
Int J Parallel Prog
DOI 10.1007/s10766-013-0287-0

Data Reduction Analysis for Climate Data Sets

Songbin Liu · Xiaomeng Huang · Haohuan Fu ·
Guangwen Yang · Zhenya Song

Received: 16 April 2013 / Accepted: 4 October 2013
© Springer Science+Business Media New York 2013

Abstract Global climate modeling not only requires computation capabilities, but
also brings tough challenges for data storage systems. The input and output data
sets generally require hundreds or even thousands of terabytes storage. Therefore,
storage reduction methods, such as content deduplication and various data compression
methods, are extremely important for reducing the storage size requirement in climate
modeling. However, little work has been done on investigating the effectiveness of
these data reduction methods for climate data sets. In this paper, the potential benefit
of data reduction for climate data is studied by investigating a total of 46.5 TB climate
data sets, including 3 observation data sets (14.1 TB) and 3 climate model output
data sets (32.4 TB). Five different data compression algorithms and two types of
content deduplication mechanisms are applied to these data sets to study the possible
data reduction effectiveness. Further more, the compressibility of different climate
component data is also examined. Our work demonstrates the potential of applying
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data reduction methods in climate modeling platforms, and provides guidance for
selecting the suitable methods for different kinds of climate data sets. We find that
the compression method LC F P can provide the best compression ratio; however,
its throughputs, especially the inflate throughputs are much lower than all the others.
To strike a better balance between compression ratio and throughputs, we propose a
new compression method for the model output data. The new compression method
can achieve comparable compression ratio, while attain about 20 times higher inflate
throughput than that of LC F P .

Keywords Data reduction · Data compression · Data deduplication · High
throughput · Climate modeling · Climate data

1 Introduction

In climatology, there are huge volumes of data from observation and climate model
simulations. These data are critical for understanding the climate mechanisms and
predicting the future climate change. Observation data are fundamental for climatology
to monitor and predict the climate, and to verify the climate models. Hundreds of
observation stations generate data every couple of minutes or hours for decades. Highly
sophisticated measurement technologies such as Satellite and Radar stations, have also
been elaborated over the last few decades, producing a huge amount of data [9,24,
25]. In the meantime, there has been an explosion in data from numerical climate
model simulations, which have increased significantly in complexity and size. With
the increasing knowledge of climate processes and the fast growing high-performance
supercomputer facilities, more and more complex climate models are developed. Data
from these models are expected to become the largest and the fastest-growing segment
of the global archive, and it is predicted that there will be more model output data than
observation data in the near future [26]. For example there were 16 models and 35
TB data for CMIP3 in 2007, while there will be 21 Models and 3.1 PB data by the
year of 2013 for CMIP5 [40]. Thus climate data archiving and transferring will be
a great challenge to storage space and I/O bandwidth. Even though faster (and more
expensive) storage and network can be adopted to mitigate this problem, reducing the
size of data sets itself can be a more effective solution.

In general, data compression and data deduplication are two efficient ways of data
reduction. Data compression is a longstanding technique to eliminate unneeded data
when data are stored or sent [30,37,38]. It removes the redundancy internal to an object
and generally reduces textual data by factors of two to six [16]. However, climate data
sets are usually composed of floating point numbers, which are believed inherent
random in nature and hard to be compressed losslessly [3,17]. Because of the nature
of floating point numbers, even a small change to the numbers may cause significant
changes to the byte stream.

Data deduplication suppresses duplication from a more coarse grain (such as data
chunks or files) than data compression, and is very efficient in reducing data size for
workloads that have many similar files [23,32,42]; storage space requirements can be
reduced by a factor of 10–20 or more when backup data is deduplicated [2,27]. For
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primary work loads, data dedupication can eliminate 20–30 % redundancy [18,22,32].
However, there are few studies about data deduplication on climate data sets. The most
related work is to study the data deduplication in a HPC storage system, and only a
small part of its data is output from climate models [22].

In this paper, we examined the data reduction effectiveness of various data com-
pression methods and deduplicaton methods on several climate data sets. The potential
benefit of data reduction for climate data is studied by investigating a total of 46.5
TB climate data sets, including 3 observation data sets (14.1 TB) and 3 climate model
output data sets (32.4 TB). Different data compression algorithms and content dedu-
plication policies are applied to these data sets to study the possible data reduction
effectiveness. In addition, the compressibility of data for different climate components
are also examined. Our major contributions are as follows:

– (1) We perform an extensive exploration of five different compression schemas and
two content deduplication methods on six different climate data sets.

– (2) We find that LZO provides significantly higher throughput (one or two orders
of magnitude) than the other compression methods at the cost of compression ratio,
while LCFP can achieve the best compression ratio with poor throughput.ZLIB
provides a good trade-off between compression ratio and throughput.

– (3) We provide a new compression methods nzip, which gains better trade-off
between compression ratio and throughput. nzip can achieve competitive compres-
sion ratio over LCFP, while attaining even higher throughput than ZLIB.

The rest of this paper is organized as follows: The next section gives an overview of
various kinds of data reduction methods that will be used in our evaluation. Section 3
describes properties of the data sets, and some of our general presentation and analysis
techniques. Section 4 presents evaluation results and our corresponding analysis. Sec-
tion 5 provides the main idea of our new compression methods for model output data
sets, and its effectiveness on the model output data sets. Section 6 reviews previous
work. Section 7 concludes the paper.

2 Overview of Data Reduction Methods

As stated in the previous section, data compression and data deduplication are two
different ways of reducing redundancy in data sets. Usually, they are on different gran-
ularities of data with different mechanisms, and can be used jointly to further eliminate
redundancy [16,18]. This section will give an overview of the data compression algo-
rithms and deduplication methods used in our evaluation.

2.1 Data Compression

Data compression algorithms can be lossy or lossless. With lossy compression non-
critical data is not always restored exactly as it was in the original file, and it is often
used to process images or voice signals. With lossless compression data can always be
restored to its original format. High data precision for climate computing is important
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to maintain numerical stability, so lossless compression algorithms are chosen for
climate data reduction.

The compression algorithms in our evaluation fall into two categories: generic byte
oriented compressors, such as ZLIB, BZIP2 and LZO, and special-purpose floating-
point oriented compressors, such as SZIP and LCFP. Generic compressors operate at
byte granularity, while the floating-point compressors has ’knowledge’ of the floating-
point format and operate at 4 bytes (single-precision floating-point numbers in our data
sets) granularity.

ZLIB: ZLIB [44] is an variant implementation of Lempel-Ziv (LZ77) compression
algorithm [43]: it records the offset and length of the recurrence of bytes sequence
in the history sliding window; then these information is further encoded with
Huffman coding. ZLIB is widely adopted in many applications. The compression
algorithm used in ZLIB is essentially the same as that in Gzip and Zip. The netCDF-
4 library allows users to create compressed data with the ZLIB library [34].
LZO:LZO focuses on speed rather than compression ratios, and it offers fast com-
pression and ultra fast decompression; it uses 64 KB memory for compression
while requiring no extra memory for decompression [20]. There are many algo-
rithms of LZO implemented, and the one used in this paper is LZO1X, which is
often the best choice among the variants [19].
BZIP2:BZIP2 [4] compresses files using the Burrows-Wheeler block sorting text
compression algorithm [39]. BZIP2 is a popular compressor because its compres-
sion ratio is generally considerably better than that achieved by more conventional
LZ77, and BZIP2 approaches the performance of the PPM family of statistical
compressors.
LCFP: LCFP [14] compresses floating-point values with predictive coding in a
lossless manner. The predicted and the actual floating-point values are broken
up into sign, exponent and mantissa; and their difference is compressed sepa-
rately with context-based arithmetic coding. In our study, unit-delayed predictor
is adopted for prediction: last accessed value as the predicted value.
SZIP: SZIP [41] is an extended implementation of the Rice algorithm [29] to
compress science data [1]. The HDF5 library provides interfaces to store and
retrieve compressed data with SZIP [10]. The netCDF4 library can also read data
compressed with SZIP [34]. In this paper, szip2.1 distributed by the HDF Group is
used, and the BITS_PER_PIXEL is set to 32 for the single-precision floating-point
values.

2.2 Data Deduplication

Data deduplication is very efficient in eliminating redundancy data across the whole
data set in workloads that have many identical data chunks. Usually there are two
steps in data deduplication: first, the content of a file is split into non-overlapping
data chunks; second, the SHA-1 hash of each chunk is used to determine whether the
chunk is already stored among all previously stored data. In the first step, chunking
the file into chunks is the most important for the quality of redundancy detection
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and therefore the overall data reduction. Two different chunking methods are usually
adopted in deduplication systems:

Fixed-Size Chunking (FSC): From the beginning of each file, a file is divided into
non-overlapping fixed size data chunks (except the last chunk) [12,28]. The advantage
of FSC is that it is simple and less CPU-intensive; however, the drawback of FSC is
that it is sensitive to content shifting among nearly identical files.

Content Defined Chunking (CDC): The generated chunks of a file are defined by
the content of the file. Content defined chunking can tolerate the content shifting by
finding special anchors in the file content, and using these anchors as boundary to split
a file into chunks. Rabin fingerprint is employed to help find the anchors in most CDC
based deduplication systems [16,23,42]. To split a file into content defined chunks,
the Rabin fingerprints of a sliding window (size of the window is usually 48 bytes)
over the file content are calculated, and some of these Rabin fingerprints are used as
anchors. Each of these special Rabin fingerprints (f ) should fulfill the equation:

f mod c == m (1)

If a fingerprint (f ) fulfills Eq. 1, an anchor is found, and these anchors are used to
indicate chunk boundaries. The chunks generated by this method have a variable size
with an expected size c. To avoid too small and too large chunks, minimal and maximal
chunk sizes are enforced. In this paper we use the Two Thresholds Two Divisions
(TTTD) chunking method to further control the variations of chunk sizes [8]: the
TTTD algorithm uses the minimum and maximum thresholds to eliminate large-sized
and small-sized chunks, and a second divisor c’ to assist the algorithm to determine a
backup anchor.

CDC works more efficiently than FSC in most cases where there are a lot of similar
files [21]; however, when processing rarely changed files, there is little difference in
redundancy elimination between CDC and FSC.

3 Evaluation Methodology

3.1 Data Sets

To have a comprehensive understanding of the climate data, we examined two types
of data sets: observation data sets and model output data sets. The observation data
sets come from satellite, radar and land observations. The model output data sets are
from earth system models and are submitted to CMIP5 [33].

3.1.1 Observation Data Sets

There are three types of observation data sets in our research. One is satellite
data from European Organization for the Exploitation of Meteorological Satellites
(EUMETSAT). The main purpose of EUMETSAT is to deliver weather and climate-
related satellite data, images and products–24 h a day, 365 days a year. A sub data
set is chosen from EUMETSAT during the period of 26 months from 2010.11 to
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Table 1 Observation data sets
Data set File count Size (TB) Mean FS. Median FS.

EUSat 2,250 2.9 1,313 763.6 KB

Radar 3,682 6.8 1,930 27.9 MB

NewOpr 2,577,389 4.4 1.80 550.0 KB

Table 2 Model output data sets
Data set File count Size (TB) Mean FS. Median FS.

BNU 3,359 8.5 2.7 GB 342 MB

LASG 119,775 13.3 116 MB 32 MB

FIO 1,444,215 10.6 7.7 MB 960.6 KB

2012.12, and is noted as EuSat . The second observation data set comes from a
cluster of radar observation stations in China, which is noted as Radar in this
paper. The last observation data set (noted as Newopr ) is from the land obser-
vation stations in China, and its content is about aerosol. There is about 14.1 TB
observation data in total as shown in Table 1. The size of each data set in Table 1
are the accumulations of the logical size of each file in the data sets. These three
data sets are hosted in the data center of China Meteorological Administration
(CMA).

3.1.2 Climate Model Output Data Sets

There has been an explosion in data from numerical climate model simulations,
which have increased greatly in complexity and size. Data from these models
are expected to become the largest and the fastest-growing segment of the global
archive [26]. Among the model output data sets, the data sets from the fifth phase of
the Coupled Model Intercomparison Project (CMIP5) models are the most impor-
tant ones [33]. CMIP5 provides valuable data sets for examining climate pre-
dictability, assessing model mechanisms, and improving the ability of models to
predict climate on larger time scales. Currently, there are 19 institutes provid-
ing 41 models along with their output data sets. All the CMIP5 data are cli-
mate data at global scale, and is in netCDF formate following the CMOR stan-
dard. All the data sets can be downloaded through earth system grid federation
(ESGF) [7].

In this paper, three data sets from three different Chinese institutes are examined:
BNU-ESM model by the researchers in Beijing Normal University (BNU), FIO-ESM
model by the researchers in The First Institute of Oceanography (FIO), and LASG-
CESS model by Chinese Academy of Sciences (LASG) and Tsinghua University.
There are about 32.4 TB output data in total from these three models which have been
submitted to the CMIP5. Table 2 gives an overview of the properties of these three data
sets. Almost all of the output data are in netCDF classic format, and the high dimension
variables in the netCDF files are IEEE 32-bit single precision floating-point arrays.
To evaluate the performance of SZIP and LCFP, we extract these floating-point arrays
and then apply the SZIP and LCFP onto these arrays.
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3.2 Data Processing

To analyze the potential benefits of these different data reduction methods, we devel-
oped a toolkit that can apply these data reduction methods to the data sets in the data
centers. The toolkit contains three kinds of tools as well as some automation scripts
for deployment:

(1) data compression tools: We use the python modules zlib and bz2 (Python 2.7.3)
to implement the parallel versions of ZLIB and BZIP2. A parallel version of LZO
compressor/decompressor is implemented based on the miniLZO [20]; each thread
compresses data chunks at the size of 32 MB. The compression level of these com-
pressors are all in their default settings: 6 for ZLIB, 9 for BZIP2, and 7 for LZO. Our
LCFP compressor is based on Isenburg’s source [11], and compresses data chunks
of 2 GB. The SZIP compressor is based on szip-2.1, and BITS_PER_PIXEL is set
to 32, PIXELS_PER_BLOCK is 32, SCANLINE is 128. As mentioned above, SZIP
and LCFP work on the extracted floating-point arrays, while the other compressing
methods compress the whole netCDF files in the three model output data sets.

Some tricks are adopted to achieve better performance when studying the compress-
ibility of the data sets. Since the compressed files are not needed when evaluating the
compression ratio of the data sets, only the length of the output stream of the compres-
sors is accumulated, and the content of the output stream is discarded without touch-
ing the disk, thus improving performance and reducing extra storage requirement.
When to evaluate the throughputs of these compression algorithms, the compressed
file of the compressor is put into the memory file system tmpfs, the decompressor
read the compressed file from the memory file system and delete the compressed file
afterwards.

(2) data deduplication tools: parallel versions of TTTD based chunking and FSC
based chunking are implemented in c programming language; the output formats of
these two chunking methods are the same: containing file name, file size, the 20
bytes SHA-1 hashes of its chunks, the length of each chunk. Due to the huge amount
of the chunk hashs, a distributed parallel program is implemented to statistics the
deduplicated chunks. A set of other Python scripts are also developed to make further
analysis of the chunks.

(3) combination of deduplication and compression: A framework of compressing
the duplicated chunks to estimate the joint data reduction effect of data deduplication
and data compression methods.

Most of the tools are deployed onto the data centers where the data sets are resident.
During our study, there is no update to these data sets. The data reduction ratio R in
this paper is define as:

R = Reduced Size

OriginalSi ze
(2)

The smaller the reduction ratio is, the better the data reduction works. A reduction
ratio of 75 % indicates that 25 % of the data could be removed by compression or
deduplication, and only 75 % of the original data size would be actually stored.
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4 Results and Analysis

In this section, we first compare the data reduction ratio and throughput of the five
compression algorithms on the climate data sets, and then compare the data reduction
efficiency of different chunking strategies of data deduplication methods. The data
reduction effect of the combination of data deduplication and data compression algo-
rithms is also studied in this section. In addition, since climate model data can usually
be grouped into five different components, the reduction efficiency of each component
is also examined.

4.1 Data Reduction by Compression

To find the most efficient compression algorithm for the climate data sets, we evaluate
the performance of the five compression algorithms over the climate data sets. The
efficiency of a compression algorithm can be measured from two aspects, data size
reduction (compression ratio), and the throughput of deflate and inflate. In this section,
the compression ratios of the data sets by these compression algorithms are examined
first; then the throughputs of these algorithms are also studied.

4.1.1 Comparison of Compression Ratios

Figure 1 presents the compression ratio by the five compression methods over
the climate data sets. Note that since SZIP and LCFP should work on byte stream of
floating-point numbers; we first extracted the floating-point variables from the netCDF
files of the three model data output sets, and then fed the SZIP and LCFP compressors
with the floating-point byte streams. The extracted data weighs more than 90 % of the
total storage.

Figure 1 shows that LCFP provides the best data reduction for the three model
output data sets. The reduction ratio of LCFP is always 10 % better than the best
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Fig. 1 Data reduction for the climate data sets by different data compression methods: LZO, BZIP2, ZLIB,
SZIP and LCFP. It should be noted that SZIP and LCFP only work on the three model output data sets
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compression ratio achieved by all the other four methods. For example, for the L ASG
data set, the reduction ratio by LCFP is 55.25 %, while the reduction ratio by ZLIB
is 67.87 %. However, another numeric oriented compressor SZIP is not always better
than the generic compressors. For the B NU data set, SZIP achieve significantly better
reduction ratio than ZLIB, while on the F I O data set, the reduction ratio of SZIP is
much poorer than that of ZLIB. The good compression ratio by LCFP indicates that
LCFP should be adopted to compress the floating-point numbers when better data
reduction is expected.

As shown in Fig. 1, the compressibility of each data sets is different from the oth-
ers. Among the three model output data sets, the F I O data set can be significantly
compressed by all the three compression algorithms: achieving more than 60 % reduc-
tion in size. In contrast, the other two model output data sets, L ASG and B NU , can
only be reduced around 40 % in size. The reason for the good compressibility of the
F I O data set is that there are many zero chunks in the data set; cdc4k (see Sect. 4.2)
detects that 16.7 % of the F I O data set are zero chunks. As to the observation data
sets, the EuSat data set shows the least compressibility. This is because the content
of EuSat is comprised of satellite images, which are already in some compressed
format (JPEG for example). The Newopr data set shows the best compressibility
among the observation data sets, about 40 % of its storage requirement can be reduced
by compression.

From Fig. 1, it can also be seen that the BZIP2 algorithm is not much better than the
ZLIB algorithm with regard to the reduction ratio, which is different from the results
in other benchmarks [5]. In our experiment, in most cases, the compression efficiency
by ZLIB is only around 1 % less than that by the BZIP2. For the Newopr data set,
ZLIB even outperforms BZIP2. As shown in Sect. 4.1.2, both the deflate and inflate
throughputs of ZLIB are much higher than those of BZIP2. So we can get the conclusion
that ZLIB is a better choice than BZIP2 for generic climate data compression.

It is worth noting that the current netCDF-4 library provides interface to com-
press data with ZLIB, and the HDF-5 library allows user to compress data with SZIP.
According to the findings in this section, we can see that SZIP does not have obvious
advantage over ZLIB in terms of compression ratio. To achieve even better compres-
sion ratio, these libraries should provide interface to allow users compress data with
the LCFP compressor.

Compression ratio is not the only factor to evaluate a data compressor, its deflate
and inflate throughputs are also important in climate applications. In the followings
section, we will evaluate the throughput performance of these five compressors over
the climate data sets.

4.1.2 Comparison of Throughput

Climate computing also demands high deflate and inflate throughput if compression
is applied to the climate data. Figure 2 shows the single-thread throughput of deflating
and inflating the data sets with the five data compression algorithms. It should be
noted that the throughputs do not include the overhead of disk I/O: the compression
and decompression time is measured while the data is in the main memory. It should
also be pointed out that the throughputs for the three model output data sets, LASG,
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BNU and FIO, were evaluated on three different servers, and the throughputs for the
observation data sets were evaluated on one server in CMA.

As can be seen in Fig. 2, LZO is the best of the five data compression algorithms in
terms of throughput. For deflation, LZO is about 36–66 times faster than ZLIB, and can
be as much as 575 times faster than BZIP2 over the L ASG data set. As to inflation, the
throughput of LZO is about one order of magnitude faster than that of ZLIB, and around
two orders faster than that of BZIP2 and LCFP. So if an application needs extremely
high throughput and can tolerate higher data redundancy (around 10 % according to
previous subsection), LZO shall be the first choice of the five compression algorithms.

Though LCFP can achieve significantly better compression ratio than the other
compressors, its throughput is relatively low. As shown in Fig. 2, the deflate throughput
of LCFP is only better than that of BZIP2, and its inflate throughput is the lowest of the
five compressors. This is because LCFP has to switch compression context frequently
to achieve better compression ratio, and there are as much as 512 contexts in the LCFP
compressor. Each floating-point number is split into two or three parts, and each part
belongs to one of the 512 compression contexts.

One phenomenon should be noted about observation data sets: the LZO throughputs
for Radar is the lowest among the three observation data sets, though the compression
ratios for Radar are not the worst. This may be explained that for the easiest compressed
data set (Newopr in this case), the LZO can easily find enough matching strings when
compressing; and for the hardest compressed data set (Eusat in this case), LZO can
make the decision of non-match earlier. Thus the throughputs for the easiest and
the hardest compressed data sets will be much higher. This inference is confirmed
in Table 4: The hardest compressed component atmos and the easiest compressed
component seaIce have the highest throughputs among the five components.

According to Figs. 1 and 2, we can find that ZLIB achieve a good trade-off between
compression ratio and throughput. The compression ratio of ZLIB is only less than
that of LCFP, while its throughput is much higher than that of LCFP. The inflate
throughput of ZLIB is better than the other compressors except LZO. The generic
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compressor BZIP2 does not have obvious advantage over ZLIB in terms of compression
ratio, and has much worse throughput than ZLIB. So BZIP2 should be avoided when
compressing climate data; and ZLIB should be the default compressor because of its
good balance of compression ratio and throughput.

4.2 Comparison of Different Chunking Strategies of Data Deduplication

In this section, the effectiveness of data reduction by different data deduplication meth-
ods is examined. As mentioned in Sect. 2.2, fixed-size chunking (FSC) and content-
defined chunking (CDC) are two popular chunking methods; and 4, 8 and 16 KB are
common chunking size. In this section we compare the effectiveness of FSC and CDC;
in addition, different chunking sizes are also examined. Figure 3 shows the data reduc-
tion ratio of the six data sets by FSC and CDC with different chunking sizes. Note
that the data deduplication of each data set is done in their own domains.

As shown in Fig. 3, the data reduction ratios by deduplication methods vary over
different data sets. Among the three model output data sets, data deduplication methods
can detect around 30 % redundancy for the F I O data set; while the other two model
output data sets, L ASG and B NU , can only be reduced by around 7 % through
deduplication methods. Again, the zero chunks in F I O data set contribute a lot to the
redundancy. As to the observation data sets, both CDC and FSC methods can hardly
find any redundancy in EuSat and Radar data sets. However, the Newopr data set
can benefit a lot from data deduplication methods. For example, cdc4k can eliminate
about 25 % redundancy data for Newopr data set.

Figure 3 also shows that content-defined chunking (cdc4k) based data deduplication
is barely better than that of fix-sized chunking (fsc4k), 3 % better at most for Newopr
data set. In general, content-defined chunking, which can overcome the vulnerability to
data shifting, outperforms fixed-size chunking significantly; for example, in a backup
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scenario, content-defined chunking can find 10 % more redundancy than fix-sized
chunking [21]. However, in our experiments, since there is no backup data, there
is no data shifting problem; thus CDC does not outperform FSC. As to the F I O
data set, FSC is even obviously better than CDC; we examined the chunks generated
by FSC and CDC, and found that FSC can detect more duplicate zero chunks than
CDC for data set F I O . This observation suggests that the less CPU intensive FSC
method shall be used for climate data set deduplication without losing much storage
savings.

Another phenomenon that shall be noted in Fig. 3 is that the deduplication quality
drops slowly with the increasing of the chunk sizes, which is confirmed in other
literatures on backup scenarios [21,32]. For example, while the chunk size increase
from 1 KB (not shown in Fig. 3) to 16 KB for the Newopr data set, the redundancy
detected by data deduplication only drops from 24.67 to 22.30 %. This means larger
chunk size can be adopted to reduce the metadata needed while maintaining a relatively
good data deduplication quality. The reason that the drop in deduplication ratio is less
than linear with increasing chunk size is the spatial locality of the duplicated data.
To investigate the spatial locality of duplicated chunks, we measure the distance of a
duplicated chunk and the next duplicated chunk following it in the same file for all
the files in the data sets. The distance of two duplicated chunks is the number of data
chunks between them in one file. For example, if duplicated chunk B is next to another
duplicated chunk A, then the distance of chunk A and B is zero. We find that around
90 % of the distances of the duplicated chunks in data sets chunked by cdc4k is zero,
which means that the duplicated chunks are clustered.

4.3 Data Deduplication and Compression

Data compression methods outperform the deduplication methods in terms of data
reduction over all the six climate data sets, which can be seen by comparing Figs. 1
and 3. For example, cdc4k can remove merely around 7 % of the two module output
data sets L ASG and B NU , while compression methods can eliminate around 30 %
storage requirement for these two data sets. cdc4k can hardly find any data redundancy
on the satellite observation data set EuSat , especially for the radar based observation
data set Radar ; on the other hand, compression methods can eliminate around 20 %
redundancy in these two observation data sets.

Although data deduplication contributes less to the data reduction than that of
compression methods, the two types of methods are orthogonal, and can be com-
bined together [32] to reduce redundancy further. To study the joint effect of the data
deduplication and data compression, we first deduplicate the data sets by cdc4k, then
each unique data chunk is compressed with ZLIB. Figure 4 shows the combined data
reduction effectiveness of cdc4k and ZLIB. As the EuSat and Radar can hardly
be deduplicated, Fig. 4 does not include the results over them. As shown in Fig. 4,
the reduction effectiveness of the two methods can be added up. However, the ideal
effectiveness of the combination of the two is slightly better than the experimental
results. This is because ZLIB usually needs a chunk size of 32 KB to achieve its best
compression result, while the average chunk size of cdc4k is only 4 KB.
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4.4 Data Reduction of Climate Components

The research on global climate change usually involves the studies of atmosphere
(atmos), ocean (ocean), land (land), sea ice (seaIce) and land ice (landIce), and a
coupler that combines these components together (cpl). However, due to the different
observation measures and different physical models, the data of these components
vary from each other, and in most cases, these different components are accessed sep-
arately. Thus it is necessary to study the data reduction potential of these components
individually. Table 3 shows the sizes of each component for the three model output
data sets. It can be seen that the atmosphere usually has the largest volume of data,
and the ocean comes the second; while the data volumes of land ice and sea ice are
much smaller. One main reason is that sea ice and land ice only cover a small part of
the earth.

The data reduction results of the components for the three model output data sets
are shown in Fig. 5. It should be noted that deduplication(cdc4k) was done in each
component domain for each data set, respectively. The first observation from Fig. 5
is that the data reduction ratios of the components are different from each other. The
land, landIce and seaIce components shows good compression ratios; while the atmos
component can not be compressed easily by most of the data reduction methods. For
example, the land, landIce, and seaIce components have reduction ratios around 30 %
by compression; the atmos component on the other hand, has a compression ratio

Table 3 Component size (GB)
of model output data sets

Data set atmos ocean land seaIce landIce cpl Other

BNU 5,902 1,944 200 506 11 0 147.3

LASG 9,272 3,548 294 454 28 0 0

FIO 2,702 3,374 1,256 75.8 0 3,405 8.4
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Table 4 Throughput of climate
components of B NU

Deflate (MB/s) Inflate (MB/s)

lzo zlib lcfp lzo zlib lcfp

atmos 1,163 15.7 13.2 2,262 156.1 10.2

ocean 902 17.4 15.3 2,075 153.0 11.9

land 760 28.9 17.1 1,470 224.6 13.4

landIce 949 21.8 19.4 1,344 263.2 14.5

seaIce 1,425 15.3 22.3 1,976 157.4 15.7

around 60 %. This is because land, sea ice and land ice cover a relative smaller part
of the earth, and all component models are assigned the same global grid; thus most
values of the land, landIce and seaIce components data are set to a constant, resulting
higher compressibility.

The second observation from Fig. 5 is that compression based methods(zlib,lzo, lcfp)
outperform the CDC method(cdc4k) in term of data reduction effectiveness for all the
components; especially for the land component, cdc4k can hardly find any redundancy,
while the compression based methods can reduce 80–85 % storage requirement. This
is because even for the more compressible components, there are shorter repeated byte
sequences, which are out of the capable of CDC methods.

Another interesting observation from Fig. 5 is that the gaps among the data reduction
ratios by the three compression methods LZO, ZLIB and LCFP are narrowing with the
increasing of the data reduction possibility; this trend can be seen clearly in Fig. 5a,
b. For example, the gap between the reduction ratios by ZLIB and LCFP is around
12 % (83.88 vs. 61.85) over the atmos component of L ASG, and drops to less than
3 % (15.28 vs. 12.60) over the seaIce component. This observation indicates that for
more compressible data set, high throughput compression methods (such as LZO and
ZLIB) can be adopted, while attaining a comparable compression ratio with LCFP.

Not only is the compressibility of the components different from one another, but
also the throughput of compression and decompression over these components varies
a lot. Table 4 shows the throughput of deflating and inflating the components of the
B NU data set with the three compression algorithms: LZO, ZLIB and LCFP. As
can be seen in Table 4, the throughput over each component is different from each
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Fig. 6 Re-arrangement the bytes of the IEEE 32-bit single precision floating-point numbers for compres-
sion. There are four different compression streams, and each stream can be compressed with different
byte-stream oriented compression method. In this paper, all the four streams are compressed with zlib

other by all the three algorithms. For example, the deflate throughput by LZO varies
from 760 to 1,425 MB/s. An interesting phenomenon can be seen from Table 4 is
that the throughputs of ZLIB and LCFP are increasing with the compressibility of the
components (the exception is the sea I ce component); however, LZO does not have
this trend. From Table 4, we can notice again that the throughput, especially the inflate
throughput of LCFP is very poor: the inflate throughput of LCFP is one order slower
than that of ZLIB, and two orders slower than that of LZO.

5 A New Compression Method

According to the findings in previous sections, we can see that LCFP can achieve
outstanding compression ratio over the other data reduction methods. However, its
weakness is also obvious: the inflate throughput of LCFP is the lowest among the
compression methods. Inspired by LCFP that sign, exponent and mantissa bits are
treated separately, we provide a new compression method, named nzip, to compress
floating-point numbers with better trade-off between compression ratio and through-
put.

The main idea of our new compression method nzip is to rearrange the four bytes of
a series of IEEE 32-bit single precision floating-point numbers; the rearranged byte-
stream can make better use of the advantages of the byte-stream oriented compressors,
such as ZLIB and LZO. As shown in Fig. 6, nzip first reads into a chunk (32 MB in our
evaluation) of 32-bit floating-point numbers; then it splits each 32-bit floating-point
number into four bytes and appends each byte to its corresponding byte-group; in the
final step, it feeds the rearranged data chunk to a byte-stream oriented compressor
(ZLIB in our evaluation). The intuition behind nzip stems from the following two
observations. First, the floating-point numbers of the same variable in the same netCDF
file tend to be on the same order of magnitude, so the sign bit and exponent bits shall
be similar; for example, in Fig. 6 group1, which is made of the sign bit and higher 7
exponent bits, has a compression ratio of 5 % for even the atmos component. Second,
in many cases the adjacent floating-point numbers are also close to each other in value;
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this is due to the fact that atmosphere and ocean circulations are basically orientated in
an east to west direction because of the rotation of the earth. Thus, on a given latitude,
the adjacent floating-point numbers are also close to each other in value. As a result, the
corresponding bytes of adjacent floats have higher chance to be the same. According
to these two observations, the rearranged byte-stream will be more ’meaningful’ to
the compressor, so a better compression ratio can be expected.

To evaluate the effectiveness of our new compression methods, we use ZLIB as
compression engine to implement a prototype compressor of nzip, and apply it on the
three model output data sets. Figure 7 presents the compression ratio(Fig. 7a), deflate
throughput (Fig. 7b) and inflate throughput (Fig. 7c), by ZLIB, LCFP and our new
compression methods nzip over data set L ASG, B NU and F I O . Figure 7a shows that
nzip can achieve much better compression ratio than that of ZLIB, approaching to the
compression ratio by LCFP. As to the inflate throughput, nzip provides around 20 times
higher throughput than LCFP, as is shown in Fig. 7c. Another interesting phenomenon
in Fig. 7 is that the deflate and inflate throughput of nzip are even better than that of
ZLIB, despite of the additional byte rearrangement by nzip. There are two reasons for
this phenomenon. First, the bytes rearrangement involves only simple memory copy
operation, which can incur only negligible overhead when compared to the more time
consuming compression process. Second, ZLIB tends to have higher throughput when
data are more compressible, as shown in Table 4; after byte rearrangement, the byte
stream is much more compressible as shown in Fig. 7a. And since nzip uses ZLIB as its
compression engine, thus nzip can achieve better throughput than the pure ZLIB. From
the evaluation results shown in Fig. 7, we believe that nzip have achieved a good trade-
off between compression and throughput: it can achieve comparable compression ratio
with LCFP, and in the meanwhile it can attain about 20 times higher throughput than
LCFP.

6 Related Work

Prior to our work, there are several studies on data reduction and its usage in sci-
entific computing environment. The most related work conducted by Meister et al.
[22] examined the deduplication potential of the online storage in 4 high performance
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computing (HPC) data centers; they reported that 20–30 % of the data is redundant and
could be removed by deduplication techniques; they find more redundancy than our
work possibly because their data are from the home directories and research project
directories where users always generate many similar results. Schmalzl investigated
the usefulness of several image compression algorithms for the storage of data from
computational fluid dynamics [31]. Wessel proposed to compress the gridded data
sets in Earth science to reduce both transmission time and disk storage [38]. Wang
et al. suggested a way to achieve interactive rendering by compressing large-scale
time-varying data [36]. Compression is also used to improve I/O throughput for I/O
forwarding layer in current peta-scale HPC environment [30,37].

There are also many studies that explore the data reduction in other context.
Jin and Miller examined the effectiveness of deduplication on virtual machine disk
images [15]; they found that deduplication of VM disk images can save 80 % or more
space, and chunk-wise compression can reduce the size of the stored chunks by 40 %.
Lu et al. evaluated the data reduction opportunity by deduplication and compression,
separately and combined, in primary storage systems [6,18]. Meister and Brinkmann
compared the influence of different chunking approaches on deduplication in a backup
scenario [21]. Wallace et al. presented a study on the data redundancy of backup work-
loads in production systems [35].

Compared with the studies mentioned above, our work focuses on the data reduc-
tion potential on climate data sets, including climate model output data and climate
observation data. And we study data reduction effectiveness by deduplication methods
and compression methods, separately as well as the joint of the two types of methods.

7 Conclusions and Future Work

In this paper, we investigated the data reduction opportunity of climate data sets by
different data deduplication methods and data compression algorithms, and the com-
bination of data deduplication and compression. We found that climate data has less
redundancy and compressibility than data sets in other workloads. As to the data
reduction effectiveness, compression based methods outperforms data deduplication
based methods. However, the two types of methods can be combined together to gain
further data reduction. Among the five compression algorithms, LZO is featured with
orders higher throughput than the other compression methods at the cost of com-
pression ratio. LCFP on the other hand, can achieve the best compression ratio, with
poor throughput. ZLIB stands between LZO and LCFP, providing a trade-off between
compression ratio and throughput. BZIP2 should be avoided for climate data com-
pression, because it does not have obvious advantage on compression ratio over ZLIB,
while has much worse throughput than ZLIB. As to data deduplication methods, dif-
ferent chunking sizes have little impact on the data deduplication results, which can be
partly explained by chunk locality that the duplicated chunks clustered together. And
the fix-sized chunking (FSC) can find almost as much redundancy as content-defined
chunking (CDC) does.

According to the observations of our study, we propose a new compression method
that achieves an even better balance between compression ratio and throughput for the
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model output floating-point data. Our compression method can provide comparable
compression ratio with LCFP, while achieves about 20 times higher throughput than
LCFP. This compression method shall be applicable to other data sets of floating-point
numbers, as long as these numbers are similar in values. In the future, we should further
study the value characteristics of the model output data and apply proper prediction
methods [3,13] to optimize our compression method, and evaluate its performance on
more data sets.

In our future work, we should also do more research on the characteristics of
observation-based climate data sets. In this paper only preliminary quantitative analysis
of this kind of data sets are present; because of their data types, record structures
and data sources are much different from one to another, we can not give a common
conclusion of the characteristics of the observation-based climate data sets currently. In
the future, we will continue study the characteristics of different kinds of observation-
based climate data sets, and try to provide a more effective compression methods for
them.
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