morison force is examined by comparing its power
pectra, first four moments, and mean extremes for the cases of
inear and nonlinear random waves. Again it is found that both the
ave force and the oscillator displacement obtained by simula-

ions compare well with those from a previously developed
requency-domain method �14�. It is pointed out that the nonlin-
arity of near-surface wave forces is stronger by involving the
econd-order wave effects and the non-Gaussianity of induced
scillator response is more pronounced than resultant from drag
onlinearity only.
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