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ABSTRACT: A new method based on the differential evolution (DE) algorithm is proposed
for antenna-array pattern synthesis with prescribed nulls. The array excitation amplitudes are
the only controlling parameters, and the objectives are to synthesize array patterns with nulls
imposed on directions of interferences while keeping the sidelobe levels (SLLs) below pre-
scribed levels. Many factors such as the excitation dynamic range ratio, null depth level, null
width, and SLLs are taken into account in the synthesis. Simulation results of several typical
problems are compared with published results to illustrate the effectiveness of the proposed
method. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 14: 57–63, 2004.
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I. INTRODUCTION

Antenna-array pattern null forming and steering are
very important in many electronic communication
systems that function in strongly polluted electromag-
netic environments. Methods of null steering, which
have been studied extensively in the past, include
controlling (i) the excitation amplitude and phase, (ii)
the excitation amplitude only, (iii) the phase only, and
(iv) the position only of the array elements. Each of
the methods has its specific advantages and disadvan-
tages. Generally, the null-steering problem is cast as
an optimization problem, in which the excitation am-
plitudes, phases, and/or element positions are taken as
the optimization parameters. The objectives then are
to steer the nulls in the directions of interferences,
while keeping the SLLs below certain levels. In terms
of the search algorithms used for pattern nulling,
many classical algorithms, such as the gradient search
or steepest descent algorithm [1] and the minimax

approximation method [2], are used. These classical
algorithms usually need a starting point that is rea-
sonably close to the final solution. Thus, they are
extremely nearsighted and are usually trapped in a
local minimum. In recent years, genetic algorithms
(GAs) have been widely used in array-pattern nulling
[3–7]. Compared to the classical algorithms, GAs use
a population-based probabilistic search technique,
which provides a mechanism for global searches and
enables the ability to escape from local minima. How-
ever, GAs are usually very time-consuming, a disad-
vantage common to all genetic algorithms. More re-
cently, a modified touring ant colony optimization
(MTACO) algorithm was used in null steering [8] and
seems to be faster than GAs for null-steering prob-
lems.

On the other hand, the differential evolution (DE)
algorithm has been gaining acceptance recently, and
has already been applied to solve many challenging
engineering problems, such as electromagnetic in-
verse scattering [9–11] and magnetic bearings design
[12]. However, DE has rarely been applied in the area
of antennas. We have proposed the use of DE for the
suppression of sidebands in time-modulated antenna
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arrays [13], which is the first application of DE to
antennas that we are aware of. DE can be used to
overcome most of the drawbacks in GAs [9], and has
the following advantages. Firstly, DE gives all parent
individuals equal chance to generate the next gener-
ation, and there is no discrimination against the less fit
individuals. Secondly, the mutation is conducted by
mutating the parents with population-derived differ-
ence vectors, at the beginning of each evolution loop.
Thus, the destructive mutation in GAs can be avoided.
Finally, the competition between individual parent
and individual child takes place after crossover. Con-
sequently, all individuals in the current generation are
as good as or better than those in the previous gener-
ation.

In this article, the DE algorithm is employed to
synthesize array-pattern nulling by controlling the
excitation only amplitudes. The DE-simulated results
are also compared with those optimized by MTACO
in [8] and that by the standard binary-coded GA
(SGA) in [6]. Several examples are used to demon-
strate the advantages of DE over the widely used GA
array pattern-nulling synthesis.

II. PROBLEM STATEMENT

Consider a symmetric linear array of 2N uniformly
spaced isotropic elements which are controlled by
amplitude only, with the array broadside far-field pat-
tern given by

E�� � � 2 �
k�1

N

Akcos�2�d

�
sin ��, (1)

where d is the inter-element spacing, � is the angle
measured from broadside directions, and Ak is the
excitation amplitude for each element.

The essence of array-pattern synthesis with pre-
scribed nulls is to determine the optimum vector v �
{Ak} whose far-field patterns satisfy the required null
positions, null depth and null width, or even with
prescribed SLLs. Therefore, the array-nulling synthe-
sis problem can be cast into an optimization problem
in which a global optimization method (for example,
GA, MTACO, or DE) can be utilized. Generally, the
fitness or cost function description is a very critical
consideration when using global optimization meth-
ods. For amplitude-only array pattern nulling synthe-
sis, the cost function can be selected as

f�n��v�

� ��
i�1

M

wi�Ei
�n��v� � NLDi�2 � wM�1 � �SLLmax

�n� �v��2,

(2)

where n stands for the number of evolution genera-
tions, M is the total number of specified elevation
angles of interference sources, NLDi is the desired
null depth level for the ith interference source, SLLmax

is the calculated maximum SLL, and wi (i � 1, 2, . . .,
M�1) is the weight factors of each term. Instead of
adding another term in the cost function to control the
dynamic range ratio of the element excitations [8],
here, the excitation dynamic range ratio is directly
controlled by setting the search ranges of the variables
Ak (k � 1,2,. . .,N). The weight factors wi (i �
1,2,. . .,M � 1) is set to 0 if the corresponding Ei

(n) �
NLDi or SLLmax

(n) � SLLD (SLLD is the desired max-
imum SLL). All field quantities in eq. (2) are in
amplitude instead of dB.

III. DIFFERENTIAL EVOLUTION
ALGORITHM

As in the case with GAs, the DE algorithm also
belongs to a broad class of evolutionary algorithms
[14]. Following the procedures described in [9–11,
14], a detailed flowchart of the DE algorithm is shown
in Figure 1. As can be seen, DE operates on a popu-
lation with NPOP individuals, and each individual is a
symbolic representation of the vector consisting of the
NPAR optimization parameters. Moreover, DE also
operates using the three kinds of operators: mutation,
crossover, and selection; however, these are quite
different from those in GAs.

The mutation takes place first, and the mutant
vector vM,i can be generated according to

vM,i � v�n�,opt � ��v�n�,p1 � v�n�,p2�, i 	 p1 and i 	 p2,

(3)

where n is the generation index, i, p1, and p2 are three
randomly selected individual indices in the parent
population, and the superscript opt refers to the opti-
mal individual in the population. The real constant �
is the mutation factor. There are some other forms of
mutation schemes available [14]. Occasionally, some
genes (here, the optimization parameters) of the mu-
tant vector may exceed their search ranges. Although
some degree of freedom may be given such that the
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DE algorithm will find the correct solution when the
search ranges are set incorrectly, this will be harmful
to the convergence, and thus needs to be corrected.
One way to correct these foul genes is given by

�vM,i�j � �
�vM,i�j � Bi

2
, �vM,i�j 
 Ai

�vM,i�j � Ai

2
, �vM,i�j � Bi

, (4)

where j is the gene index, and Ai,Bi� is the search
range of the ith optimization parameter.

After mutation, the mutant vector is then mated
(via crossover) with its corresponding parent vector to
generate the child vector, according to

�vC,i�j � � �vM,i�j, � � pcross

�v�n�,i�j, otherwise, (5)

where the superscript C means children population, �
is a real random number in the range [0,1], and the
real constant pcross is the probability of crossover.
Moreover, if any genes of the child vector do not

inherit from the mutant vector (which means no evo-
lution happens), they will be modified accordingly.

Finally, the child vector and its corresponding par-
ent vector compete for the right to survive in the next
generation, depending upon who has the lower cost
function value. The complete iteration procedure
shown in Figure 1 indicates that DE is much simpler
than GAs, and its fast convergence and strong search
ability will be justified in the following linear array
pattern nulling synthesis examples.

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed
DE algorithm, this section presents the numerical
results calculated by DE in comparison with other
methods, such as the GA and MTACO. For compar-
ison, a linear array of 20 isotropic elements at half-
wavelength spacing is considered. The array excita-
tion amplitude is symmetric (NPAR � 15) and the
far-field patterns with single, multiple, and broad nulls
in the prescribed directions are to be synthesized by
the DE algorithm. Typical DE-simulation parameters
are set as follows: NPOP � 5NPAR, � � 0.6, pcross �
0.9. For comparison purposes, some of the examples
are also simulated by the real-coded GA (RGA)
method [15], which was shown to be superior to the
SGA for real parameter problems [15]. The RGA
simulation parameters are chosen as: NPOP � 200,
pcross � 0.8, and pmut � 0.1.

In the first example, the array pattern with a single
null at 14° and a constrained excitation dynamic range
ratio of 3.95 is considered. This example was calcu-
lated using MTACO [8] (see Fig. 4 in [8]). We do not
have a MTACO code; however, the excitations opti-
mized by MTACO were given in Table 1 in [8]. The
excitation dynamic range ratio for our DE simulation
was chosen as 1:0.254, which is the same as that of
Fig. 4 in [8]. For DE and RGA simulation, the desired
maximum SLL and the desired null depth were cho-
sen according to the MTACO simulated results of
�28.2 dB and �130.5 dB. Figure 2 shows the com-
parison of the far-field patterns among the DE-simu-
lated results, the RGA-simulated results, and the
MTACO-simulated results in [8]. As can be seen, all
of the three simulation results agree well on the null
positions, null depth, and SLLs. The actual DE- and
RGA-simulated SLLs/null depths are �28.3
dB/�138.8 dB, and �28.3 dB/�133.9 dB, respec-
tively. Typical convergence performances of the DE
and RGA simulations are compared in Figure 3, in
which DE converges much faster than RGA, with
only about 1/3 of the generations used in RGA sim-

Figure 1. Overall flowchart of the DE algorithm.
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ulation. In terms of the overall computational com-
plexity, which can be defined as the product of NPOP

and the total number of iterations, DE has much less
computational complexity than RGA.

For the simulation speed comparison between DE
and MTACO [8], the MTACO simulation takes about
4–7 min on a Pentium III 750-MHz PC [8]. The DE
simulation of the previous example only takes about
1–3 min on an older Intel Pentium 300-MHz PC, and
takes less than 1 min on a Pentium III 1.6-GHz PC.
Obviously, the DE simulation is also much faster than
MTACO for array-pattern nulling.

The second example is based on Fig. 6 in [8], in
which the array pattern has a null at 14° and a con-
strained SLL � �30 dB. The excitation dynamic
range ratio for the DE simulation is the same as that
used in MTACO [8], that is, 1:0.230. Figure 4 shows
the DE-simulated far-field patterns in comparison

with the MTACO simulated results in [8]. As can be
seen, the actual DE-simulated SLL/null depth are
�30.4 dB/�143.1 dB, which are better than the
MTACO results of �28.2 dB/�130.5 dB. The DE
simulation times are also less than 1 min on a Pentium
III 1.6-GHz PC.

The third example is based on Fig. 7 of [8], in
which the array pattern has a broad null sector cen-
tered at 30° with � � � 5°. The search range for the
DE simulation is the same as that used in MTACO
[8], that is, 1:0.230. Figure 5 plots the DE-simulated
array pattern. As compared with the MTACO results,
the DE-simulated pattern obtains the same spatial
range of about 5° centered at 30° for a null depth of
�64 dB, while maintaining the same SLL as that of
MTACO (�27 dB).

The fourth example is based on Fig. 9 of [8], in
which three nulls are imposed at 14°, 25°, and 40°.
Again, the search range for the DE simulation (1:

TABLE I. DE-Optimized Element Excitation Amplitudes for Figs. 2, 4–7

Element Numbers

Excitation Amplitudes

Figure 2 Figure 4 Figure 5 Figure 6 Figure 7

1, 20 0.286 0.252 0.243 0.205 1.0
2, 19 0.274 0.245 0.259 0.207 2.643
3, 18 0.329 0.322 0.477 0.352 4.255
4, 17 0.492 0.459 0.531 0.435 6.152
5, 16 0.638 0.627 0.602 0.578 8.223
6, 15 0.798 0.735 0.642 0.723 10.277
7, 14 0.844 0.877 0.866 0.800 12.174
8, 13 0.988 0.935 0.951 0.936 13.781
9, 12 0.970 0.989 0.919 1.0 14.943

10, 11 1.0 1.0 1.0 0.932 15.534

Figure 2. Comparison of the radiation patterns with one
null imposed at 14° among the results optimized by DE
(solid line), MTACO (dotted line), and RGA (dashed line).
Amplitude search range: 1:0.254.

Figure 3. Comparison of the convergence performance
between the DE algorithm (solid lines) and RGA (dotted
lines).
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0.202) is the same as that used in MTACO [8]. The
comparison between the DE-optimized array pattern
and the MTACO optimized pattern is shown in Figure
6. It is observed that the DE-optimized results are
better than the MTACO results, as the DE-optimized
pattern has a maximum SLL of �30 dB, with all
desired nulls lower than �90 dB.

Finally, the example based on Fig. 5 in [6] is
considered. This example synthesizes the 20-element
array pattern with nulls at nine interference directions,
respectively coming from the peak sidelobes of the
initial �30-dB SLL Chebyshev pattern, namely, at
10°, 14.5°, 20°, 26°, 32.5°, 40°, 48°, 58°, and 71.5°
[6]. The target is: SLLD � �30 dB, and NLDi � �60
dB (i � 1, . . ., 9). The DE search range for the current
amplitude is selected to be the same as that of [6], i.e.,

1:15.549. Figure 7 shows the array pattern compari-
son among the DE optimized result, the RGA opti-
mized result and the SGA optimized result in [6]. As
can be seen, the DE optimized pattern can satisfy the
more stringent target of SLLD � �30 dB and NLDi �
�65 dB (i � 1,. . .,9), while the RGA and SGA results
cannot meet the requirements of null depth below
�60 dB at most of the nine interference directions.
This example clearly demonstrates the strong search
ability of the DE algorithm over the RGA and SGA.
Figure 8 plots a comparison of the typical conver-
gence performances by the DE and RGA simulations
for this problem. It is observed that DE usually con-
verges at about 100 generations, while RGA cannot
converge with 10000 generations.

Figure 4. DE-optimized radiation pattern (solid line) with
one null imposed at 14° in comparison with the result by
MTACO (dotted line). Amplitude search range: 1:0.230.

Figure 5. DE-optimized radiation pattern (solid line) with
a broad null (�� � 5°) centered at 14° compared with the
result by MTACO (dotted line). Amplitude search range:
1:0.230.

Figure 6. DE-optimized radiation pattern (solid line) with
three nulls imposed at 14°, 25°, and 40°, compared with the
result by MTACO (dotted line). Amplitude search range:
1:0.202.

Figure 7. DE-optimized radiation pattern (solid line) with
nine nulls imposed at the peaks of a �30-dB SLL Cheby-
shev pattern, compared with the result by SGA (dotted line).
Amplitude search range: 1:15.549.
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For verification purposes, the DE-optimized ele-
ment excitation amplitudes for Figures 2, 4–7 are
summarized in Table I. Taking possible practical im-
plementations into consideration, the DE-optimized
amplitudes are truncated to three-digit accuracy only.
Note that the DE-optimized amplitudes are within the
search ranges of the respective examples cited from
[6] and [8]. The amplitudes for Figures 2, 4–6 are
normalized with respect to their respective maximum
values, while the amplitudes for Figure 7 are normal-
ized with respect to those of the edge elements.

V. CONCLUSION

A numerical approach based on the DE algorithm has
been proposed for efficient of antenna-array pattern
synthesis with prescribed nulls at the directions of
interferences, by controlling only the array element
excitation amplitudes. Numerical results in compari-
son with the published data have illustrated distinct
features of the DE algorithm over other algorithms
such as MTACO and GA, especially with regard to
search ability, robustness, fast convergence, and so
on. Although only linear antenna arrays have been
considered here, the DE algorithm can be applied to
arrays with complex geometry as well as nonisotropic
elements.
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