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Let A and B be two finite subsets of a field F: In this paper, we provide a non-

trivial lower bound for jfa þ b: a 2 A; b 2 B; and Pða; bÞa0gj where Pðx; yÞ
2 F½x; y	: # 2002 Elsevier Science (USA)
1. INTRODUCTION

Let F be a field and let F
 be the multiplicative group F=f0g: The additive
order of the (multiplicative) identity of F is either infinite or a prime, we call
it the characteristic of F:

Let A and B be finite subsets of the field F: Set

A þ B ¼ fa þ b: a 2 A and b 2 Bg

and

A ’þþB ¼ fa þ b: a 2 A; b 2 B; and aabg:

The theorem of Cauchy and Davenport (see, e.g. [N, Theorem 2.2]) asserts
that if F is the field of residues modulo a prime p; then

jA þ Bj5minfp; jAj þ jBj � 1g:

In 1964 Erd +oos and Heilbronn (cf. [EH, G]) conjectured that in this case

jA ’þþAj5minfp; 2jAj � 3g;
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this was confirmed by Dias da Silva and Hamidoune [DH] in 1994. In 1995–
1996 Alon et al. [ANR1, ANR2] proposed a polynomial method to handle
similar problems, they showed that if jAj > jBj > 0 then

jA ’þþBj5minfp; jAj þ jBj � 2g;

where p is the characteristic of the field F: The method usually yields a
nontrivial conclusion provided that certain coefficient of a polynomial,
related in some special way to the additive problem under considerations,
does not vanish.

What can we say about the cardinality of the restricted sumset

C ¼ fa þ b: a 2 A; b 2 B; and Pða; bÞa0g; ð1Þ

where Pðx; yÞ 2 F½x; y	? We will make progress in this direction by relaxing
(to some extent) the limitations of the polynomial method. Our approach
allows one to draw conclusions even if no coefficients in question are known
explicitly.

Throughout this paper, for k; l 2 Z each of the intervals ðk; lÞ; ½k; lÞ;
ðk; l	; ½k; l	 will represent the set of integers in it. For a polynomial Pðx1; . . . ;
xnÞ over a field, we let P̂ði1; . . . ; inÞ stand for the coefficient of xi1

1 
 
 
 xin
n

in Pðx1; . . . ; xnÞ:
Let E be an algebraically closed field and PðxÞ be a polynomial over E:

For a 2 E; if ðx � aÞm j PðxÞ but ðx � aÞmþ1[PðxÞ; then we call m the
multiplicity of a with respect to PðxÞ and denote it by mPðaÞ: For any
positive integer q; we set

NqðPÞ ¼ qjfa 2 E
 : mPðaÞ5qgj �
X
a2E


fmPðaÞgq; ð2Þ

where fmgq denotes the least nonnegative residue of m 2 Z modulo q: Note
that N1ðPÞ is the number of distinct roots in E
 of the equation PðxÞ ¼ 0:
Let p be the characteristic of E; and

PðpÞ ¼
f1; p; p2; . . .g if po1;

f1g otherwise:

(

We also define

NðPÞ ¼ max
q2PðpÞ

qjfa 2 E
=f�1g : mPðaÞ5qgj: ð3Þ

Clearly NðPÞ4
P

a2E
=f�1g mPðaÞ4deg PðxÞ:
Let F be a field of characteristic p; and let E be the algebraic closure of F:

Any PðxÞ 2 F½x	 can be viewed as a polynomial over E so that NqðPÞ
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ðq ¼ 1; 2; 3; . . .Þ and NðPÞ are well defined. If PðxÞ 2 F½x	 is irreducible and
it has a repeated zero in E; then po1 and PðxÞ ¼ f ðxpÞ for some irreducible
f ðxÞ 2 F½x	 (see, e.g. [W, Theorem 9.7]); as xp � ap ¼ ðx � aÞp for all a 2 E;
by induction we find that the multiplicity of any zero of PðxÞ belongs
to PðpÞ:

The key lemma of this paper is the following new result.

Lemma 1. Let PðxÞ be a polynomial over the field F of characteristic p.

Suppose that there exist nonnegative integers kol such that P̂ðiÞ ¼ 0 for all

i 2 ðk; lÞ: Then either xl j PðxÞ; or deg PðxÞ4k; or NqðPÞ5l � k for some

q 2 PðpÞ:

With the help of Lemma 1 and the polynomial method, we are able to
obtain the following main result.

Theorem 1. Let F be a field of characteristic p; and let A and B be two

finite nonempty subsets of F: Furthermore, let Pðx; yÞ be a polynomial over F

of degree d ¼ deg Pðx; yÞ such that for some i 2 ½0; jAj � 1	 and j 2 ½0; jBj � 1	
we have P̂ði; d � iÞa0 and P̂ðd � j; jÞa0: Define P0ðx; yÞ to be the

homogeneous polynomial of degree d such that Pðx; yÞ ¼ P0ðx; yÞ þ Rðx; yÞ
for some Rðx; yÞ 2 F½x; y	 with deg Rðx; yÞod; and put PnðxÞ ¼ P0ðx; 1Þ:
Then, for the set C given by ð1Þ; we have

jCj5minfp � mPnð�1Þ; jAj þ jBj � 1 � d � NðPnÞg: ð4Þ

Remark 1. In the case d ¼ deg Pðx; yÞ ¼ 0; Theorem 1 yields the
Cauchy–Davenport theorem.

Lemma 1 and Theorem 1 will be proved in the next section.
Now we give some consequences of Theorem 1.

Corollary 1. Let F be a field of characteristic p; and let A and B be

finite subsets of F: Let k;m; n be nonnegative integers and Qðx; yÞ 2 F½x; y	
have degree less than k þ m þ n: If jAj > k and jBj > m; then

jfa þ b: a 2 A; b 2 B; and akbmða þ bÞnaQða; bÞgj

5minfp � n; jAj þ jBj � k � m � n � 1g: ð5Þ

Proof. For Pðx; yÞ ¼ xkymðx þ yÞn � Qðx; yÞ; clearly P̂ðk;m þ nÞ ¼
P̂ðk þ n;mÞ ¼ 1 and PnðxÞ ¼ xkðx þ 1Þn: Since NðPnÞ ¼ 0; the desired
result follows from Theorem 1. ]
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Remark 2. When k ¼ m ¼ 1; n ¼ 0 and Qðx; yÞ ¼ 1; our Corollary 1
yields Theorem 4 of Alon et al. [ANR1], which is also Proposition 4.1 of
Alon et al. [ANR2].

Corollary 2. Let F be a field of characteristic pa2; and let A;B and S

be finite nonempty subsets of F: Then

jfa þ b: a 2 A; b 2 B; and a � b =2 Sgj5minfp; jAj þ jBj � jSj � q � 1g;
ð6Þ

where q is the largest element of PðpÞ not exceeding jSj:

Proof. Let C ¼ fa þ b: a 2 A; b 2 B; and a � b =2 Sg: By applying
Theorem 1 with Pðx; yÞ ¼

Q
s2S ðx � y � sÞ; we obtain the desired lower

bound for jCj: ]

Remark 3. In the case S ¼ f0g; Corollary 2 was first obtained by Alon
et al. [ANR1, ANR2]. When jAj ¼ jBj ¼ k; 2 j jSj and jSjop; the lower
bound in (6) can be replaced by minfp; 2k � jSj � 1g as pointed out by Hou
and Sun [HS]. For a field F with jFj ¼ 2n > 2; if A;SDF; jAj > 2n�1 þ 1 and
jSj ¼ 2n � 1; then jfa þ b: a 2 A; b 2 F; and a � b =2 Sgj ¼ jðA þ FÞ=Sj ¼
jF=Sj ¼ 1ominf2; jAj þ jFj � jSj � 2n�1 � 1g: So we cannot omit the con-
dition pa2 from Corollary 2.

Corollary 3. Let F be a field of characteristic p; and let A and B be

finite nonempty subsets of F: Let |aSDF
 
 F and jSjo1: Then

jfa þ b: a 2 A; b 2 B; and a þ ubav if hu; vi 2 Sgj

5minfp � jfv 2 F : h1; vi 2 Sgj; jAj þ jBj � 2jSj � 1g: ð7Þ

Proof. Just apply Theorem 1 with Pðx; yÞ ¼
Q

hu;vi2S ðx þ uy � vÞ and
note that NðPnÞ4deg Pn ¼ jSj: ]

Remark 4. When p ¼ 1; Corollary 3 is essentially [S, Theorem 1.1] in
the case n ¼ 2:

2. PROOFS OF LEMMA 1 AND THEOREM 1

Proof of Lemma 1. We use induction on deg PðxÞ: When PðxÞ is a
constant, we need do nothing. So we let deg PðxÞ > 0 and proceed to the
induction step.
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Write PðxÞ ¼ xhQðxÞ where h ¼ mPð0Þ and QðxÞ 2 F½x	: If hol; then h4k

since P̂ðiÞ ¼ 0 for any i 2 ðk; lÞ; therefore Q̂ðjÞ ¼ 0 for all j 2 ðk � h; l � hÞ:
So, without loss of generality, it can be assumed that Pð0Þa0 and that PðxÞ
is monic.

Let E be the algebraic closure of the field F: Write PðxÞ ¼
Qn

j¼1 ðx � ajÞmj

where a1; . . . ; an are distinct elements of E
 and m1; . . . ;mn are positive
integers. For j ¼ 1; . . . ; n let PjðxÞ ¼ PðxÞ=ðx � ajÞ: As PðxÞ ¼ PjðxÞ
ðx � ajÞ; P̂ði þ 1Þ ¼ P̂jðiÞ � aj P̂jði þ 1Þ for i ¼ 0; 1; 2; . . . : Note that P̂jðiÞ ¼
aj P̂jði þ 1Þ for every i 2 ½k; l � 1Þ: Therefore,

P̂jðiÞ ¼ al�1�i
j P̂jðl � 1Þ for all i 2 ½k; lÞ: ð8Þ

Since P0ðxÞ ¼
Pn

j¼1 mjPjðxÞ; we have

Xn

j¼1

mjP̂jðiÞ ¼ 0 for any i 2 ½k; l � 1Þ: ð9Þ

Combining (8) and (9) we find that

Xn

j¼1

mjal�1�i
j P̂jðl � 1Þ ¼ 0 for each i 2 ½k; l � 1Þ: ð10Þ

Suppose that NqðPÞol � k for any q 2 PðpÞ: Then n ¼ N1ðPÞ4l � 1 � k;
hence by (10) we have

Xn

j¼1

as
j ðmjP̂jðl � 1ÞÞ ¼ 0 for every s ¼ 1; . . . ; n:

Since the Vandermonde determinant jjas
j jj14s;j4n does not vanish, by

Cramer’s rule we have mjP̂jðl � 1Þ ¼ 0 for all j ¼ 1; . . . ; n: Thus, in light
of (8), mjP̂jðiÞ ¼ 0 for any i 2 ½k; lÞ and j 2 ½1; n	:

Case 1: p ¼ 1; or p[mj for some j 2 ½1; n	: In this case there is a j 2 ½1; n	
such that P̂jðiÞ ¼ 0 for all i 2 ðk � 1; lÞ: Clearly k > 0 since P̂jð0Þ ¼ Pjð0Þa
0: Also N1ðPjÞ4n ¼ N1ðPÞ; and NqðPjÞ ¼ NqðPÞ þ 1 if po1 and q 2
PðpÞ=f1g: Thus NqðPjÞ4NqðPÞ þ 14l � kol � ðk � 1Þ for all q 2 PðpÞ: In
view of the induction hypothesis, we should have deg Pj4k � 1 and hence
deg PðxÞ4k:

Case 2: po1; and pjmj for all j 2 ½1; n	: In this case, TðxÞ ¼
Qn

j¼1

ðx�ajÞmj=p2 E½x	 and therefore PðxÞ¼TðxÞp¼ð
P

i50 T̂ðiÞxiÞp¼
P

i50 T̂ðiÞp
xip:

For any real number r let brc denote the greatest integer not ex-
ceeding r: Then bk=pc4bðl � 1Þ=pc since k4l � 1: Whenever
i 2 ðbk=pc; bðl � 1Þ=pc	; we have koipol and hence T̂ðiÞp ¼ P̂ðipÞ ¼ 0: If
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q 2 PðpÞ then

NqðTÞ ¼ NpqðPÞ
p

4
l � k � 1

p
o 1 þ l � 1

p

� �� �
� k

p

� �
:

By the induction hypothesis, deg T4bk=pc and hence deg P ¼ p deg T4k:
So far we have completed the induction proof. ]

Proof of Theorem 1. Set k1 ¼ jAj � 1 and k2 ¼ jBj � 1: Clearly (4) holds
if jCj5k1 þ k2 � d þ 1: So we assume that jCj4k1 þ k2 � d and let d ¼
k1 þ k2 � d � jCj:

Since P̂ðd � j; jÞa0 for some j 2 ½0; k2	; Qðx; yÞ ¼ Pðx; yÞ=
Q

b2B

ðy � bÞ =2 F½x; y	 (otherwise P̂ðd � j; jÞ is zero because it equals the coefficient
of xd�jyj in yjBjQðx; yÞ). Thus, there exists a b0 2 B such that Pðx; b0Þ does
not vanish identically; hence Pða; b0Þ ¼ 0 for at most d elements a 2 F:
Therefore,

jCj5jfa þ b0 : a 2 A and Pða; b0Þa0gj5jAj � d

and so dok2: Similarly, we have dok1:
Put

f ðx; yÞ ¼ Pðx; yÞ
Y
c2C

ðx þ y � cÞ and f0ðx; yÞ ¼ P0ðx; yÞðx þ yÞjCj:

Clearly deg f ðx; yÞ ¼ deg f0ðx; yÞ ¼ d þ jCj ¼ k1 þ k2 � d: Let k1 2 ½k1 � d;
k1	: Then k2 ¼ k1 þ k2 � d� k1 2 ð0; k2	: As k1 þ k2 ¼ deg f ðx; yÞ and
f ðx; yÞ vanishes over the Cartesian product A 
 B; f̂ðk1; k2Þ ¼ 0 by Alon
[A, Theorem 1.2].

Since cPnPnðiÞ ¼ P̂0ði; d � iÞ ¼ P̂ði; d � iÞa0 for some i 2 ½0; k1	; we have
mPnð0Þ4k1: Similarly cPnPnðd � jÞa0 for some j 2 ½0; k2	 and hence
deg PnðxÞ5d � k2:

Set f nðxÞ ¼ f0ðx; 1Þ ¼ PnðxÞðx þ 1ÞjCj: Recall that bf nf nðkÞ ¼ f̂ðk; k1 þ k2 �
d� kÞ ¼ 0 for all k 2 ½k1 � d; k1	: Since xk1þ1[f nðxÞ and deg f nðxÞ ¼ jCj þ
deg PnðxÞ5jCj þ d � k2 ¼ k1 � d; by Lemma 1 there exists a q 2 PðpÞ such
that Nqðf nÞ5ðk1 þ 1Þ � ðk1 � d� 1Þ ¼ dþ 2:

If mf nð�1Þ ¼ mPnð�1Þ þ jCjop; then NðPnÞ ¼ Nðf nÞ5Nqðf nÞ � 15k1 þ
k2 � d � jCj þ 1; therefore

jCj5k1 þ k2 þ 1 � d � NðPnÞ ¼ jAj þ jBj � 1 � d � NðPnÞ:

This concludes our proof. ]
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