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Abstract: Heterogeneity, mobility, and resource constraints are the inherent features of the 
wireless sensor network. In addition, for the wireless sensor network development, the 
developers have to design the low-level system details adaptive to specific upper layer non-
compatible protocols. The distributed services are a middleware, which can make large-scale and 
resource-constrained wireless sensor network adapt to the dynamic environment in an effective 
way. It can not only guarantee transmission quality, but also can make application development 
simple and efficient. In the distributed services, the composition service deals with the dynamics 
efficiently by managing the nodes to form and maintain task-oriented groups, which not only 
increases the degree of transparency to the applications, but also improves the reliability and 
energy efficiency. The entire process releases developers from the tedious low-level work. In this 
paper, we focus on the demonstration of composition service and its achievement for the  
self-configurable wireless sensor network. 
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1 Introduction 

Many dynamic wireless sensor network (WSN) systems 
must be controlled by adaptive methods that utilise critical 
and real-time data gathered from many sensor devices (Lim, 
2001, 2002), such as target tracking, which is a typical 
application of WSN. These sensor nodes are connected in an 
ad hoc fashion collecting and processing data in a 
distributed way. Nodes need to find and communicate with 
specific even possibly remote nodes. Nodes may fail at 
anytime and anywhere, negatively affecting the whole 
system. Even if new nodes are available to replace the failed 
ones, existing nodes have to be aware of their availability. 
Based on the requirements of specific application, building 
such a network is difficult for the following reasons. Firstly, 
there are many different types of sensors with different 
capabilities. The sensors may be deployed with specialised 
and possibly non-compatible networking protocols and 
different application requirements; secondly, sensor nodes 
may be deployed with little or no pre-planning; thirdly, the 
network must survive harsh environmental conditions, 
dynamic nodes composition and task requirements changes, 
device failure, and nodes mobility. These make (WSN) 
research challenging. 

So far, a lot of WSN research work focuses on 
developing platforms and protocols such as the hardware 
and system developments reported in Lim (2002). However, 
the heterogeneous nature of the development environments 
is a big block to the system developments. Software is 
always developed over a particular platform, while it is 
hardly ported to other different hardware or operating 
systems. The development of system has to involve 
developers in the low-level system details in order to adapt 
to specific upper layer protocols. As addressed in Hadim 
and Mohamed (2006), Radhika and Malarvizhi (2012),  
a systematic framework that provides developers with a  
 
 

conceptual view of the network and hides lower layers 
details is necessary. The distributed middleware is proposed 
as an ideal solution for the complicated WSN development 
(Laukkarinen et al., 2011; Mohamed and Al-Jaroodi, 2011; 
Laukkarinen et al., 2012). The focus of more and more 
research in WSN, such as Afzal et al. (2009) has thus turned 
to define a middleware, which sits above the operating 
system and below the application, and abstracts lower-level 
functionality such as network connectivity and provides a 
coordination interface to the applications. Much of the work 
(Hadim and Mohamed, 2006; Mottola and Picco, 2011; 
Sakthidharan and Chitra, 2012) has targeted on the 
development of middleware platforms specifically designed 
to meet the challenges of the large-scale resource-
constrained WSN. 

However, the pervious research on the middleware 
research has their drawbacks. Such as, middleware Atlas 
(King et al., 2006) was developed on the assumption that 
WSNs have unlimited source of energy, which is not true in 
reality. In addition, lacking real-time handling mechanisms, 
Atlas can hardly adapt to the real-time environment. SINA 
(Haghighi and Cliff, 2013a) is a novel agent-based 
middleware for WSN, which is written in Java and runs on 
networks of various Java-enabled embedded systems. It can 
support nodes clustering. However, the idea of agent-based 
middleware development poses a challenge on how to 
define an appropriate design process, which not only 
supports the development, but also provides an extensible 
and maintainable mechanism to align requirements and 
environmental variability at run-time. This can only be 
achieved when the design processes are clear. 

A new middleware, called the distributed service  
layer, based on which other networking services could be 
spontaneously specified and re-configured, has been 
proposed and addressed in Lim (2001, 2002). All these  
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services are designed to simplify and facilitate the 
application developments and to help the network adapt to 
the dynamics with the consistency to existing network 
programming paradigms. 

As proposed in Intanagonwiwat et al. (2000) and 
Intanagonwiwat et al. (2003), the directed diffusion is a 
widely used distributed routing protocol for WSN. It makes 
routing decisions according to the data requested. One of the 
most significant issues of the directed diffusion protocol is 
the packet flooding. The region filter developed in Ivester 
and Lim (2006) is an improvement to the directed diffusion, 
since it maintains message re-transmission mechanisms 
within a specific region and filters out some traffic in the 
networks. 

The other important issue of directed diffusion is node 
failure and mobility treatment. There are some mechanisms 
responding to topology changes that are built in the directed 
diffusion. When data stop arriving at one node due to its 
upstream node going down or moving away, directed 
diffusion will trigger the event of flooding similar interest 
packets in the entire network. This basic form of 
adaptability is adequate for simple query-response systems, 
but not sufficient for complex applications due to long delay 
required to find a replacement, network flooding, and the 
undetermined physical location of the substitution. 
Additionally, the task of reconfiguring the upstream nodes 
will introduce extra overhead when adapt to directed 
diffusion changes at the upper layer. This can not be 
effectively achieved. 

This research involves two previous researches. The 
distributed services middleware layer (Lim, 2001, 2002), 
which proposed only the main idea of distributed services, 
but not implementation details of each service. The directed 
diffusion routing protocol (Intanagonwiwat et al., 2000, 
2003) is the other work involved. The following goals are to 
be achieved in the research: 

• to design and implement application programming 
interface (APIs) for the distributed composition service, 
which is the most important component of the 
distributed services 

• to maintain the normal networking functionalities under 
abnormal networking conditions with the help of 
distributed services 

• to achieve the design principles of WSN middleware 
(Radhika and Malarvizhi, 2012), data-centric, dynamic 
adaptive, user-transparent, scalability, and energy-
efficient. 

In general, the major contributions of this research work can 
be summarised as follows: firstly, abstracting lower-level 
functionalities, providing a coordination interface to the 
applications, and making the heterogeneous WSN 
development simple and efficient; secondly, designing and 
implementing the API based on the unique features of 
WSN, such as resource constraints, complex link quality, 
dynamic topology and scalability, tackling these special 
issues of WSN. These solutions are evaluated by the ISEE,  

a self-developed testing environment and they are 
outperformed compared with directed diffusion. Finally, this 
research is the preparation for the target tracking application 
under the real-world scenarios. 

The remaining of the paper is organised as follows: 
Section 2 presents some technologies related to the 
distributed composition service. Section 3 discusses the 
architecture of the composition service with its APIs.  
The real implementation is demonstrated in Section 4.  
The performance is evaluated in Section 5. Section 6 draws 
the conclusion by summarising the research work. 

2 Related work 

2.1 Directed diffusion 
As proposed in Intanagonwiwat et al. (2000, 2003), the 
directed diffusion is a distributed routing protocol with 
routing decisions made according to the data requested. The 
directed diffusion has some creative features including  
data-centric dissemination, reinforcement-based adaptation 
to the empirically best path, in-network data aggregation 
and caching. Directed diffusion uses both positive 
reinforcement and negative reinforcement, which sends data 
to the lower delay neighbouring node with a higher data rate 
and to the higher delay neighbouring nodes with lower data 
rate. Through this method, directed diffusion inhibits nodes 
on the long delay path from packet forwarding. The directed 
diffusion offers accessibility to the diffusion core 
behaviours through publish and subscribe APIs. Though 
some mechanisms reacting to the dynamic topology changes 
are built in the directed diffusion, there is still a long 
recovery delay and network traffic generated at the time. 
Thus, there is much work to be done to improve its 
performance regarding to the time-sensitive and resource-
constrained WSN applications. 

2.2 Middleware for WSN 
Software development for WSN requires novel 
programming paradigms and technologies. Conventional 
principles of communication are mostly inapplicable due to 
dynamic topology changes and the need for cooperative  
task processing in WSN (Hadim and Mohamed, 2006a, 
2006b; Radhika and Malarvizhi, 2012). As addressed  
by Laukkarinen et al. (2011, 2012) and Mohamed and  
Al-Jaroodi (2011), introducing distributed middleware to 
the WSN application development has become a 
breakthrough in the WSN development, which brings 
adaptability, simplicity, and efficiency to this field. In the 
WSN development, the distributed middleware refers to two 
aspects: WSN application on one hand and the distributed 
application which interacts over the network on the other 
hand. Primary objective of the middleware layer is to hide 
the complexity of the network environment by isolating the 
application from protocol handling, memory management, 
network functionality, and parallelism. The benefits of 
adopting middleware to the WSN implementations can be 
summarised as follows: 
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• Shield software developers from low-level, tedious, and 
error-prone platform details, such as socket-level 
network programming. 

• Provide a consistent set of higher-level network-
oriented abstractions that are much closer to application 
requirements in order to simplify the development of 
distributed and embedded systems. 

• Invoke operations on target objects to perform 
interactions and functionality needed to achieve 
application goals. A wide variety of middleware-based 
services are made available off the shelf to simplify 
application development. Aggregations of these simple, 
middleware-mediated interactions form the basis of 
large-scale distributed system deployments. 

Next, we introduce some existing middlewares of WSN. 

2.2.1 Data services middleware (DSWare) 

The data services middleware (Li et al., 2004) is based on 
the notion of events, whereby the application specifies 
interest in the state changes of the physical world, called 
basic events. Upon detecting an event, the node sends an 
event notification towards interested applications. The 
application can also specify a certain pattern of events such 
that the application is only notified if occurred events match 
this pattern. The real data generated by the sensors can be 
stored or forwarded to other nodes for processing. Since this 
functionality is needed for various applications, a data-
services middleware can avoid the re-development. 

DSWare provides support for group creation. 
Additionally, it also supports data-centric routing protocols 
like directed diffusion. Though computationally intensive, it 
provides facilities for information storage and retrieval. 
However, the creation of a group is triggered by a real-
world event and requires the node to correctly identify and 
categorise an event. In the heterogeneous WSN, not all 
nodes have the computational capability for this complex 
task. There is also no single entity to manage the group 
formation and handle group information. This capability is 
vital for many WSN applications, especially for large-scale 
applications. 

2.2.2 QoS infrastructure base on service and 
middleware (QISM) 

QISM (Nan et al., 2009) is a service-oriented infrastructure 
for WSN. The main characteristics of QISM are the active 
mechanisms which are based on feedback and negotiation 
between applications and network. The architecture is based 
on middleware and service publishing and subscribing. The 
methods are based on tasks and functional domain. Through 
the active communications between the applications and 
network, QISM can achieve the network support 
applications and the applications adapt to the network. 
Therefore, the QoS of the application is better guaranteed 
and the lifetime of network is prolonged as well. In general, 

the architecture is application independent and it can 
support complex applications. 

Though QISM makes a progress on the road of 
middleware development for WSN, it cannot guarantee the 
scalability. In addition, it does not involve specific 
mechanisms dealing with network dynamics, such as node 
failure. 

2.2.3 MiSense 

MiSense (Khedo and Subramanian, 2009) is a service-
oriented component-based middleware to support 
distributed WSN applications with various performance 
requirements. MiSense reduces complexity by imposing a 
structure on top of the component model by offering well-
defined service-specific interfaces to the rest of the system. 
MiSense breaks up the middleware design into fine, self-
contained, and richly interacting components in order to 
resolve the gap between the optimisation requirements for 
specific scenarios and the needs for flexibility and 
convenience for energy-efficient WSN applications 
development. 

MisSense is only an idea. It has not been implemented 
or tested for reliability, scalability, and adaptation. There 
might be some issues if it is really tested with complicated 
real-time WSN applications. 

2.2.4 Sensomax 

Sensomax (Haghighi and Cliff, 2013b) is one of the newest 
middleware developed for WSN applications. It presents a 
novel combination of several best practices from existing 
solutions, facilitating fully distributed and decentralised 
bulk programming and/or updating of sensor nodes, serving 
multiple simultaneous applications deployed by single or 
multiple users, allowing dynamic run-time changes in the 
application requirements, and offering on-the-fly switching 
between time-driven, data-driven, and event-driven 
operational paradigms. Sensomax provides a sophisticated 
set of APIs, a feature-rich desktop application, a web 
application for cloud-based distributed networks. 

However, the idea of agent-based middleware 
development poses a challenge on how to define an 
appropriate design process, which not only supports the 
development, but also provides an extensible and 
maintainable mechanism to align requirements and 
environmental variability at run-time. This can only be 
achieved when the design processes are clear.  

2.3 Distributed services 

Based on the idea of the distributed middleware and its 
significant contribution to the WSN development, the idea 
of distributed services (Lim, 2001) has been proposed. The 
distributed services establish the foundation on which other 
applications can be built. The dynamic adaptation service 
collaborates with the distributed lookup service and 
composition service to monitor the failures of the sensor  
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nodes and manage the correct schedules of failure 
recovering procedures. The distributed services support 
efficient replacement of faulty nodes with minimal 
disruption and continuous interactions among the nodes in 
the network. The sequence of recovery procedures will 
preserve the level of reliability required by a specific 
application. These distributed services execute over the 
direct diffusion routing layer that alleviate some of the 
problems of mobility, disconnection, dynamic 
configuration, and limited power. The three proposed 
fundamental distributed services include the lookup service, 
the adaptation service, and the composition service. 
However, the distributed services are the proposed ideas. 
Only by implementing these ideas, other network services 
can be specified spontaneously in the network. 

2.3.1 Lookup service 

A node registers a resource that it maintains or services that 
it can perform with a lookup server (Lim, 2001, 2002). The 
lookup server contains location information on services or 
resources of multiple clusters. The nodes require the service 
or the resource may request it through a lookup server. 
Thus, the primary function of the lookup service is to store 
the information of the services and resources offered and to 
distribute the information when needed. For instance, when 
a node fails, the lookup service will take the responsibility 
to find a replacement node with the same function. 

2.3.2 Adaptation service 

Adaptation server (Lim, 2001, 2002) utilises information 
from composition servers, lookup servers, and analytical 
tools to control smart nodes during dynamic reconfiguration 
and failure recovery. Adaptation servers monitor clusters of 
smart nodes during normal execution either by probing the 
smart nodes, spontaneous signal from the sensors, or 
explicit network management directives for reconfiguration 
and failure recovery. When a run-time reconfiguration is 
requested or triggered, the adaptation server will generate 
the appropriate schedule of the reconfiguration operations 
that will ensure the reconfigured and affected sensor nodes 
are globally consistent. To ensure correct adaptation and 
maintain consistency, the adaptation server makes use of 
analytical tools for dependency analysis and relevant 
information from compositional servers and lookup servers. 
In general, the primary function of the adaptation service is 
to help networks to adapt to the dynamic changes. 

2.3.3 Composition service 

The composition server (Lim, 2001, 2002) manages clusters 
of sensor nodes by allowing various smart nodes that may 
be added to or removed from the network. Besides this, it is 
also in charge of network abstractions or group behaviours 
of the clusters and hierarchical composition of clusters. It 
not only simplifies dynamic reconfiguration of services 
provided by each sensor node, but also makes the 
development of large self-organising sensor networks much 

easier, since it allows individual node and cluster to be 
specified and designed independently. Composition servers 
enhance compositionality and clustering abstraction of 
WSN. By adopting cluster-based hierarchical architecture, 
group communications can be efficient and easy. 
Synchronisation constraints associated with network 
protocols and system services among the nodes can be 
specified by the means of clusters. The capability to specify 
the composite clusters enables designers to build large and 
complex WSN by clustering nodes at each level together. In 
general, the composition service is in charge of nodes 
formation and works corporately with the adaptation service 
to mask node failure and guarantee normal transmission. In 
the previous research, only the ideas of distributed 
composition service have been proposed, and 
implementation has not been done. We implement the ideas 
of distributed composition services in this research.  

2.4 The common issues of existing WSN middleware 

In this section, we do the literature reviews regarding the 
distributed services implementation, such as the underlying 
routing protocol, directed diffusion, benefits of WSN 
middleware, the advantage of distributed services. For the 
existing WSN middleware, we analyse the advantages of 
each one. However, there are still some fundamental issues, 
which can be summarised as: firstly, they do not inherently 
support any clustering techniques, which are very important 
for the large-scale WSN; secondly, there is no directed 
diffusion or any other routing protocols’ API available; 
thirdly, they do not have the capability to deal with dynamic 
and complicated situations. 

In the following, we will address the implementation  
of distributed composition service. The distributed 
composition service is a unique middleware of WSN. 
Building on the data-centric routing protocol, directed 
diffusion, the composition service takes advantages of 
previous middlewares and improves their efficiency. As an 
indispensable component of the distributed system, it can 
maintain the scalability by introducing the important feature 
of clustering. In addition, it integrates seamlessly with other 
two distributed services to achieve the common goal of 
adaptation and stability while still satisfying the various 
applications’ requirements. 

3 Composition service implementation 
The previous section summarises the various areas of 
research on which this work is based and also gives several 
examples of middlewares in WSN. In this section, we will 
discuss composition service implementation in detail. 

Nodes can be dynamically composed into impromptu 
networked clusters under the control of a compositional 
server. The clustered nodes can provide distributed  
services corporately, such as data filtering and aggregation. 
In addition, some nodes can provide services to other nodes 
and simultaneously they can be consumers of services the 
other nodes provide. We apply the component-based 
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methodology to design composition service in order to make 
it efficient, easy, and inter-operable with other network 
services. 

Clustered nodes encapsulate the networking and system 
capabilities provided by the group of the nodes. There is a 
cluster head responsible for the control of the inter-cluster 
communications and networking functions. Inter- group 
communication can be efficiently implemented by sending a 
message first to the cluster head which then multicasts it to 
the cluster members. The nodes in one cluster may 
cooperate to perform a common networking and system 
functions. The composition server is in charge of various 
nodes adding or removal from the clusters in the WSN. 

The composition service comprises the composition 
server and the composition clients (the nodes sending the 
request to composition server to join or leave the group). 
Both of them make use of the composition service API for 
group joining or leaving messages exchange. 

The following significant components correspond to the 
composition service implementation. 

3.1 Sensor object model 

The data-centric attributes of the WSN protocols identify 
the type of nodes by the data they generate. Learning from 
this idea, the sensor object model facilitates the 
communication by categorising the nodes based on the data 
generated, the services, QoS they offer, and their location. 
An application can use the sensor object model to 
encapsulate the properties of a node. A real-world event is 
encapsulated by the event object. The event object has 
location information, which can be used by the composition 
server when assigning a node to the group within a 
predefined region. The composition server associates a 
sensor object with an event object and uses this information 
to make group formation decisions, grouping objects that 
sense similar events together. 

3.2 The connector model 

The connector model is an indispensable component of the 
composition service. It masks the problems in the 
transmission such as node failure and mobility and provides 
the application with a consistent view of the underlying 
network. 

As shown in Figure 1, a connector represents a data 
exchanging relationship between two or more sensor 
objects. A connector is made up of links. A link is the 
physical representation of the connection between two or 
more sensor objects. On the right side of Figure 1, there is 
one link between node A and node B and another link 
between node C and node A. Data flow can reach those 
sensor objects through the links. Links are in charge of the 
endpoints of the connection, work with the routing protocol 
to identify these endpoints, and efficiently discover and 
maintain paths to them. As illustrated on the left side of 
Figure 1, a connector can contain links to more than one 
sensor object depending on the type of the connector. 

 

Figure 1 Relationship between connector and sensor object 

 

A connector maintains a reference to the invoking sensor 
object and the group ID to which the sensor object belongs. 
Using the group ID, the connector can establish a data path 
among the sensor objects in the same group, so that they can 
communicate with each other. In Figure 1, nodes A, B, and 
C have similar attributes and are close to each other. Their 
corresponding sensor objects and connectors are set up to 
facilitate their communication in the duration of the task. 

As Figure 2 shows, connectors are reconfigurable in the 
sense that the adaptation server can replace inactive sensor 
objects to maintain reliable data association between 
existing sensor objects. Links can be deleted or added to a 
connector if needed. For instance, as in Figure 2, if node B 
fails, its link will be removed from the connector.  
The adaptation service is queried by the composition  
server to find a substitution node with similar properties  
in the neighbourhood. A new link between node A and C is 
established as the substitution and is added to the  
connector. Hence, the connectors have the capability of 
being reconfigurable in an application-transparent manner, 
ensuring application requirements are met and any offered 
service is available. 

Figure 2 Connector for the node replacement (see online version 
for colours) 

 

Associated with each connector is the connector type 
described in terms of the number of endpoints addressed by 
the connector. As shown in Figure 3, there are two kinds of 
connectors: one to one and one to many. The connector 
between node A and node B is one-to-one type. The 
connector connecting nodes A and B, C, D is one-to-many 
type. 
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Communication interface interfaces the connector with 
the routing protocol. It is the core component of the 
connector and provides mechanisms for receiving and 
sending data used by the connector. The application does 
not interact with the communication interface. In this 
manner, the routing protocol can be modified without 
changing the application layer and affecting the behaviours 
of the connector. Communication interface supports three 
kinds of communications: remote procedure call (RPC), 
multicast, and peer to peer. 

Figure 3 Two types of connectors 

 

3.3 System architecture 

The composition service implementation is spread across 
several layers. Each layer provides a set of interfaces to the 
layer above it. These interfaces shield the upper layer from 
the functional complexity encapsulated by the current layer 
and also allow to invoke the desired behaviour from the 
current layer. As shown in Figure 4, composition server 
system architecture includes the following parts: 

The task of group formation and maintenance is 
undertaken by the composition server. We can see from 
Figure 4 that the composition server manages the clustering  
by a hash table which has the groupID as the key and the 
corresponding EventRecord as the value. The nodes 
detecting events are grouped into certain clusters according 
to the types of the events.  

Figure 4 Composition server system architecture 

 

The application layer: The applications supporting a  
variety of distributed tasks, such as collaborative  
clustering, target tracking, and in-network aggregation  
can operate at the application layer. Once the nodes 
establish the channel of communication by means of the 
connectors, they can maintain the data flows among 
themselves in accordance with the needs of a particular 
application.  

The composition server: The responsibilities of the 
composition server can be given as follows: 

• assist with group formation based on location and event 
characteristics 

• inform the nodes in the group about their status and that 
of other nodes in their group 

• maintain time-sensitive group information and inter-
operate with the adaptation server for group 
reconfiguration in case of node failure 

• do the group composition and management in a 
distributed network environment with other 
composition servers. 

The composition server is not only in charge of a collection 
of detected events, but also the group structure changes in 
response to the dynamics in the network. 

The service client: The service client detects an event and 
sends a request to the composition server in order to join a 
group using the composition service API. The composition 
server assigns group ID and ID of each node in the group 
including cluster head to the service client. After the service 
client contacts its cluster head, the cluster head updates the 
multicast channel information. Through the multicast 
channel, all nodes in the group send details of detected 
events to each other. Through this approach, the 
composition service can provide a reliable path and mask 
network inconsistencies. 

The composition service API: The main task of the 
composition service API is to make the applications 
communicate with the composition server as seamless as 
possible by masking the complexity of sending and 
receiving. The composition server makes use of the 
composition service API to listen to incoming requests for 
joining or leaving a group. The detail of how the 
composition service API work can be summarised as 
follows: 

• It uses the underlying connector interface and sets up  
a stable communication channel to the composition 
server. This channel is maintained as long as the 
application needs to interact with the composition 
server. 

• In the context of directed diffusion, the composition 
service API also makes the best efforts to minimise 
flooding of interest messages when discovering a 
reliable path to the composition server and other nodes 
in the group. 
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• The composition service API also maintains or 
reconfigures group information when nodes are failed. 
It helps the composition server work with the 
adaptation server to discover substitute nodes and add 
them to pre-existing groups. 

In general, the composition service API is in charge of 
nodes join/leave the group, create/delete the message 
delivery connector, and listen to the request. 

The connector layer: As shown in Figure 4, the connector 
layer lies just below the application layer in the system 
architecture. The connectors provide applications with a 
consistent feel of the network and maintain relationship with 
members of the group even if group composition changes. 
Connectors also work with lower layers dealing with data 
transmission and routing. A connector has the capability of 
sending and receiving data to and from other nodes. Before 
the communication, the connector must construct links to 
these nodes. As described earlier, a link object encapsulates 
the properties of a physical link to the other node. In 
general, the connector layer API is in charge of 
creating/removing a link and sending/receiving data. 

Communication interface: As shown in Figure 4, the 
communication interface layer sits above the directed 
diffusion routing protocol layer. It bears the responsibility 
of interacting with the routing layer to discover efficient 
paths. Sending and receiving data or interest packets 
matching the diffusion protocol standards are also done at 
this layer. 

Diffusion routing protocol: The composition service uses 
directed diffusion as the routing protocol. It makes judicious 
use of the built-in types and libraries provided by the 
directed diffusion. Though this makes the application 
somewhat dependent on the directed diffusion, it eliminates 
the extra processing needed to convert application defined 
attributes to diffusion attributes. 

3.4 Cluster formation 

The composition server listens for interest messages from 
event sensing nodes using the ServerConnection listen() 
function. The listen() function returns a one-to-one type 
connector through which the composition server sends a 
reply. The reply is sent to each of the nodes that 
composition server receives a matching interest. When a 
reply to a join or leave group request is sent, the 
composition server also publishes its own attributes. For all 
essential operations, the composition server defines its 
internal (private) cluster member functions and uses them 
extensively. 

The sequence of events for joining and leaving groups 
are explained below: 

• On receiving a join group request the composition 
server first checks the pre-existing groups’ properties. 

• The composition server matches the latitude and 
longitude of the events for all the nodes involved.  

If such a group is found, the reply is sent to the new 
node with the group ID and group members. 

• Otherwise, the composition server attempts to add it to 
the list with a special group ID. This can be done by 
using the insertEntry() method. 

• Once a sufficient number of similar nodes are obtained 
in the special group list, the composition server will 
form a group and assign a new group ID. The exact 
area to be considered depends on the composition 
server. In this research, all nodes that are within  
50 units (for example, 50 by 50 meters) of the event 
occurred area are grouped together. The composition 
server uses formGroup() function for this purpose.  
The group ID and list of nodes in the group will be 
recorded at the composition server. 

• Duplicate requests exist due to the broadcast nature of 
directed diffusion or the node sent out more than one 
interest messages. Checking duplicate information can 
be done using the composition server member 
contains() method. This method will use the sensor ID 
to distinguish one node from the other. 

• The composition server composes a reply using the 
attributes defined by the application and sends the reply 
back to all the nodes in the new group. The attributes 
are put into a NRAttrVec vector and passed to the 
connector send() function. The connector sends the 
packets using the functions provided by the underlying 
CommunicationInterface object. 

• If a leave group request is received, the leaving node’s 
information is retrieved. Its information is removed by 
removeEntry() function. The composition server 
composes a leave group reply sent back to the leaving 
node. 

3.5 Relationship between composition service and 
diffusion attributes 

For the composition server, it is important to identify the 
sensor nodes along with the events they detected and form 
groups based on this information. Clustering information 
has to be sent back to the nodes so that they can start 
communicating with other nodes in the group. It is thus 
necessary to define attributes that represent the current state 
of the events-node pair in order to support the composition 
service mechanism. The application can define the required 
attributes using the attribute factories provided by the 
directed diffusion according to its needs. 

4 Composition server operating mechanisms 
As addressed before, the composition server is in charge of 
cluster formation and dynamic changes handling. 

The composition server API is also used to maintain or 
reconfigure group information when nodes are unable to 
communicate due to failure. The composition server also 
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works with the adaptation server to detect new nodes and 
add them to the existing groups. 

In the data-centric network, nodes are addressed by the 
data (or services) they offer. Similarly, in the distributed 
services, the service providers or source nodes have to 
obtain the properties from composition server so that they 
can get to know what kinds of services or data they can 
offer. The interest message generated by the service seeking 
node will be initially flooded over the entire network 
resulting in energy cost. The idea of region filter (Shen, 
2002) is implemented with directed diffusion to limit the 
initial flooding. The composition server takes the 
responsibility of bridging the service providers and service 
seekers by maintaining the data-centric properties, which 
greatly reduces the network-wide flooding. In order to let 
the service-seeking or sink nodes find it when the 
composition server is at a distant location, the composition 
server registers with the lookup server. 

In order to manage the group formation events, the 
composition server not only listens to the interest messages 
from event sensing nodes, but also publishes its own 
attributes when sending a reply to a joining group or leaving 
group request. A node in the group can produce data, offer 
services, or be the data and service consumer. There can be 
a multiple services offered by the nodes. The composition 
server needs a way to classify the requests according to the 
services types and respond to the requests. 

Converting the messages into diffusion-level attributes, 
pre-defining attributes, setting up matching rules for data-
centric directed diffusion according to each application’s 
desire are the major works of composition service API. 

Through this way, the relationship of different attributes 
and network traffic to each corresponding node has been set 
up. Though the composition service helps the applications 
to define their needs, the applications still have their own 
responsibility to satisfy the specific requirements. 

The composition server employs hash map to store the 
properties of the nodes. For easy retrieval of group member 
information, group ID is adopted. Detailed hash map is 
shown in Figure 5. In Figure 5, the composition server 
employs cascaded hash map to store the properties of the 
nodes, which is indexed by group ID for easy retrieval. The 
group maps to a list of EventRecord objects. For each event 
record in the list, there are two properties, Event Pointer and 
SensorObject pointer. Event Pointer points to event’s 
attributes, such as category, description, etc. SensorObject 
Pointer points to SensorObject, which includes sensor 
object’s attributes. There is a kind of record called Special 
Group. Special Group includes the groups with only one 
node for the corresponding event. 

The most significant job of composition service is 
redirection or reconfiguration. This is performed by the 
connector when a node in the group fails. The composition 
server works with the adaptation server to discover a 
substitute node within the vicinity of the failure node and 
replaces it. This entire operation is transparent to the 
application. At first glance, it seems that the replacement 
node can be chosen by the composition server but not  

the adaptation server, which seems to minimise the 
communication overhead. However, the main purpose of the 
composition server is to form groups based on location and 
properties. Thus, this should be best implemented at the 
adaptation server under the help of composition server. 

Figure 5 Composition server storing structure 

 

The network is expected to survive from node failure.  
In a large-scale network, there might be many substitutes  
to the failure nodes. How to choose the best replacement 
node will be a key issue for the protocol design. For 
instance, in Figure 6, nodes 1, 2, 3, 4, and 5 form a group in 
a large-scale WSN. The solid lines indicate the data flow. 
Nodes 1 and 2 sense the raw data and forward to node 3 and 
then nodes 4. Node 5 takes the responsibility of improving 
data transmission efficiency with data integration and 
aggregation. The failure of node 4 produces negative impact 
on the established data flow. Though, nodes 4a and 4c might 
be the candidates of the replacement, redirecting the data 
flow through node 4b will be the best choice. The reason 
behind this is that node 4b is in the closest neighbour of 
node 4 and does the similar job with node 4. The 
collaboration of the distributed services can make the whole 
transformation easy, efficient, quick, and transparent to the 
application. This reduces the negative impact on the 
established data flow to the lowest level. 

Figure 6 Service node replacement 
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The way for the failure recovery is that the adaptation server 
accesses the repository that maintains node information like 
service provided or the group information and so on, which 
is maintained by the lookup and composition servers. The 
adaptation service needs a mechanism to access the other 
services indicating a degree of communication and data 
exchange between two services.  

5 Performance evaluation 

5.1 Interactive sensor network execution 
environment (ISEE) 

ISEE in Ivester and Lim (2006) has been developed as an 
environment to execute and monitor services of a WSN 
easily and effectively. It simulates a WSN by setting up 
nodes over fixed and available infrastructure and runs 
distributed applications on top of that. The combination of 
ISEE with the distributed services allows language 
independent users and developers to interact with WSNs 
without difficulties. It provides both simple run-time 
framework for repeatable experimentation that allows for 
easy transfer to real time on-site setups, event capturing, and 
measurement to portray an accurate view of real-world 
WSN events. The framework transparently supports testing 
and emulating the real WSNs.  

5.2 Evaluation metrics 
The performance evaluation of the distributed service 
mechanism is presented in this section. The performance 
evaluation has been divided into two parts according to the 
size of the network: smaller scale and larger scale. In the 
smaller scale testing, we check with the failure recovery 
time and average number of packets in the network. In the 
larger scale, average end-to-end delay, energy dissipation, 
and packet delivery ratio have been tested under different 
scenarios. When smaller scale can obtain a satisfactory 
performance, larger scale will be meaningful. This is the 
reason we begin testing with the smaller scale. 

The testing environment is ISEE (Ivester and Lim, 
2006). The number of packets refers to the interest packets 
and the data packets. At each node, the network traffic is 
measured by a system filter. 

5.3 Evaluation for smaller scale 

In the ISEE testing environment, a simple client-server 
target tracking event detection application runs over 
directed diffusion. Emulation runs are conducted to compare 
the application that takes advantage of the distributed 
services and the same application without running the 
distributed service but using directed diffusion directly. 
There are 10 randomly generated sources and sinks pairs for 
each experiment. Each node has a radio range of 50m. Each 
source node detects the target and creates one event every 
second. Each event is modelled as constant 512 byte packet 
and sent out every second. Interest packets are periodically 
created every 5 s with duration of 15 s. The negative 

reinforcement is set to be 2 s. Each result is the average 
value of 30 independent tests. The sensor fields are 
generated by randomly placing the nodes in a 200 m by 
200 m square area. 

We have implemented a basic application with 30 
random generated static nodes. The data is collected by 
implementing groups with 6 nodes each during the time. 
The metric used for the comparison is the time taken for 
failure node detection and replacement, called recovery 
time, and the increase of the average number of packets in 
the network. 

As shown in Figure 7(a), after a node fails, there is 
hardly immediate interest packets increase although data 
packets increase. After a while, the interest packets increase 
dramatically, and data packets first increase and then 
decrease gradually. This implies that directed diffusion 
detects and reacts to the node failure slowly. The directed 
diffusion does not have specific mechanisms to detect and 
deal with the node failure. The only action taken by directed 
diffusion when a node fails is to flood the entire network 
with interest packets. 

At the same time, the data packets going through the 
reinforced paths still arrive at the sink but with a lower rate. 
When a substitute has been found, the number of interest 
packets intends to be constant, just as shown in Figure 7(a). 
There might be the case that a new source is found, albeit at 
an unknown location which may be far off from the other 
sink nodes. This is the key reason that the recovery process 
of the directed diffusion is slow, as can be gauged from the 
lengthy recovery time. The application suffers from data 
loss for a relatively long time. 

Comparatively, Figure 7(b) shows the adaptation 
process using distributed services. After an upstream node 
fails, one of its downstream nodes sends a failure indication 
to the adaptation server with the event features causing an 
immediate increase of interested packets and hardly any 
increase of data packets. The adaptation server then contacts 
the local lookup server which is registered with all 
substitute nodes in the vicinity. The adaptation server 
chooses a suitable candidate and informs the composition 
server with its decision. All these actions cause a slight 
increase of the interested packets. This implies that the 
distributed service respond and react to the node failure 
quickly and efficiently. The composition server then sends 
an indication to the substitute, explaining the resumption of 
the data packet flow. It is a significant difference that the 
system recovery time for directed diffusion is 14 s as 
compared to 6 s for the distributed services. The distributed 
services combined with the region filter can also result in a 
controlled flooding of exploratory packets, which can be 
found from the lower interested packet level in Figure 7(b). 
The flooding control, efficient, and quicker reaction to the 
node failure surely leads to the deduction of total 
transmission energy. 

To check the efficiency of distributed service clustering, 
we test the adaptation process with 3 groups, each of which 
includes 10 nodes, as illustrated in Figure 8(a) and (b). It is 
clear that the adaptation to the dynamic by the distributed 
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services results in a considerably smaller recovery time of 
16 s compared with the directed diffusion of 31 s. 
Applications taking advantage of the distributed services 
can respond to the node failure quicker. Directed diffusion 
tries to deal with loss of data by flooding the interested 
packets over the entire network until an alternate is found.  
It takes a long time for the directed diffusion to detect  
the node failure event, as shown in Figure 8(a), interest 
packets increase gradually as data packets increase during 
the recovery time. Almost half of the recovery time, about 
15 s, has been taken for the failure detection; the other 16 s 
to find the alternate node. 

Figure 7 Failure recovery time vs. average number of packets  
for one group: (a) standard directed diffusion  
and (b) distributed services 

 
(a) 

 
(b) 

For the distributed services, one indication to the adaptation 
server about node failure is sent as soon as failure is 
detected. As shown in Figure 8(b), it takes about 5 s to 
detect the failure event, much quicker than the directed 
diffusion. It is obvious that the clustering architecture  
of distributed network performs very well. Similar to 

Figures 7(a) and 8(a), during the recovery time, the data 
packet hardly increases in Figure 8(b), which also limits the 
network traffic during the time. The entire recovery process 
can be carried out by the distributed services using 
controlled flooding which results in a much shorter recovery 
time and less energy cost. There is slight increase of the 
interested packets due to the communication among the 
services including the messages sent from the failure node’s 
downstream nodes to the adaptation server. During the 
recovery time, there are fewer interest packets in the whole 
network for the distributed services. It takes less time to get 
recovered from the node failure. In general, this mechanism 
is more energy efficient and robust than the directed 
diffusion. 

Figure 8 Failure recovery time vs. average number of packets 
for three group: (a) standard directed diffusion  
and (b) distributed services 

 
(a) 

 
(b) 

5.4 Evaluation for larger Scale 

Larger scale mainly means bigger network size. Larger 
scale is a key issue in the WSN system design since when 
the network size becomes big, some of the system 
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performance goes down. However, most WSN applications 
require the system to be scalable and stable. These are the 
reasons we make efforts to test the scalability.  

In the ISEE testing environment, a simple client-server 
target tracking event detection application runs over 
directed diffusion. Emulation runs are conducted to compare 
the application that takes advantage of the distributed 
services and the same application without running the 
distributed service but using directed diffusion directly. 
There are 10 randomly generated sources and sinks pairs for 
each experiment. 

In order to study the performance in larger scale, various 
sensor fields with different numbers of nodes are generated. 
We study ten different sensor fields, ranging from 50 to 500 
nodes in increments of 50 nodes each time. Each result is 
the average value of 30 independent tests. The sensor fields 
are generated by randomly placing the nodes in a 200m by 
200 m square area. Each node has a radio range of 50m. 
Each source node detects the target and creates one event 
every second. Each event is modelled as constant 512 byte 
packet and sent out every second. Interest packets are 
periodically created every 5 s with duration of 15 s. The 
negative reinforcement is set to be 2 s.  

The first metric to evaluate the performance is average 
delay, which measures the average one-way latency 
observed between transmitting an event and receiving it at 
each sink. The second metric is average packets delivery 
ratio, which is the ratio of the number of distinct events 
received to the number originally sent. The third metric is 
average dissipation energy in terms of average number of 
hops traversed by the message from the source to the sink, 
which is proportional to the total amount of energy 
consumed for the data delivery. We study these metrics as a 
function of network size. In order to test the real robustness 
of the system, we compare the performance of each metric 
under the condition of without nodes failure and with nodes 
failure. In the nodes failure testing, our dynamics 
experiment imposes fairly adverse conditions for a data 
dissemination protocol. At any instant, 20% of the nodes in 
the network are unusable.  

Figure 9 shows the average delay as function of network 
size with and without nodes failure. As shown in  
Figure 9(b), the curves of both protocols intend to be 
increase and then decrease. When network size reaches 
certain threshold 350, network nodes seem to be saturated, 
the protocol can always find the route and 20% nodes 
failure does not influence the average delay. This is very 
distinct in the node failure case (in Figure 9(b)). As shown 
in Figure 9(a), the distributed service, the number of  
nodes change does not influence the average delay  
very much – the average delay approximately changes  
from 15 ms to 18 ms. This implies that the average delay of 
distributed services is not sensitive to the node densities.  
It is obvious that the distributed services have a noticeable 
advantage over the directed diffusion in terms of average 
delay even under the condition of 20% nodes failure. Even 
though directed diffusion makes the latency as the only 
metric to determine the route, its inherent strategy is to 

depend on interest flooding to find the substitution for 
failure replacement. Flooding interest not only slows down 
the messages propagation, but also reduces the energy 
efficiency. This is the fundamental problem of directed 
diffusion. Contrary to it, the distributed servers cooperate 
with each other, prune off higher latency paths, and find 
another service provider in the similar location to the failure 
node. It is encouraging to see that directed diffusion always 
suffers from higher average delay compared with the 
distributed services. There is noticeably better average delay 
as can be found from Figure 9. Without node failure their 
difference ranges approximately 30–60% less average 
delay, with nodes failure ranges approximately 50–60% less 
average delay. This feature of distributed services is very 
appropriate for real time WSN applications. 

Figure 9 Impact of number of nodes on average delay:  
(a) average delay without failure and (b) average delay 
with 20% failure 

 
(a) 

 
(b) 

Figure 9 shows that when network size increases, the 
average energy dissipation does not increase very much for 
both protocols under the adverse condition. Even under such 
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adverse condition as 20% node die, it is prominent that the 
distributed services are more energy-efficient than directed 
diffusion. In an uncongested WSN without obstructions, 
lowest delay path is also the shortest path and most energy-
efficient path. Thus, the curve (Figures 9 and 10) implies 
that under the same situation, the distributed service can 
achieve shorter delay, lower number of hops, as well as less 
energy cost. These results coincide with the average delay 
demonstrated above. It is interesting to see that when 20% 
nodes die, the average energy cost for both protocols does 
not increase dramatically compared with the average energy 
cost without nodes failure. Both protocols pay attention 
when dealing with dynamic conditions and actions can be 
taken effectively without delay as long as failure is detected. 
The directed diffusion builds backup path (reinforcement) at 
the flooding stage and avoids network-wide flooding to 
repair the failure, although it mainly depends on flooding as 
the method to dealing with failures. In addition, diffusion 
benefits significantly from in-network aggregation, which 
greatly reduces the energy cost. It can also keep several 
reinforced paths alive in normal operation as long as the 
failure is discovered; the substitution paths can be effective 
immediately even though they are not high quality paths in 
terms of delay. Those contribute to the energy efficiency of 
directed diffusion and improving the energy dissipation of 
the directed diffusion. Distributed services can achieve 
approximately 20–0% more energy saving than directed 
diffusion even under the worst case. The distributed services 
have embedded dynamic treatment mechanisms with the 
prompt cooperation of three servers, which can hardly 
produce extra flooding. They keep location information of 
each service provider, which not only helps to find the 
optimal route but also find the optimal replacement node. 
When nodes fail, there is no extra energy consumed and no 
broadcast for the replacement. These facts determine the 
results that energy cost does not increase greatly in the 
worst-case scenario. In addition, the distributed services are 
built on the directed diffusion and have the features of both 
the directed diffusion and their own. This qualified the 
distributed services to win even in the worst case as 20% 
nodes die. This is very appropriate for the resource-
constrained WSN. 

We can tell from Figure 11 that the distributed services  
can achieve more satisfactory average packet delivery ratio 
than directed diffusion. Both schemes incurred an average 
packets delivery ratio of nearly one as there is no failure, 
since these experiments ignore network dynamics and are 
congestion-free. Without node failure, the difference 
between the two approximately ranges 5% to 10%, while 
with nodes failure the difference is more noticeable, which 
ranges approximately from 20% to 30%. This verifies the 
fact that the distributed services not only can maintain real 
time and energy efficiency, but also can guarantee the 
quality of transmission. In addition, the distributed services 
have embedded mechanisms to keep all the service 
providers in record and replace the failure node just after the 
failure detection without delay. The quality of transmission 
is only slightly influenced during the time. The analysis 

above indicates that the distributed services have higher 
degree of adaptation. Even under the dynamic conditions, 
they can keep noticeably better average packets delivery 
ratio without user interventions. 

Figure 10 Impact of number of nodes on average energy 
dissipation: (a) average energy dissipation without 
failure and (b) average energy dissipation with 20% 
failure 

 
(a) 

 
(b) 

6 Conclusions 
In this paper, we proposed the distributed services as a 
WSN middleware, and implemented the composition 
service as its key component. This simplifies and facilitates 
the development of WSN as well as helps the network adapt 
to the dynamics. It has bridged the gap between complex 
applications and the large-scale resource-constrained WSNs. 
The distributed middleware tailors the features of WSN to 
the applications’ requirements and makes the development 
easier and efficient. Our simulation by ISEE shows that the 
composition service collaborating with other two services 
can achieve robustness, reliability, scalability, real time, and 
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adaptation. It incurs remarkably better performance in terms 
of the failure recovery time, network flooding avoidance, 
average delay, energy dissipation, and packets delivery ratio 
compared with the original directed diffusion protocol. 

Figure 11 Impact of number of nodes on average packets delivery 
ratio: (a) average packets delivery ratio without failure 
and (b) average packets delivery ratio with 20% failure 

 
(a) 

 
(b) 

Our final goal is to implement the distributed services  
in the real-world scenario for the target tracking application. 
This work is the full preparation for the future 
implementation. In the future, we will also improve the 
distributed service from network security aspect. We will 
begin with discovering the fatal threats among the three 
services, especially under the dynamic conditions with 
larger scale. The threats compromising the message 
exchanges and degrading the overall performance will be 
found out. The countermeasures will be proposed 
accordingly. 
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