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SUMMARY

Extracellular free heme can intercalate into mem-
branes and promote damage to cellular macromole-
cules. Thus it is likely that specific intercellular
pathways exist for the directed transport, trafficking,
and delivery of heme to cellular destinations,
although none have been found to date. Here we
show that Caenorhabditis elegans HRG-3 is required
for the delivery of maternal heme to developing
embryos. HRG-3 binds heme and is exclusively
secreted by maternal intestinal cells into the intersti-
tial fluid for transport of heme to extraintestinal cells,
including oocytes. HRG-3 deficiency results either in
death during embryogenesis or in developmental
arrest immediately post-hatching—phenotypes that
are fully suppressed by maternal but not zygotic
hrg-3 expression. Our results establish a role for
HRG-3 as an intercellular heme-trafficking protein.
INTRODUCTION

Heme-containing proteins are found in nearly all phyla of organ-

isms (Hardison, 1996) and play essential roles in a wide range of

biological process (Faller et al., 2007; Kaasik and Lee, 2004;

Okano et al., 2010; Severance and Hamza, 2009). In mammalian

cells, heme is either imported from the extracellular milieu

through the plasma membrane (Uc et al., 2004; Worthington

et al., 2001) or synthesized within the mitochondria for export

to the cytoplasm for delivery to extramitochondrial compart-

ments for insertion into a repertoire of hemoproteins (Dailey,

2002; Severance and Hamza, 2009). Free heme is an amphi-

pathic planar macrocycle that can intercalate into membranes

where it may promote damage to cellular macromolecules (Balla

et al., 1991). Consequently, specific cellular pathwaysmust exist

for the directed transport, trafficking, and delivery of heme to

numerous cellular destinations—but none have been found to

date (Severance and Hamza, 2009). Previously, we identified
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the first bona fide metazoan heme importer HRG-1 (SLC48A1),

which we propose plays a critical role in regulating cellular

heme homeostasis in the roundworm Caenorhabditis elegans

and vertebrates (Rajagopal et al., 2008). Heme export is medi-

ated by amajor facilitator superfamily protein, the feline leukemia

virus subgroup C cellular receptor (FLVCR), in red blood cells

and macrophages (Keel et al., 2008; Quigley et al., 2004). Hemo-

pexin, a serum heme-binding protein, may facilitate heme export

by physically interacting with FLVCR (Yang et al., 2010).

Together, these proteins constitute part of a larger, intricate

network to maintain organismal heme homeostasis—a concept

heretofore poorly understood (Severance et al., 2010).

In an effort to identify additional components of the heme

transport pathways, we took advantage of C. elegans, a heme

auxotroph (Rao et al., 2005). In worms, nutritional heme is trans-

ported into the intestine by membrane-bound permeases—

HRG-1 and HRG-4 (Rajagopal et al., 2008). However, it’s unclear

how tissues such as muscle, neurons, hypodermal cells, and

embryos acquire heme from the intestine. Here we identify

HRG-3, a heme-binding protein that functions to transport

heme from intestinal cells to extraintestinal tissues including

oocytes. Our results suggest that HRG-3 is an intercellular

heme carrier that is essential for early development inC. elegans.

RESULTS

Embryonic Heme Levels Are Affected by Maternal
Heme Availability
C. elegans wild-type N2 worms maintained axenically in

mCeHR-2 liquidmedium are gravid adults in 3.5 days in the pres-

ence of optimal concentrations of heme (20 mM) (Rao et al.,

2005). However, their progeny are growth arrested at the fourth

larval stage (L4) in the absence of supplemented heme. To differ-

entiate the effects mediated by maternal heme from zygotic

heme, we cultured parental worms (P0) at 1.5, 20, and 750 mM

heme, all of which allow normal development and fertility, and

the ensuing progeny (F1) were maintained at either 0 or 20 mM

heme (Figure 1A and Figure S1 available online). Strikingly,

when grown at 0 mM heme, F1 worms obtained from P0 mothers

cultured at 1.5 mM heme were growth arrested at the first larval
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Figure 1. hrg-3 Is Induced by Heme Deficiency in C. elegans

(A) Parental wormswere grown at the indicated heme concentrations for one generation, and the synchronized L1 (first stage larvae) progeny were inoculated into

axenic mCeHR-2 medium supplemented with 0 or 20 mM heme. Representative images of the progeny at day 5 are shown. L4, the fourth stage of larvae. Scale

bar, 20 mm.

(B) Environmental heme represses the expression of both maternal and embryonic GFP in the heme sensor strain IQ6011. I, maternal intestine; E, embryos. Scale

bar, 20 mm.

(C) GFP fluorescence quantification in the embryos derived from IQ6011 grown at 4 and 20 mM heme. Error bars represent SEM from three independent

experiments. *p < 0.001 compared with 4 mM heme.

(D) Northern blot analysis of hrg-3 (�370 nucleotides) expression using total RNA isolated from worms grown at different heme concentrations. The blot was

reprobed with the internal control gpd-2.

(E) Quantification of hrg-3 mRNA by qRT-PCR. Relative fold changes were derived by normalizing the cycle threshold values to gpd-2 and then to samples

derived from 20 mM optimal heme using the DDCT method. The experiment was performed in triplicate, and the error bars indicate SEM.

(F) Comparison of HRG-3 proteins in C. elegans, C. briggsae, and C. remanei. Arrowhead, putative signal peptidase cleavage site and underline, hydrophobic

leader peptide.

See also Figure S1 and Table S2.
stage (L1), whereas F1 worms derived from P0 worms grown at

750 mM heme grew to young adults prior to becoming growth

arrested. Irrespective of the P0 heme concentrations, F1 progeny

developed normally when grown at 20 mM heme (Figure 1A and

Figure S1). These results suggest that larval development after

hatching is dependent upon maternal (P0) deposition of heme,
and that in the presence of heme, the F1 progeny can overcome

maternally induced heme deficiency.

To corroborate these results, we used a transgenic heme

sensor strain in which the expression of intestinal GFP is

inversely correlated with heme levels in the worm (Sinclair

and Hamza, 2010). When worms were maintained at low
Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc. 721



concentrations of heme, strong GFP expression was observed

both in the maternal intestine and in the embryos. However,

embryonic GFP expression was severely attenuated, concomi-

tant with maternal GFP, when mothers were provided with

20 mM heme, further demonstrating that heme levels in the

embryos are linked tomaternal heme status (Figures 1B and 1C).

HemeDeficiency Induceshrg-3Expression inC. elegans

A previous transcriptome analysis identified several hundred

heme-responsive genes (hrgs) in worms grown in axenic

mCeHR-2 liquid culture supplemented with 4, 20, and 500 mM

heme (Severance et al., 2010). To identify genes that may play

a role in heme delivery, we first sorted genes based on the

degree of upregulation under low heme conditions followed by

three additional criteria. They should encode proteins (1) with

a molecular weight of%30 kDa—a feature characteristic of met-

allochaperones (Kim et al., 2008), (2) with conserved amino acids

that bind heme (H, Y, or C), and (3) that lackmultispan transmem-

brane domains. These criteria resulted in the identification of

F58E6.7, which was upregulated >70-fold by low heme in the

microarray. Northern blot analysis revealed the presence of

a single �370 nucleotide transcript (Figure 1D), and qRT-PCR

revealed that worms grown in 1.5 or 4 mM heme increased

the abundance of F58E6.7 mRNA by more than 900-fold and

400-fold, respectively, over what is found in worms grown in

20 mM heme (Figure 1E). Consistent with the northern blotting

results, 50 and 30 RACE confirmed the presence of an �377

nucleotide mRNA containing an �9 nucleotide 50 untranslated
region (UTR), three exons, and a 155 nucleotide 30 UTR (not

shown). The open reading frame (ORF) encodes a 70 amino

acid protein with a predicted molecular mass of 8.1 kDa

(Figure 1F). Within the amino terminus of F58E6.7 resides

a stretch of hydrophobic amino acids, which could serve as

either a transmembrane region or a signal peptide. BLAST

searches and gene prediction algorithms identified putative

homologs in other Caenorhabditis species (Figure 1F). These

homologs share >50% sequence identity at the amino acid level.

Consistent with genome nomenclature, we termed F58E6.7

as hrg-3.

Lack of hrg-3 in C. elegans Reveals Developmental
Phenotypes during Heme Deficiency
To determine the function of HRG-3 in C. elegans, we analyzed

worms containing a deletion in hrg-3. The tm2468 strain contains

a 218 bp deletion that encompasses part of the promoter, the

first two exons and the first intron, resulting in a null mutant

(Figures 2A and 2B). These mutant worms have no overt pheno-

types when fed the standard worm diet containing E. coli strain

OP50 (not shown). Because hrg-3 is highly upregulated in worms

grown at low heme conditions inmCeHR-2 liquidmedium, and to

rigorously analyze the hrg-3 mutant phenotype, we sought to

recapitulate the heme deprivation conditions on agar plates

with E. coli as the food source. Because the OP50 E. coli strain

can synthesize heme endogenously, it was not possible to

deplete the bacteria of heme. The bacterial strain RP523 is

defective in hemB, which encodes 5-aminolevulinic acid dehy-

dratase (ALAD), the second enzyme in the heme biosynthesis

pathway (Li et al., 1988). Consequently, RP523 is dependent
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upon exogenous heme for growth. By exposing worms to

RP523 grown with different concentrations of heme, one can

control heme levels in the worm via E. coli. Wild-type N2 worms

exhibited a 1 to 2 day growth delay when fed RP523 grown with

1 mMheme compared to those grown on OP50, a growth pheno-

type that was not present whenwild-typewormswere fedRP523

grown with 10 to 50 mM heme (not shown). hrg-3mutant worms,

like wild-type worms, revealed the expected growth delay in the

parental (P0) generation when fed RP523 grown with 1 mMheme.

However,�40%of eggs laid by themutant worms failed to hatch

(Figure 2C), and the F1 embryos that did hatch were growth

arrested at the first larval stage (Figures 2D and 2E). The lethality

and growth retardation phenotypes were completely rescued

when hrg-3 mutants were fed RP523 that had been grown with

50 mM heme. Collectively, these results indicate that HRG-3 is

essential for both embryonic and postembryonic development

under heme-limiting conditions and that the absence of HRG-3

results in heme deficiency that is manifested specifically in the

F1 generation.

HRG-3 Is Secreted by the Intestine into the Interstitial
Fluid
We determined the tissue and subcellular distribution of HRG-3.

Worms expressing Phrg-3::GFP transcriptional fusions had GFP

in the worm intestine, with the greatest levels in the anterior (int2

and int3) andmid-intestinal cells (int4–6). The anterior-most (int1)

and the posterior-most gut cells (int7–9) possessed low levels of

GFP (Figure 3A). GFP was only observed in worms that were

maintained in %6 mM heme in mCeHR2 medium—consistent

with the qRT-PCR results (not shown). Intestinal Phrg-3::GFP

expression was observed through all larval stages, and in both

hermaphrodites and males (Figure S2). Zygotic expression of

hrg-3was first detected in late embryos at�300 min of develop-

ment (Figure S2).

To identify the subcellular distribution of HRG-3, we con-

structed transgenicworms that express the translational reporter

Phrg-3::HRG-3::YFP. Worms grown in 2 mM heme possessed

a weak HRG-3::YFP signal that was located in cytoplasmic

puncta within the worm intestine (Figure 3B, left panel).

Unexpectedly, the majority of HRG-3::YFP was present as

vesicular structures outside the intestine in coelomocytes—

macrophage-like scavenger cells located in the pseudocoelomic

cavity (Figure 3B, right panel).

To determine whether the HRG-3::YFP translational reporter

was inadvertently expressed in extraintestinal cells, we directed

the expression of hrg-3 from the vha-6 promoter, a well-charac-

terized intestinal promoter (Oka et al., 2001). Transgenic worms

expressing Pvha-6::HRG-3::mCherry revealed strong HRG-

3::mCherry localization in extraintestinal tissues including coelo-

mocytes, the pseudocoelom, gonadal sheath cells, and the

uterus (Figure 3C). Within intestinal cells, HRG-3::mCherry signal

was observed as distinct cytoplasmic vesicles that colocalized

with mannosidase::GFP (Mans-GFP), a protein that localizes to

the Golgi (Figure 3D). However, unlike HRG-3::mCherry, expres-

sion of Mans-GFP from the vha-6 promoter showed no extrain-

testinal localization (Figure 3D). Taken together, these results

strongly suggest that HRG-3 is secreted from the intestinal cells

into the pseudocoelom for uptake by extraintestinal tissues.



Figure 2. hrg-3 Is Required for Early Development under Low Heme

(A) hrg-3 contains three exons. The deleted region in tm2468 allele is depicted by an underline. Open rectangles, exons; gray boxes, untranslated regions; +1,

transcription start site.

(B) RT-PCR was performed using the primer set shown as arrows in Figure 2A on total RNA extracted from the hrg-3 (tm2468) and N2 (wild-type control) worms

grown at low heme.

(C) hrg-3 mutants and their wild-type broodmates were fed with heme-deficient strain RP523 grown at the indicated heme concentrations. Percentage of

unhatched embryos were scored following incubation at 20�C for 24 hr. Error bars indicate the SEM from three individual experiments. *p < 0.001 compared with

wild-type broodmate controls under the same condition.

(D)Worm strainswere grown onRP523 for two subsequent generations. F1wormswere sorted byCOPASBioSort. Time of flight and extinction indicate the length

and the optical density of worms, respectively.

(E) Progeny grown on RP523 with 1 and 50 mM heme were imaged at day 6 and day 3 post-hatching, respectively. Representative images of gravid adults in

controls and the arrested larvae of hrg-3 mutants are shown. Scale bar, 20 mm.
HRG-3 Is Specifically Targeted to the Secretory Pathway
To determine whether HRG-3 is a membrane-anchored protein

within an exosome or a soluble secreted protein, we synthesized

truncated variants of HRG-3 that were tagged at the C terminus

with GFP. Expression of HRG-3-GFP in HEK293, a human

kidney cell line, resulted in perinuclear localization. To examine

the membrane orientation of HRG-3, we conducted fluores-

cence protease protection (FPP) assays (Lorenz et al., 2006). In

this procedure transfected cells are sequentially exposed to

digitonin to permeabilize the cells, followed by protease diges-

tion to cleave cytoplasmic-located proteins. For example, the

membrane protein prototype, CFP-CD3d-YFP, which is targeted

to the endoplasmic reticulum (ER), contains a cytoplasmic YFP

domain that is susceptible to protease digestion compared to

the lumenal CFP domain, which remains intact (Figure 3E, upper

panels). We found that HRG-3-GFP in transfected cells was not

digested by the protease treatment, a result that was reproduc-

ible when the N-terminal 29 amino acids of HRG-3 (HRG-3N)
were expressed as a YFP fusion protein (Figure 3E). These

results indicate that the C terminus of HRG-3 is protected from

protease digestion and is not cytoplasmic.

To further identify the location of HRG-3 and the function of the

N-terminal region, we synthesized truncated forms of HRG-3.

Ectopic expression of these fusion proteins in HEK293 cells re-

vealed that full-length HRG-3 and HRG-3N colocalized with the

Golgi marker b 1,4-galactosyltransferase (GalT)-CFP, consistent

with the localization of HRG-3 in the C. elegans intestinal cells

(Figure 3F). However, deletion of the first 29 amino acids

(HRG-3DN) resulted in a cytoplasmic localization, indicating

that this N-terminal region is necessary for targeting HRG-3 to

the secretory pathway. The localization of HRG-3 was not due

to a large fluorescent protein tag because an HA epitope-tagged

HRG-3 also colocalized with the GalT marker (Figure 3F, right

panel), and coexpression of HRG-3-YFP and HRG-3-HA in the

same cell resulted in both proteins colocalizing with the GalT

marker (not shown).
Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc. 723



Figure 3. HRG-3 Is Secreted from the Maternal Intestine

(A) IQ8031 harboring the transcriptional reporter Phrg-3::GFPwas maintained at 2 mM heme in axenic mCeHR-2 medium. Arrow indicates GFP expression in the

intestine. Scale bars, 20 mm.

(B) Transgenic worms with the translational reporter Phrg-3::HRG-3::YFPwere grown at 2 mMheme in axenic mCeHR-2 medium. YFP localization was examined

at day 4 by confocal microscopy. Arrowhead, Golgi apparatus in the intestine; Arrow, coelomocytes. Scale bars, 10 mm.

(C) HRG-3::mCherry was expressed using an intestine-specific vha-6 promoter and analyzed by confocal microscopy. HRG-3::mCherry was observed in

coelomocytes (C), pseudocoelom (P), gonads (G), and uterus (U). Scale bars, 20 mm.

(D) The HRG-3::mCherry transgenic strain was crossed into strain RT1315, which expresses the Golgi-localizedmannosidase (Mans)-GFP fusion protein. Images

from these double transgenic worms were acquired by confocal microscopy. Arrowhead, Golgi apparatus in the intestine; Arrow and C, coelomocytes. Scale

bars, 5 mm.

(E) Fluorescence protease protection assays in transfected HEK293 cells treated with digitonin and proteinase K. Time-lapse imageswere acquired in live cells by

epifluorescence microscopy. Scale bars, 10 mm.

(F) Fluorescence (YFP) and immunofluorescence (HA) analyses of HRG-3 constructs in HEK293 cells. Galactosyltransferase (GalT)-CFP was used as a Golgi

marker. Scale bars, 10 mm.

(G) Immunoblots of HRG-3 constructs. Left panel shows western blots of HRG-3 proteins expressed in HEK293 cells and probed with GFP antibody. Right panel

shows the western blot of HRG-3-HA expressed either in HEK293 cells (lane 5) or in an in vitro transcription and translation system (IVT, lane 6) and probed with

a HA antibody. The size difference between HRG-3-GFP (lane 1) and HRG-3DN::GFP (lane 2, top band) is�0.4 kDa and between HRG-3N-GFP (lane 3) and GFP

(lane 4) is <0.1 kDa. Lane 2 contains HRG-3 fusion protein (asterisk) and a smaller degradation product.

See also related Figure S2.
To examine whether the N terminus is cleaved or retained in

HRG-3, transfected HEK293 cell lysates were subjected to anal-

ysis by SDS-PAGE and immunoblotting. The full-length HRG-3

and the HRG-3DN proteins were found to be equivalent in size

(Figure 3G, lanes 1 and 2). Correspondingly, expression of

HRG-3N-GFP resulted in a protein that was indistinguishable

from GFP alone in size, suggesting that the N-terminal hydro-

phobic region is cleaved to produce the mature HRG-3-GFP

protein (Figure 3G, lanes 3 and 4). To verify this result, we

compared the molecular weight of HRG-3 that was generated

either by in vitro transcription and translation or by transfecting

HEK293 cells. Immunoblotting with anti-HA antibody revealed

that the in vitro generated protein had a larger molecular weight,
724 Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc.
corresponding to the retention of the 25 amino acid leader

peptide (Figure 3G, lanes 5 and 6). These observations suggest

that the N-terminal portion of HRG-3 may be processed and

removed in the mature protein.

Specific Regulators of the Secretory Pathway Direct
HRG-3 Trafficking
To identify the membrane-trafficking components that regulate

HRG-3 secretion from the intestine, we used RNAi-mediated

depletion of 45 genes that encode regulators of endocytosis

and secretion (Table S1) (Balklava et al., 2007). We found

that depletion of 15 trafficking factors caused HRG-3::mCherry

to either accumulate within the maternal intestine (vha-1) or



Table 1. Regulators of Membrane Trafficking that Affect

HRG-3-mCherry Expression and Localization

Gene IDa Name

Expression of HRG-3-mCherry

Intestine Embryo Extraintestinal

K02D10.5 snap-29 Increased Increased nc

T20G5.1 chc-1 Increased Increased nc

Y49A3A.2 vha-13 Increased nc nc

Y113G7A.3 sec-23 Increased Increased Lumenal

F12F6.6 sec-24.1 Increased Increased nc

R10E11.8 vha-1 Increased nc nc

Y25C1A.5 — Increased na Lumenal

T01H3.1 vha-4 Increased nc nc

ZK970.4 vha-9 Increased nc nc

F59E10.3 — Increased na Lumenal

R10E11.2 vha-2 Increased nc nc

Y55H10A.1 vha-19 Increased nc nc

ZK180.4 sar-1 Increased nc nc

F38E11.5 — Increased na Lumenal

T14G10.5 — Increased nc nc

na: these worms did not develop to the gravid stage.

nc: no change.
a List of positive genes compiled from Table S1.
mislocalize in extraintestinal tissues (sec-23) or embryos

(sec-24.1) (Table 1 and Figure 4A). The majority of these candi-

date genes encoded for protein subunits that formed vesicle

coatomer and vacuolar ATPase complexes (Table S1).

To determine whether HRG-3 secretion was tissue

dependent, we ectopically expressed hrg-3::mCherry in the

hypodermis, specialized epithelial cells in C. elegans, using the

dpy-7 promoter (Rolls et al., 2002). Transgenic worms express-

ing Pdpy-7::HRG-3::mCherry revealed HRG-3::mCherry signal

within cytoplasmic puncta in the hypodermis and in extrahypo-

dermal cells including coelomocytes, the pseudocoelom, and

the uterus (Figure 4B and Figure S3). As observed for the regula-

tion of HRG-3 trafficking in the intestine, HRG-3 secretion from

the hypodermis was also regulated by general membrane-

trafficking components (Figure 4A versus Figure S3). Collec-

tively, these results indicate that HRG-3 trafficking is mediated

by general regulatory factors within the secretory pathway and

is cell-type independent.

To examine whether HRG-3 secretion was dependent on

organismal heme levels, we generated transgenic worms that

expressed hrg-3::YFP under the control of the inducible

hsp-16.2 promoter, which is strongly expressed in the intestine

and induced in response to heat shock. HRG-3::YFP accumu-

lated in the coelomocytes, which is indicative of secretion from

the intestine, within 60 min after induction and continued to

accumulate over time (Figures 4C and 4D). Importantly,

Phsp-16.2::HRG-3::YFP transgenic worms accumulated similar

amounts of HRG-3::YFP irrespective of heme concentrations in

the growth medium (Figure 4E). We were unable to examine

HRG-3::YFP secretion in worms grown at <1 mM heme because

these animals were severely growth retarded.
To directly demonstrate that maternal HRG-3 is deposited

within the embryo, we analyzed Pvha-6::HRG-3::mCherry

mosaic transgenic worms in which the transgene was

maintained as an extrachromosomal array with a transmission

efficiency of �60%. Thus, P0 mothers that express HRG-

3::mCherry will lay F1 progeny that either express or lack the

transgene (Figure 4F). Remarkably, 100%of F1 embryos isolated

from transgenic mothers were positive for HRG-3::mCherry even

though 40% of these embryos did not express the transgene.

HRG-3::mCherry was visible at the time of gastrulation and

detectable up to the mid-larval stages (L2 and early L3). Impor-

tantly, 100% of the F2 progeny, derived from nontransgenic

HRG-3::mCherry-positive F1 mothers, lacked any detectable

HRG-3::mCherry signal and the transgene (Figure 4F). These

results confirm that maternal HRG-3 is transferred to all embryos

irrespective of the zygotic genotype.

Maternal HRG-3 Rescues the Growth Phenotypes
Our studies reveal that although hrg-3 is expressed in the intes-

tine, hrg-3 loss-of-function mutants show embryonic lethality

and growth retardation in the F1 generation when grown under

heme-insufficient conditions. These phenotypes could be due

to HRG-3 deficiency either in P0 mother, in the F1 embryo, or

both. To answer this question, we created a Phrg-3::HRG-

3::ICS::GFP construct in which hrg-3 and gfp were under the

control of a single hrg-3 promoter but were separated by the

SL2 intercistronic sequence (ICS) from rla-1 (Figure 5A). In

C. elegans, the HRG-3::ICS::GFP transgene is transcribed as

a single polycistronic mRNA but yields two separate proteins:

HRG-3 and GFP. Thus, GFP fluorescence is indicative of trans-

gene expression (Figure 5A). Size and optical density analysis

of stably transformed worms using a COPAS Biosort provided

data that demonstrated that hrg-3 expression fully rescues the

severe growth phenotype in the F1 progeny in hrg-3-deficient

worms in the presence of low heme (Figure 5B).

To confirm that intestinal HRG-3 is crucial for heme delivery to

extraintestinal tissues, we used targeted gene rescue by ex-

pressing hrg-3 under the control of the intestine-specific vha-6

promoter. Unlike the hrg-3 promoter the vha-6 promoter is not

heme regulated. Furthermore, to distinguish between maternal

versus zygotic expressed HRG-3, we analyzed mosaic trans-

formants in which the transgene transmission efficiency was

�40%. Thus, only P0 mothers that express HRG-3::ICS::GFP

will lay progeny that either lack hrg-3 or express hrg-3 as an

extrachromosomal array. As expected, in the presence of low

heme, >30%embryos from hrg-3 loss-of-functionmothers failed

to hatch and larvae that did hatch were growth arrested at the L1

stage. By contrast, <2% of embryos remained unhatched from

P0 mothers expressing the hrg-3 transgene (Figure 5C). Impor-

tantly, a significant proportion of hatched embryos derived

from hrg-3-expressing mothers continued to grow past the L2

stage, even though these larvae did not express hrg-3 (Figure 5D

and Figure 5E, center and right panels). hrg-3-expressing

embryos derived from crosses between hrg-3 loss-of-function

mothers and HRG-3::ICS::GFP males were growth arrested.

Only 2 out of 65 F1 progeny grew beyond the initial larval stages

(Figures 5F and 5G). These data strongly suggest that targeted

expression of hrg-3 from the maternal intestine is necessary
Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc. 725



Figure 4. Regulators of the Secretory Pathway Direct HRG-3 Trafficking from the Maternal Intestine into the Embryos

(A) Depletion of candidate genes, selected from Table 1, alters HRG-3::mCherry expression in the intestine. RNAi against sec-23 and sec-24.1 resulted in

accumulation of HRG-3::mCherry in the intestinal lumen (arrows) and the embryos (arrowheads), respectively. Asterisks indicate the increased HRG-3-mCherry

level in the intestine due to vha-1 depletion. C, coelomocytes. Scale bars, 20 mm.

(B) HRG-3::mCherry was expressed using a hypodermis-specific dpy-7 promoter. Confocal images of the same cross-section but different focal planes are

shown to distinguish hypodermal cells from coelomocytes (C). Pdpy-7::HRG-3::mCherry construct is not expressed in the intestine (I). Arrowhead, Golgi

apparatus in the hypodermis; Arrows, coelomocytes. Scale bar, 10 mm.

(C)C. elegans expressing HRG-3::YFP under control of the hsp-16.2 promoter were heat shocked at 37�C for 30min and then transferred to 20�C for 0, 30, 60, or

180 min. Representative confocal images of YFP and DIC are shown. Dotted circles in the first two images and arrows indicate the position of coelomocytes.

Scale bars, 20 mm.

(D) Quantification of HRG-3::YFP secretion from the intestine by measuring accumulation in coelomocytes at different time points after a 30min induction by heat

shock. Asterisks indicate that this group is statistically different from any other groups (p < 0.001). Error bars indicate SEM from two independent experiments.

(E) Worms carrying Phsp-16.2::HRG-3::YFP grown on RP523 bacteria supplemented with 1, 4, or 20 mM heme for 72 hr were heat shocked at 37�C for 30 min.

Worms were transferred to 20�C for 60 min and YFP intensity in coelomocytes was quantified and normalized to the coelomocyte volume. ns, not significant

(p > 0.05). Error bars indicate SEM from two independent experiments.

(F) Progeny derived from Pvha-6::HRG-3::mCherry mosaic transgenic worms with a transmission efficiency of �60% were analyzed by epifluorescence

microscopy for two successive generations. Representative images of transgenic (tg) and nontransgenic (non-tg) L1 larvae are shown. Numbers represent the

percentage of segregating progeny that contain the HRG-3::mCherry transgene. Although 100% of the embryos were positive for HRG-3::mCherry, in each

generation only �60% of the L1 progeny were transgenic. A hallmark of these transgenic worms was the accumulation of HRG-3::mCherry in coelomocytes

(arrows). Scale bars, 20 mm.Genotypes were confirmed in single worms by PCR amplification of the mCherry transgene using genomic DNA template (top panel).

See also related Figure S3.
and sufficient for embryonic development even when environ-

mental heme is limiting.

hrg-3 Mutant Embryos Have Reduced Heme Levels
Our results support a role for HRG-3 in heme delivery from the

maternal intestine to oocytes. Based on this evidence, we postu-

lated that when HRG-3 is available in limited quantities, greater

heme accumulation would be found in the maternal intestine

and a corresponding heme deficiency would exist in the devel-
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oping embryos compared to wild-type worms. To estimate

heme levels in these tissues, we crossed the heme sensor strain

IQ6011 (Phrg-1::GFP) with hrg-3 null mutants (Rajagopal et al.,

2008; Severance et al., 2010; Sinclair and Hamza, 2010). The

resulting IQ8011 gravid worms had reduced GFP levels in the

intestine compared to IQ6011 worms (control) when grown in

medium containing 1.5 or 2 mM heme (Figure 6A). Embryos

derived from these mothers showed reproducibly higher levels

of GFP, compared to wild-type controls (Figure 6B). As the



Figure 5. Maternal Expression of hrg-3 Is Sufficient to Rescue the Early Embryonic Growth Phenotype
(A) hrg-3 and gfpwere expressed using a single hrg-3 promoter but were separated by the intercistronic sequence (ICS) from rla-1. Introduction of this construct

into hrg-3 null mutant restored the growth of F1 progeny at low heme. Progeny grown on RP523 with 1 mM heme were photographed at day 6 post-hatching.

Representative images of arrested or rescued F1 worms are presented. Scale bar, 20 mm.

(B) Worm strains were grown on RP523 with 1 and 50 mM heme for two subsequent generations. The sizes of the F1 worms were measured by COPAS BioSort.

Time of flight and extinction indicate the length and the optical density of worms, respectively.

(C) The HRG-3::ICS::GFP construct (hrg-3ec) was expressed using an intestinal-specific vha-6 promoter. A transgenic strain with �40% transmission efficiency

was crossed to the hrg-3 mutant. GFP-expressing mothers gave rise to >98% live progeny at low heme. Error bars indicate the SEM from three individual

experiments. *p < 0.05 compared with hrg-3 mutant under the same condition.

(D) hrg-3 mutant worms with or without hrg-3ec construct were grown on RP523 with 1 mM heme for one generation. Their progeny were maintained under the

same condition for 5 days. Representative images of the arrested and rescued progeny are presented. ‘‘tg’’ and ‘‘non-tg’’ denote whether the hrg-3 null mutants

express or lack hrg-3ec construct, respectively. Scale bars, 20 mm.

(E) Progeny from Figure 5D were sorted based on size (extinction) and transgene (GFP) by COPAS BioSort.

(F) HRG-3::ICS::GFPmales were crossed with hrg-3mutant hermaphrodites that had been grown on RP523 supplemented with 1 mM heme for one generation.

The F1 heterozygous progeny were maintained at the 1 mM heme for 5 days. Representative images of the arrested progeny are shown. Scale bars, 20 mm.

(G) F1 progeny from (F) were sorted based on size (extinction) and transgene (GFP) by COPAS BioSort.
heme status is inversely correlated with the GFP expression in

heme sensor worms, these results suggest that deletion of

hrg-3 results in increased heme levels in the maternal intestine

and reduced heme levels in the embryos. The modest differ-

ences in embryonic GFP levels between wild-type and hrg-3

embryos could be due to incomplete penetrance of the embry-

onic lethal phenotype (�40%; Figure 2C and Figure 5C) and

environmental modifiers such as nutrient heme (Figure 2C).

The consistently higher GFP (�5 fold) content in the intestine

of the mother compared to the embryo could be attributed

to the endoreduplication of chromosomes and multi-nucleation

of the intestinal cells during worm development (Hedgecock

and White, 1985). Taken together, our results show that HRG-3
deficiency causes perturbation of heme homeostasis in the

maternal intestine and the embryo.

HRG-3 Is a Heme-Binding Protein
Although the genetic and cell biology data are compelling in

demonstrating that HRG-3 is involved in trafficking of heme

from the maternal intestine to eggs, the data do not discriminate

between direct or indirect functions of HRG-3 in heme homeo-

stasis. To determine whether HRG-3 directly interacts with

heme, we synthesized the mature secreted form of HRG-3 and

measured its ability in vitro to bind heme. Pure HRG-3 is readily

soluble in weak acidic solutions but becomes less soluble and

gradually precipitates at neutral pH. However, addition of ferric
Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc. 727



Figure 6. Maternal-to-Embryonic Heme Transfer Is Perturbed in

hrg-3 Mutant Worms

(A) The IQ8011 (hrg-3; Phrg-1::GFP) strain was generated by crossing the

hrg-3mutant into the heme sensor IQ6011 strain. Both strains weremaintained

in axenic mCeHR-2 medium with the indicated heme concentrations for

4 days. GFP levels were measured by fluorimetry in protein lysates prepared

from the gravid adults. Error bars indicate the SEM from four individual

experiments. *p < 0.01 compared with hrg-3 mutants under the same

conditions.

(B) IQ6011 and IQ8011 worms were maintained in axenic mCeHR-2 medium

with the indicated heme concentrations for 4 days. F1 embryos obtained by

bleaching the gravid adults were homogenized and GFP levels measured by

fluorimetry. Error bars indicate the SEM from four individual experiments.

(C) Absorption spectra of HRG-3 peptide in the presence or absence of heme,

and free heme alone in buffer without added HRG-3. Heme-bound HRG-3

displays an absorbance peak at �416 nm, which is clearly shifted in both

wavelength and intensity from that of free heme.

(D) Absorption spectra of HRG-3 peptide in the presence of ferric or ferrous

heme. Increasing amounts of HRG-3 were added to 9 mM ferric heme or

ferrous heme (in the presence of dithionite), and the absorbance was moni-

tored at 415 nm or 441 nm, respectively.

(E) The proposed model of HRG-3 as a heme chaperone. Heme deficiency

induces the expression of HRG-1 and HRG-4, membrane-bound permeases

that import heme (red cross) into the intestine, and HRG-3, which is secreted

from the intestine into the circulatory system (pseudocoelom) for heme

delivery to extraintestinal cells.
protoheme to a solution of soluble HRG-3 at pH 7.0 resulted in

a distinct spectroscopic peak at 416 nm (Figure 6C), whereas

addition of ferrous protoheme resulted in a peak at 441 nm
728 Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc.
(not shown). These peaks are shifted and distinct from those of

the free heme, indicating that heme is definitively binding

HRG-3. Although we were unable to obtain an accurate associ-

ation constant spectroscopically because the binding affinity of

HRG-3 for heme was weak, titration of both ferric and ferrous

heme revealed that, regardless of oxidation state, heme binds

to HRG-3 at a stoichiometry of 1:2 (heme:protein) (Figure 6D).

Notably, the soluble heme-bound HRG-3 slowly precipitates

over several hours as a bright red complex, indicating that the

precipitated protein remains bound to heme with significant

affinity.

DISCUSSION

As a heme auxotroph, embryonic and postembryonic develop-

ment in C. elegans is dependent on either maternal heme

deposition (Figure 1A, upper panel) or larval heme acquisition

(Figure 1A, lower panel). Our results uncover the crucial role of

HRG-3 in maintaining embryonic heme homeostasis and its

interdependence with maternal heme status (Figures 2C–2E

and Figures 5C–5E). C. elegans acquires environmental heme

through the coordinated functions of HRG-1 membrane-bound

heme permeases located in the intestine (Rajagopal et al.,

2008). Because a hermaphrodite worm has 959 somatic cells

of which 20 are polarized intestinal cells (McGhee, 2007), the

question remaining is how do extraintestinal cells acquire

heme? We postulate that this is partly accomplished through

HRG-3, which we have shown above is likely to be an intercel-

lular heme chaperone (Figure 6E). HRG-3 is transcriptionally

upregulated in response to heme insufficiency and secreted by

the maternal intestine into the pseudocoelom, the worm’s circu-

latory system, for mobilization of heme to extraintestinal tissues

including the gonads and uterus. In the absence of HRG-3, heme

accumulates in the intestine of gravid adults, whereas the

embryos are heme deficient resulting in embryonic lethality or

growth arrest immediately after the embryos hatch.

When and how does HRG-3 transfer heme to the embryo?

In C. elegans, oocyte fertilization results in a rapid assembly of

a trilamellate chitinous eggshell by the time pseudocleavage of

the one-cell embryo occurs (Johnston et al., 2006). The eggshell,

which surrounds the developing embryo until hatching, provides

a mechanical and osmotic barrier and ensures that early devel-

opmental events occur (Johnston et al., 2006). Given the imper-

vious nature of the eggshell matrix to environmental factors, we

speculate that heme deposition by HRG-3 must occur during

oocyte maturation and prior to fertilization. This maternal-to-

oocyte trafficking of heme exhibits striking similarity with the lipid

transport pathways by vitellogenins, the major yolk precursor

proteins. C. elegans contains six vitellogenins that are produced

by the maternal intestine to bind lipids and translocated to the

gonads via the pseudocoelom for yolk deposition in oocytes

(Blumenthal et al., 1984; Kimble and Sharrock, 1983; Spieth

and Blumenthal, 1985). However, unlike vitellogenins that are ex-

pressed only in the adult hermaphrodite (Blumenthal et al., 1984),

hrg-3 is expressed during all developmental stages in both

hermaphrodites and males (Figure S2). HRG-3 may, therefore,

play a more extensive role than vitellogenins by mobilizing

heme from intestinal cells to tissues other than embryos. Indeed,



HRG-3-deficient F1 larvae are growth arrested in the presence of

low heme, implying that, in addition to in utero development that

can be rescued by maternal HRG-3, sustained hrg-3 expression

in the larvae is essential for postembryonic development.

A similar pathway may also exist for other metals such as zinc,

which has been recently demonstrated to regulate meiotic matu-

ration of mammalian oocytes and early embryonic development,

implicating a role for zinc in the maternal legacy from egg to

embryo (Kim et al., 2010).

What are the cellular factors that regulate HRG-3 trafficking?

Of the 45 general regulators of membrane trafficking that were

recently identified from a genome-wide RNAi screen for modula-

tors of endocytosis and secretion of vitellogenin (Balklava

et al., 2007), RNAi depletion of 15 factors caused HRG-3 to

accumulate or mislocalize in both the intestine and hypodermis

(Table 1). Interestingly, these regulators broadly fall into two

categories—coatomer complex and vacuolar ATPase subunits.

HRG-3 trafficking and secretion may therefore be dependent

on assembly of vesicles and its acidification. Although maternal

HRG-3 persists from embryonic to larval stages, just like vitello-

genin (Chotard et al., 2010), HRG-3 is not part of the vitellogenin

complex because RNAi depletion of all six vitellogenins did not

alter HRG-3 secretion and trafficking (not shown). There are

several examples of maternal contributions to the embryo that

persist and function at later stages of development. For example,

maternal cyclin E, a cell-cycle checkpoint regulator, controls

G1/S progression and coordinates cell proliferation and differen-

tiation in C. elegans (Brodigan et al., 2003; Fay and Han, 2000).

Maternal cyclin E is sufficient to regulate G1 cell-cycle progres-

sion until the L3/L4 larval stages; cell-cycle defects only become

apparent when the maternal protein is exhausted in the F1
progeny.

Our biochemical studies demonstrate that the mature pro-

cessed HRG-3 protein binds both ferrous and ferric heme with

an apparent stoichiometry of two protein and one heme moiety.

The spectroscopic data are consistent with a five coordinate

high spin heme and reproducible by electron paramagnetic

resonance spectroscopy (A.N. Albetel, M.K. Johnson, H.A.D.,

and I.H., unpublished data). We propose that heme transfer by

HRG-3 to target sites may be dependent on affinity gradients,

as has been demonstrated for intracellular copper chaperones.

Copper transfer is thermodynamically favored from low- to

intermediate- to high-affinity sites driven by intracellular metallo-

chaperones; the hierarchy of copper binding among specific

chaperones is governed by fast metal transfer, specific

protein-protein recognition, and cellular compartmentalization

(Banci et al., 2010).

Although intercellular transport of iron by the transferrin-

transferrin receptor complex has been well documented, several

lines of evidence also support the existence of an intercellular

heme transport pathway in vertebrates. First, even though

knockout of the heme synthesis pathway in mice is embryonic

lethal, homozygous embryos survive at least until embryonic

day (E) 3.5, suggesting the existence of heme stores (Magness

et al., 2002; Okano et al., 2010). Second, zebrafish embryos

with loss-of-function mutations in heme synthesis genes can

survive from 10–25 days post-fertilization (Childs et al., 2000;

Dooley et al., 2008), plausibly because these embryos may
contain either maternal-derived mRNA for heme synthesis

enzymes or direct deposition of maternal heme. Third, human

patients with acute attacks of porphyrias, genetic diseases due

to defects in heme synthesis enzymes, are administered heme

intravenously as an effective therapeutic treatment, which

results in reduction of heme synthesis intermediates and

a concomitant increase in liver heme-dependent enzyme

activities for cytochrome P450 and tryptophan 2,3-dioxygenase,

indicating that infused heme in the blood stream is utilized in toto

by peripheral tissues (Puy et al., 2010; Bonkovsky et al., 1991).

Lastly, cell culture studies with human colon-derived Caco-2

cells and mouse macrophages reveal that a portion of heme,

derived from dietary sources or senescent red blood cells, is

released into the blood stream as an intact metalloporphyrin

(Knutson et al., 2005; Uc et al., 2004). A potential candidate for

an intercellular heme delivery protein would be hemopexin,

which scavenges heme with an apparent dissociation constant

(KD) �10�15 M and clears it from the circulatory system (Hrkal

et al., 1974). The heme-hemopexin complex binds to the LRP/

CD91 receptor and is endocytosed, and the majority of the he-

mopexin is degraded in the endo-lysosome of hepatocytes,

macrophages, and syncytiotrophoblasts (Hvidberg et al., 2005;

Tolosano et al., 2010). Surprisingly, hemopexin null mice are

viable and fertile and present no evidence of tissue damage

due to oxidative stress from abnormal heme and/or iron deposi-

tion under normal conditions; heme overload and hemolytic

damage, however, cause tissue damage in thesemice (Tolosano

et al., 1999, 2010). We speculate that a functional homolog of

HRG-3 may also exist in vertebrates as an alternate pathway

to facilitate the targeted delivery and redistribution of heme

between tissues and specific cell types and maintain systemic

heme homeostasis.

Even though heme uptake and transport pathways are clearly

conserved across metazoans (Severance and Hamza, 2009),

heme auxotrophic organisms, such as C. elegans and parasitic

helminthes, are crucially dependent on these pathways for utili-

zation of environmental heme for growth and reproduction (Rao

et al., 2005). Helminths affect more than a quarter of the world’s

population (Chan et al., 1994; Hotez et al., 2008) and cause tens

of billions of dollars of loss in animal and plant production annu-

ally (Fuller et al., 2008; Jasmer et al., 2003). Moreover, anthel-

minthics are becoming less effective in humans and livestock

because of rampant drug resistance (Fuller et al., 2008; Jasmer

et al., 2003). We propose that an excellent anthelminthic target

would be the HRG-3-mediated pathway for transporting heme

to developing oocytes, especially in parasites such as hook-

worms, which infect more than a billion people worldwide and

feed on host red blood cell hemoglobin (Held et al., 2006;

Wu et al., 2009).

EXPERIMENTAL PROCEDURES

Worm Growth Assays on RP523

The heme-deficient E. coli strain RP523 was maintained in liquid LB medium

supplemented with 1 mM heme at 37�C (Li et al., 1988). To prevent unequal

growth of the RP523, overnight cultures were diluted into fresh medium with

different concentrations of heme, grown for 5.5 hr, and heat inactivated at

65�C for 2–5 min. A 0.2 optical density (OD) 600 of bacteria was seeded on

each 35 mm nematode growth medium (NGM) agar plate. Synchronized L1
Cell 145, 720–731, May 27, 2011 ª2011 Elsevier Inc. 729



larvae of hrg-3 (tm2468) allele and its wild-type broodmates were placed onto

RP523 plates and incubated at 20�C for 3–5 days. Five gravid hermaphrodites

from each plate were allowed to lay eggs for 12–16 hr on a new RP523 seeded

plate. The embryos that did not hatch after 24–32 hr were considered dead.

The growth of F1 larvae was scored when the wild-type worms reached young

adult stage. Those larvae that did not progress past L2 stage were considered

growth arrested. DIC images were acquired on the F1 worms when the wild-

type broodmates reached gravid stage.
Worm Analysis with COPAS BioSort

Nematodes from plates containing RP523 were frozen when worms reached

gravid stage. Worms from each sample (�100) were analyzed for length (time

of flight) and optical density (extinction) by using a COPAS BioSort (Union

Biometrica, Holliston, MA, USA). Gating parameters of time of flight 30–800

and extinction 15–800 were set by using synchronized L1s and mixed

worm populations. Raw data outside this range were filtered to exclude

particulates and bubbles. For rescue experiments, hrg-3 mutants expressing

Phrg-3::HRG-3::ICS::GFP (integrated) or Pvha-6::HRG-3::ICS::GFP (extra-

chromosomal array) were generated by genetic crosses. For zygotic rescue

experiment, hrg-3 mutants were grown on RP523 with 1 mM heme for one

generation, followed by crossing with male worms expressing Phrg-

3::HRG-3::ICS::GFP. The progeny were maintained at low heme for 5 days.

Both worm size and GFP intensity were analyzed using COPAS BioSort for

maternal and zygotic rescue experiments. The settings for GFP measure-

ments in the zygotic rescue experiments were gain = 3.5 and PMT voltage =

750 but for all other experiments the settings were gain = 3.0 and PMT

voltage = 600.
Maternal Transfer of HRG-3::mCherry

C. elegans transmitting the transgene Pvha6::HRG-3::mCherry with 60%

efficiency to its progeny were grown on NGM plates seeded with RP523

supplemented with 4 mM heme. Embryos from adult gravid worms either

with or without the transgene were released from the uterus using a needle.

These embryos were analyzed for mCherry expression using a Leica DMIRE2

inverted microscope and Simple PCI software. In parallel, transgenic P0 gravid

worms were individually picked onto new plates and allowed to produce F1
progeny and analyzed for mCherry expression by epifluorescence micros-

copy. These F1 worms were separated and grown till they lay F2 progeny,

which were analyzed for the mCherry transgene.
Fluorescence Protease Protection Assay

The procedure for fluorescence protease protection (FPP) assay was modified

from the protocol of Lorenz et al. (2006). HRG-3-GFP and control plasmid

pCFP-CD3d-YFP were transfected into HEK293 cells grown on Lab-Tek

chambered coverglass (Nunc). After 24 hr, the cells were washed with KHM

buffer (110 mM potassium acetate, 2 mM MgCl2, and 20 mM HEPES,

pH 7.3), and the cell chambers were moved to a DMIRE2 epifluorescence

microscope (Leica) connected to a Retiga 1300 cooled Mono 12-bit camera.

Time-lapse images were acquired before and after digitonin treatment

(30 mM digitonin/2 min) and following proteinase K (50 mg/ml) digestion.
Statistical Analysis

All data are presented as mean ± standard error of the mean (SEM). Statistical

significance was tested using one-way ANOVA followed by the Tukey-Kramer

Multiple Comparisons Test in GraphPad INSTAT version 3.01 (GraphPad,

San Diego, CA, USA). A p value of < 0.05 was considered as statistically

significant.

Additional material is available in the Extended Experimental Procedures.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, three

figures, and two tables and can be found with this article online at doi:10.1016/

j.cell.2011.04.025.
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