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Analysis of ferroresonance in a neutral grounding system

with nonlinear core loss
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The chaotic behaviour exhibited by a typical ferroresonant circuit in a neutral grounding system is investigated in

this paper. In most earlier ferroresonance studies the core loss of the power transformer was neglected or represented by

a linear resistance. However, this is not always true. In this paper the core loss of the power transformer is modelled by

a third order series in voltage and the magnetization characteristics of the transformer are modelled by an 11th order

two-term polynomial. Extensive simulations are carried out to analyse the effect of nonlinear core loss on transformer

ferroresonance. A detailed analysis of simulation results demonstrates that, with the nonlinear core loss model used,

the onset of chaos appears at a larger source voltage and the transient duration is shorter.
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1. Introduction

Ferroresonance is a nonlinear phenomenon that

often happens in power systems. In recent years the

number of ferroresonance accidents has increased due

to network complexity and the constant upgrading

of equipment efficiency.[1,2] Therefore, this nonlinear

phenomenon in RCL circuits[3−5] and power systems

has been intensively investigated.[6−11]

Ferroresonance is a complicated nonlinear phe-

nomenon, which is caused by magnetic saturation. It

originates from improper switching operation, routine

switching, or load shedding involving a high voltage

transmission line.[12] It could generate unpredictable

overvoltage and overcurrent. This may be harmful

to power systems. In addition, which kind of trans-

former model is used is an important problem in fer-

roresonance study. This problem has received much

attention. In Ref.[4] ferroresonance in an RCL series

electric circuit was investigated in order to strengthen

the effect of the magnetization phenomenon in the fer-

romagnetic core. In Ref.[5], the effect of different mag-

netization curves on the ferroresonance was discussed.

In Refs.[6–12] the chaotic behaviour of ferroresonance

in a power system was analysed. However, in Refs.[6–

11] the core loss of the transformer was taken as a

linear resistance. In order to increase the accuracy in

ferroresonance study, a dynamic core loss is adopted

in Refs.[12, 13], which makes the results more accu-

rate. Investigated in the present paper is the general

chaotic behaviour of a typical ferroresonant circuit in

a neutral grounding system with nonlinear core loss.

2. System modelling

In neutral grounding systems, a typical configura-

tion of a substation prone to ferroresonance is shown

in Fig.1,[7] where D0 is the coupling breaker of the bus,

D1 and D2 are circuit breakers, Ds is the disconnect

switch, PT1 and PT2 are the potential transformers

(PTs) connected to the bus, and VT1 and VT2 are

the voltage transformers (VTs). When the ferrores-

onance is at onset, because the connecters and dis-

connect switches are all open, the voltage transform-

ers are not in the ferroresonant circuit. Figure 2 is a

Thevenin equivalent ciucuit of Fig.1. In this study, the

PT is modelled as a nonlinear flux-controlled induc-

tance L2, and the nonlinear resistance R2 represents

core loss of PT. Furthermore, R1 and L1 represent the

resistance and leakage inductance of primary winding.

C is a Thevenin equivalent capacitance of grading ca-

pacitance of the circuit breaker and phase to ground

capacitance. For very high currents the ferromagnetic

core might be driven into saturation where the flux-

current characteristic is modelled as a polynomial[5]

iL = aϕ + bϕn, (1)
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where ϕ denotes the flux in the nonlinear inductance

L2 and n = 11.

Fig.1. Typical ferroresonance circuit.

The core loss nonlinearity is modelled in the same

way as described in Ref.[13]. A third-order polynomial

given below is adequate for matching the nonlinear

characteristics:

iR2
= h0 + h1VR2

+ h2V
2
R2

+ h3V
3
R2

, (2)

where the parameters are h0 = −3.5213 × 10−3,

h1 = 5.7869 × 10−7, h2 = −1.4167 × 10−12, and

h3 = 1.21105× 10−18.

The differential equations for this circuit are

VR2
=

dϕ

dt
, (3)

i = aϕ + bϕn + h0 + h1VR2
+ h2V

2
R2

+ h3V
3
R2

, (4)

Em sin(ωt) = uc + R1i + L1
di

dt
+ VR2

, (5)

C
duc

dt
= i. (6)

In the nonlinear ordinary differential equations

(3)–(6), ϕ,
dϕ

dt
and uc are taken as state variables that

are given as x = ϕ, y =
dϕ

dt
, and z = uc. Substituting

these state variables into Eqs.(3)–(6) yields

dx

dt
= y, (7)

dy

dt
=

Emsin(ωt) − z − y − R1(ax + bx
n
+h0+h1y + h2y

2+h3y
3) − L1(ay + nbx

n−1
y)

L1(h1+2h2y + 3h3y
2)

, (8)

dz

dt
=

ax + bxn+h0+h1y + h2y
2+h3y

3

C
, (9)

where φ is flux in inductance L2 in p.u. value (per

unit quantity), ω is the power frequency of 1.0 p.u.

value.

3. Simulation results and discus-

sion

In the following analysis, the effects of nonlinear

core loss and linear core loss on the ferroresonance in a

power system are presented. Equations (10)–(12) are

the differential equations derived by using the linear

core loss model and state variables that are the same

as those in Eqs.(7)–(9). To start with, the effect of

varying the magnitude of the source voltage on the

chaotic behaviour of the system is investigated. Bi-

furcation diagrams and phase-plane diagrams are two

main tools to distinguish various modes of behaviour.

Furthermore, the Lyapunov exponent is also used to

distinguish chaotic states from steady states. For solv-

ing the differential equation system, the Matlab en-

vironment and an embedded package of fourth-order

Runge–Kutta method are used by taking

dx

dt
= y, (10)

dy

dt
=

R2

(

Emsin(ωt) − z − y − R1

(

ax + bx

n

+
y

R2

)

− L
1

(ay + nbx
n−1

y)

)

L1
, (11)
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dz

dt
=

ax + bxn+
y

R2

C
. (12)

The initial conditions taken for simulation are

ω = 1, Em = 1, x = 0, y = 1.6, and z = 1.1 in p.u

value. The varying parameter is the magnitude of the

source voltage Em. In addition, the core loss R2 is first

taken as a nonlinear core loss and then compared with

a linear resistance. Several cases and combinations are

investigated, however, only the representative ones are

presented here.

To classify the effects of varying source voltage

Em in Eqs.(7)–(9) on the behaviour of the system

shown in Fig.2, extensive simulations are carried out.

In order to predict which kind of ferroresonance may

occur for a wide range of magnitude of source voltage

change, the bifurcation diagram is obtained by chang-

ing R2 between linear and nonlinear. Figure 3 shows

the bifurcation diagrams for considering R2 nonlinear-

ity mentioned in Eq.(2); Figure 4 shows the bifurca-

tion diagrams for considering R2 as a linear model.

The x-axis represents the magnitude of source voltage

while the y-axis indicates the voltage across both ends

of core loss R2.

Fig.2. Thevenin equivalent circuit of Fig.1.

Fig.3. Bifurcation diagram for n = 11 and nonlinear

model of core loss.

Fig.4. Bifurcation diagram for n = 11 and linear model

of core loss.

The bifurcation diagrams shown in Figs.3 and 4

reveal what modes of ferroresonance are possible for

a given excitation level. A single-value area of the bi-

furcation map indicates one period; a dual-value area

indicates two periods, etc. In fact, subharmonics plays

an important role in non-chaotic vibrations. One char-

acteristic precursor to chaotic motion is the appear-

ance of sub-harmonics. There exists a transitional re-

gion from periodic to chaotic, in which the waveform

of VR2
is still periodic but not sinusoidal as the source

voltage and the trajectory in phase-plane change from

limit cycle to strange attractors. Likewise, the re-

gion with many scattered points, which looks blurred

as shown in Figs.3 and 4, indicates chaotic ferroreso-

nance.

It can be observed from these figures that the bi-

furcation diagram with the nonlinear model of core

loss has a shorter transient duration at a low excita-

tion level, viz Em less than 15 p.u. Furthermore, the

magnitude of VR2
overvoltage is limited to less than

3 p.u, with the nonlinear core loss model used. How-

ever, with using the linear core loss model the mag-

nitude of VR2
overvoltage can reach 4 p.u when Em

is near 12 p.u. Figure 5 shows the time domain wave

form of VR2
and phase plane diagram, with the linear

core loss model used. Likewise, Fig.6 shows the time

domain wave form of VR2
and phase plane diagram

with using the nonlinear core loss model. These fig-

ures reveal that, with the nonlinear core loss model

used, the waveform of VR2
becomes periodic after a

short transient process while the maximum voltage of

VR2
becomes smaller. But with the linear core loss

model used, the system is also in an unstable state.

Furthermore, the orbit in phase plane changes from

strange attractors to period limit cycles in the same

way.
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Fig.5. (a) Waveform and (b) phase plane orbit of Em = 5, with the linear core loss model used.

Fig.6. (a) Waveform and (b) phase plane orbit of Em = 5 with the nonlinear core loss model adopted.

Moreover, Fig.7 shows the VR2
waveform and phase plane diagram for Em = 20, with the nonlinear core

loss model used. Likewise, the VR2
waveform and phase plane diagram for Em = 20, with the linear core loss

model used, are shown in Fig.8. The waveform of VR2
(Fig.7(a)) is also periodic but not sinusoidal despite its

starting with a non-periodic oscillation. The maximum magnitude of overvoltage is less than 2 p.u. Figure

7(b) indicates that the trajectory projected on the X − Y plane is a limit cycle eventually. In addition, the

Lyapunov exponents are calculated to be σ1 = −0.1673, σ2 = −0.4813, and σ3 = −235.4484. There is no

positive Lyapunov exponent, so the circuit is stable.

Fig.7. (a) Waveform and (b) phase plane orbit of Em = 20, with the nonlinear core loss model used.
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Unlike Fig.7, in Fig.8 the VR2
waveform is distorted seriously compared with the sinusoidal waveform of

source voltage. The maximum magnitude of overvoltage is more than 5 p.u. It is a very high voltage that can

damage the distribution equipment. The Lyapunov exponents are calculated to be σ1 = 0.0552, σ2 = −0.6549,

and σ3 = −302.9773. The Lyapunov exponent is positive, so Fig.8(b) indicates that the trajectory has changed

from limit cycles to strange attractors. It can be concluded from this simulation that with the nonlinear core

loss model used, the onset of chaotic ferroresonance is at a larger excitation level than with the linear core loss

model adopted.

Fig.8. (a) Waveform and (b) phase plane orbit of Em = 20 with the linear core loss model adopted.

4. Conclusions

Some results about the effects of nonlinear core

loss on the behaviour of a typical ferroresonant circuit

in a power system are obtained. The main conclusions

drawn from the present study are (1) the inclusion of

a nonlinear core loss model reveals that the solution

of the system is optimistic compared with that with

the inclusion of a linear core loss model, (2) with using

the nonlinear model of core loss the transient region is

shorter than that using the linear core loss model, (3)

the onset of chaotic ferroresonance is at a large source

voltage. Since the ferroresonance modes become more

accurate, ferroresonance could be prevented or miti-

gated.
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