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Abstract—During the process of minimizing a deterministic

finite automaton, there exist computing dependency and

repetitive computing problems caused by the disorder of

selecting a set to partition in the partition algorithm or by

the disorder of computing state-pairs in the combination

algorithm. To solve theses problems, a new algorithm for

minimizing a completely deterministic finite automaton is

presented. Firstly, based on the concept of a completely

deterministic finite automaton, characteristics of state

transition inverse mapping and the usage to reduce

repetitive computing are analyzed. Secondly, the algorithm

for minimizing a completely deterministic finite automaton,

its rightness proof and analysis of time complexity are given.

In the end, an experiment is carried out and the result shows

that this algorithm is fairly efficient for minimizing a finite

automaton.

Index Terms—minimizing, completely deterministic, finite

automaton, state transition, inverse mapping

I. INTRODUCTION

As the basis of computer science, finite automaton (FA)
theory can be applied to the abstraction of most finite
systems in computer field. Deterministic finite automaton
(DFA) is a very important part of FA theory and its
minimization has important theoretical and practical
value. There mainly exist two kinds of DFA minimization
algorithms which are both based on analysis of states: the
partition algorithm[1][2][3] and the combination algorithm[4].
However, computing dependency and repetitive
computing problems may be brought by the disorder of
selecting partition sets in the partition algorithm or by the
disorder of computing state-pairs[4] in the combination
algorithm. To solve these problems, based on FA
theory[5][6] and analysis of characteristics of completely
deterministic finite automaton, a new algorithm is
developed, meanwhile, its rightness proof, time
complexity and efficiency are presented.

II. DEFINITION, TRANSITION AND CHARACTERISTIC

ANALYSIS OF COMPLETELY DETERMINISTIC FA

Definition 1 DFA M=(Q, , ,q0,F) is a completely

deterministic finite automaton(CDFA) q Q, a ,

(q,a) Q. If | |=0 and |Q|>0 ( =ø, RLM=ø or { }), M is a
CDFA. If |Q|=0, it’s no use to discuss.

Definition 2[1] DFA M=(Q, , ,q0,F), if q Q, a ,

(q,a) , to generate a state qdead Q(qdead F) and to

modify : q Q, a , if (q,a) , (q,a)=qdead, a ,
(qdead,a)=qdead. qdead is called a dead state.

Property 1 CDFA M=(Q, , ,q0,F), if qdead Q, q

Q-{qdead}, qdead q.

Proof. a , ( (qdead,a)=qdead) (qdead F), *,

(qdead, ) F. Hence, q Q-{qdead}, qdead q.
Theorem 1 DFA M, CDFA M', M M'.
Proof.
(1) If DFA M is a CDFA, M=M', obviously M M'.
(2) If DFA M is not a CDFA, a CDFA with only one

dead state can be constructed: M'=(Q {qdead}, , ',q0, F),

qdead Q, '= { (q,a)=qdead| q Q, a , if (q,a) Q}

{ (qdead,a)=qdead | a }.

(2.a) L(M), ( ') L(M');

(2.b) L(M'), ( '- =({ (q,a)=qdead| q Q, a , if

(q,a) Q} { (qdead,a)=qdead| a })) (qdead F) ( 1,

2, ( 1· 2= ) ( (q0, 1)=qdead) ( (qdead, 2) F)), hence,
L(M).

According to (2.a) and (2.b), it’s obvious that M M'.

According to (1) and (2), the theorem is right.

Theorem 2 DFA M,DFA M',CDFA M'',(((M M'')

(M' is minimization of M)) (in the sense of isomorphism,

M' is minimization of M'')) (((M M'') (M' is

minimization of M'')) (in the sense of isomorphism, M'

is minimization of M)).

Proof. (M M'') ((L(M)=L(M'')) (L(M) RL)

(L(M'') RL)), it can be inferred that there is only one
minimal DFA of M and M'':((M' is minimization of
M) (in the sense of isomorphism, M' is minimization of

M'')) ((M' is minimization of M'') (in the sense of

isomorphism, M' is minimization of M)).
Corollary 1 DFA M, if M is not a CDFA, a CDFA M'

equivalent to M can be constructed according to
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Definition 2. The dead state and corresponding state
transition functions introduced in the construction do not
affect the equivalence and uniqueness of the
minimization result of M' and M.

Proof. It can be inferred by Theorem 2 and the
uniqueness of minimal DFA in the sense of isomorphism.

Corollary 2 During the minimization of CDFA, dead
states if exist may not be computed in judging equivalent
states.

Proof. It can be proved by using Property 1 and
Corollary 1.

Theorem 3 CDFA M=(Q, , ,q0,F), q Q, a , -1

(q,a)={q'|q' Q (q',a)=q}:

(1) q, q' Q, a , q q', -1(q,a) -1(q',a)=ø.

(2)
Qq

Qaqa ),()( 1 .

Proof. (1) Reduction to absurdity: q, q' Q, a ,

q q', -1(q,a) -1(q',a ø. q Q, a , -

1(q,a)={q''|q'' Q (q'',a)=q}, q' Q, a , -

1(q',a)={q'''|q''' Q (q''',a)= q}, -1(q,a) -

1(q',a)={p|p Q (p,a)=q (p,a) =q' ø. It can be
known by Definition 1: q=q', and the result is absurd

considering the condition q q'. Hence, q, q' Q, a ,
q q', -1(q,a) -1(q',a)=ø.

(2) CDFA M=(Q, , ,q0,F), q' Q, a , (q',a)=q Q,

hence,
Qq

Qaqa ),()( 1 .

Corollary 3 If P Q, the following conclusion is right:

)),(),()(( 11

PQqPq

aqaqa .

Proof. It can be proved by using Theorem 3(1).
Corollary 4 If P Q, the following conclusion is right:

Qaqaqa
PQqPq

)),(),()(( 11 .

Proof. It can be proved by using Theorem 3(2).
Definition 3 CDFA M=(Q, , ,q0,F), let RE is the

equivalent relation on M and RN is the nonequivalent

relation on M. W Q, V Q, W V={(a,b)|(( a W

b V) ( a V b W)) ((aREb aRNb) ((a,b)=(b,
a))) (a b)}.

Definition 4 Non-effective computing states set for
‘a’(NECSS[a]): CDFA M=(Q, , ,q0,F), NECSS[a]={q|

a , q Q, -1(q,a)=ø}.
Definition 5 Full effective computing states set for

‘a’(FECSS[a]): CDFA M=(Q, , ,q0,F), FECSS[a]={q|

a , q Q, -1(q,a ø}.
Property 2 CDFA M=(Q, , ,q0,F), (NECSS[a]

FECSS[a]=ø) (NECSS[a] FECSS[a]=Q)
Proof. It can be proved by Definition 4, Definition 5

and Theorem 3.

Theorem 4 CDFA M=(Q, , ,q0,F), a , X Q,

X' ={q| p X, -1(p,a)=q}:
(1) (X NECSS[a]) (X'=ø) (Q-X'=Q), (FECSS[a] X)

(X'=Q) (Q-X'=ø).

(2) (X NECSS[a] FECSS[a] X) ( b X', c Q-X',
b c).

Proof. (1.a) (X NECSS[a]) ( q X NECSS[a], -1(q,
a)=ø) (X'=ø) (Q-X'=Q) (X'=ø) (Q-X'=Q).

(1.b) (FECSS[a] X) (X'=X'FECSS[a]+X'X-FECSS[a]={q| p

FECSS[a], -1(p,a)=q}+{q'| p' (X-FECSS[a]) (Q-
FECSS[a]), -1(p',a)=q'}) (X'=X'FECSS[a]+X'X-FECSS[a]={q| p

FECSS[a], -1(p,a)=q}+{q'| p' (X-FECSS[a]) NECSS

[a], -1(p',a)=q'}) (X'=X'FECSS[a]+X'X-FECSS[a]={q| p FECSS

[a], -1(p,a)=q}+ø) (X'=X'FECSS[a]={q| p FECSS[a], -1(p,a)
=q}) (X'=X'FECSS[a]=Q) (Q-X'=ø) ((X'=Q) (Q-X'=ø)).

Theorem 4(1) has been proved by (1.a) and (1.b).

(2.a) (X NECSS[a]) ((X'=ø) (Q-X'=Q)) ( b X',

c Q-X',b c);

(2.b) (FECSS[a] X) ((X'=Q) (Q-X'=ø)) ( b X',

c Q-X',b c).
Theorem 4(2) has been proved by (2.a) and (2.b).
Theorem 4 is right.
Definition 6 A set X is the effective computing kernel

for ‘a’ (ECK[X,a]): CDFA M=(Q, , ,q0,F), a ,
X Q, ECK[X,a]=X-NECSS[a].
Definition 7 A set X is the effective computing kernel

item for ‘a’ (ECKI[X,a]): CDFA M=(Q, , ,q0,F),

a , X Q, ECKI[X,a]=<ECK[X,a],a>.

Theorem 5 CDFA M=(Q, , ,q0,F), a , X Q, -

1 (ECK[X,a],a)= -1(X,a).

Proof. -1(ECK[X,a],a)= -1(X-NECSS[a],a)={q| p X

p NECSS[a], -1(p,a)=q}={q'| p' X, -1(p',a)=q'}-{q''|

p'' X p'' NECSS[a], -1(p'',a)=q''}={q'| p' X, -1(p',a)

=q'}-ø ={q'| p' X, -1(p',a)=q'}= -1(X,a).
Definition 8 CDFA M=(Q, , ,q0,F), nonequivalent

state-pairs set (NESPS)={(a,b)|a Q b Q a b a b},

nonequivalent states set-pairs set (NESSPS)={<X,Y>|X

Q Y Q X Y}. If <X Q-X> NESSPS ( (a,b) (X

(Q-X)) (a,b) NESPS a b), <X,Q-X> is called

effective state set-pairs, otherwise it is called non-
equivalent state set-pairs.

III. CDFA MINIMIZATION ALGORITHM BASED ON STATE

TRANSITION INVERSE MAPPING

Based on the concept and characteristic analysis of
CDFA in the second part, core of broad-first CDFA
minimization algorithm based on state transition inverse
mapping is given in pseudo-code as follows.

Input: meaningful CDFA M=(Q, , ,q0,F).
Output: if M can be minimized, the result is the

minimal DFA.
Method:
1) if (F==ø){printf(“No equivalent states in M”);

goto 9);}
2) if (| |==0) goto 9);
3) NESS=(Q-F) F, SSW=(Q-F) (Q-F)+F F.

/*NESS is a set of nonequivalent state-pairs and
SSW is a set of state-pairs waiting to be judged*/

4) if (SSW==ø){printf(“No equivalent states in M”);
goto 9);}

5) Compute -1, NECSS[a] and FECSS[a] for every

a .

6) if(|F |Q-F|){min=F,max=(Q-F),D={<min,

max>},W=ø,T=ø} else {min=(Q-F),max=F,D={<
min,max>},W=ø,T=ø}.
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/*D is a set of state-set-pairs being computed, W

is a set of state-set-pairs waiting to be computed,
T is a set of computed ECKI[X,y]*/

7) while(((D ø) (W ø))&&(SSW ø)){

To fetch a member of D and let current=
<min,max>;

for (every a ){

if (!(min NECSS[a] FECSS[a] min)){

ECK[min,a]=min-NECSS[a];

if (ECKI[min,a] T){
ECK[max,a]=max-NECSS[a];

newmin={p|p -1(q,a), q ECK[min,
a]};

newmax=Q-newmin;
if (|newmin|>|newmax|) newmin newmax;
W+={<newmin,newmax>};
T+={<ECK[min,a],a>,<ECK[max,a],a>};
SSW-=newmin newmax;
if (SSW==ø) exit this ‘for’ cycle;

}//end of ‘if (ECK[min,a] T)’

}// ‘if !(min NECSS[a] FECSS[a] min)’

D-=current;
if ((D==ø)&&(W ø)) D W;

}//end of ‘for (every a )’
}//end of ‘while’

8) To combine equivalent states same as the way
adopted by most DFA minimization algorithms
and to deal with Q, ,q0 and F.

9) Q'=Q, '= ,q0'=q0,F'=F. The minimal DFA is
M'=(Q', , ',q0',F').

IV. RIGHTNESS PROOF

Theorem 6 The algorithm can recognize all non-
equivalent state-pairs and has no mistake.

Proof. First, it is to be proved that the algorithm has no
mistake in judging nonequivalent state-pairs.

The algorithm produces two | |-branch trees whose
roots are F and Q-F separately. Corresponding nodes in
the trees are nonequivalent.

(1) Let k is the depth of the tree. k=0: every state-pairs
of F (Q-F) are nonequivalent according to Property 1.

(2) Assumption: when k=m (m is less than the max
depth of the tree) the algorithm has no mistake in judging
nonequivalent state-pairs. It needs to be proved that when
k=m+1 the conclusion is still right. Choose freely a node
at the layer of m+1 in the tree whose root is F and note it
as S1'. S1' must come from S1 at the layer of m in the same
tree through the computing -1(ECK [S1,x],x). Correspon-
dingly, the node S2' at the layer of m+1 in the tree whose
root is Q-F, must come from S2 at the layer of m in the
tree whose root is Q-F through the computing -

1(ECK[S2,x],x). It can be inferred from the assumption

that state-pairs of S1 S2 are nonequivalent. q1 S1',

q2 S2', (q1,x) S1, (q2,x) S2,q1 q2. Similar proof can be
made if choosing freely a node at the layer of m+1 in the
tree whose root is Q-F. Hence, when k=m+1 the
algorithm has no mistake in judging nonequivalent state-
pairs.

It can be concluded from the induction that the
algorithm has no mistake in judging nonequivalent state-
pairs.

Second, it is to be proved that the algorithm can
recognize all nonequivalent state-pairs without omission.

The algorithm computes -1(ECK[S,y],y)( y ) for
every node S in the trees whose root are F and Q-F. And

it is equal to computing -1(S,y)( y ) according to
Theorem 5. There are two conditions to end the branch
computing: one is ø according to Theorem 4 and it’s no
use to continue computing; the other described in
Definition 8 can lead to repetitive computing and it is no
use to continue too. So the algorithm can compute all
useful branches without omission.

V. TIME COMPLEXITY ANALYSIS

Theorem 7 There are at least two new nonequivalent
states between corresponding state sets S' and Q-S' in the
| |-branch trees whose roots are F and Q-F.

Proof. To choose freely two state sets S' and S''(S' S'')
in the tree whose root is F and there exist Q-S' and Q-S''

in the | |-branch tree whose root is Q-F' corresponding to
S' and S''. It can be inferred by Theorem 6 that:(Q-S' Q-

S'') (Q-S' S'' (Q-S'' S' S' ø S'' ø (Q-S' ø (Q-

S'' ø. There exists one state-pair (x,y) and ((x S' y

(Q-S')) (y S' x (Q-S'))) ((x S'' y S'') (x (Q-

S'') y (Q-S'')). It also can be inferred by Theorem 6 that

x is not equivalent to y. According to the free choice of S'',
(x,y) is a new nonequivalent state-pair.

Corollary 5 There are at least two new nonequivalent
states produced by S' (different from F and Q-F) and Q-S'

but not by F or Q-F.
Proof. It can be proved by using reduction to absurdity

method according to Theorem 7.
Theorem 8 The algorithm’s worst time complexity is

||||
2

||
|)|||

2

|1|||
( Q

Q
FFQ

QQ .

Proof. The time complexity of the fifth step is

|||| Q . To assume that there exist k nonequivalent

state-pairs, the number of nonequivalent state-pairs which

need to be recognized is |)|||( FFQk according to

Corollary 5. Every time the algorithm selects one of S'

and Q-S' that includes less states to compute, so the max

number states to compute every time is
2

|| Q
. When it

come to the worst case that is k=|Q| |Q-1|, the worst time
complexity to recognize nonequivalent state-pairs is

||||
2

||
|)|||

2

|1|||
( Q

Q
FFQ

QQ .

VI. ADVANTAGES OF THE ALGORITHM AND ITS

EFFICIENCY

The algorithm can deal with all kinds of situations. Not
only CDFA can be minimized, but also all DFA such as
DFA without dead states, DFA with more than one dead
state and more complex DFA mixed by the two kinds of
DFAs. The algorithm use structural characteristics of
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CDFA to simplify computing and has no problem[4] in the
partition algorithm or in the combination algorithm.

For example[4]: DFA M=({s,a,b},{0,1},{ (s,0)=a, (s,
1)=b, (b,1)=a},s,{a,b}). Above all, DFA M needs to be
transformed to its equivalent CDFA :M'=({s,a,b,q},{0,1},
{ (s,0)=a, (s,1)=b, (b,1)=a, (b,0)=q, (a,0)=q, (a,1)=q,
(q,0)=q, (q,1)=q},s,{a,b}). After the transformation, M' is
minimized according to the steps of the algorithm. For the
first step and the second step, F={a,b ø and | 0.
For the third step: NESS={(s,a), (s,b), (q,a), (q,b)},
SSW={(s,q), (a,b)}. SSW ø so for the fifth step: -1={ -1

(a,0)={s}, -1(a,1)={b}, -1(b,1)={s}, -1(q,0)={a,b,q}, -1(q,1)
={a,q}},NECSS[0]={s,b},NECSS[1]={s},FECSS[0]={a,
q},FECSS[1]={a,b,q}. For the sixth step: |{a,b}|=|{s,q}|
and it’s feasible to let min=F or min=Q-F. Here Let
min=F and max= Q-F. D=<{a,b},{s,q}>,W=ø,T=ø. For
the seventh step: D ø and SSW ø so the cycle can be

executed. For 0 , (min NECSS[0] FECSS[0] min)

is false, therefore, ECK [min,0]=min-NECSS[0]={a,b}-

{s,b}={a}. For ECKI[min,0] T, newmin={s}, newmax=
{s,a,b,q}-{s}={a,b,q},|newmin|<|newmax|,W={<{s},{a,b,
q}>},T={<{a},0>,<{s},0>}, SSW={(s,q),(a,b)}-{s} {a,

b,q}={(s,q),(a,b)}-{(s,a),(s,b), (s,q)}={(a,b)}. For 1 ,

(min NECSS[1] FECSS[1] min) is false, therefore,
ECK[min,1]=min-NECSS[1]={a,b}-{s}={a,b}. For

ECKI[min,1] T, newmin={s,b}, newmax={s,a,b,q}-{s,b}
={a,q},|newmin| |newmax|,W={<{s},{a,b,q}>}+{<{a,b},
{a,q}>}={<{s},{a,b,q}>,<{a,b},{a,q}>},T={<{a},0>,<{
s},0>}+{<{a,b},1>,<{q},1>}={<{a},0>,<{s},0>,<{a,b},
1>,<{q},1>},SSW={(a,b)}-{s,b} {a,q}={(a,b)}-{(a,s),
(a,b),(b,s)}=ø. It can be inferred by SSW==ø that there is
no equivalent states. The ninth step is executed to
eliminate dead states which will not affect the FA’s

ability. The minimization result output by the algorithm
is: DFA Mmin=M and this result is same with that of Ref.
[4]. The algorithm is fairly efficient for minimizing a
finite automaton.

VII. SUMMARY

Based on the concept of CDFA, characteristics of state
transition inverse mapping and the usage to reduce
repetitive computing are analyzed. The analytical results
are used sufficiently to construct a right and generally
used DFA minimization algorithm. Further work includes
equivalent states recognition based on graphical structure
of state transition.
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