MULTIPLE SOLUTIONS FOR THE SCHRÖDINGER EQUATION WITH MAGNETIC FIELD＊

Peng Chaoquan（彭超权）
Wuhan Institute of Physics and Mathematics，Chinese Academy of Sciences，Wuhan 430071， Graduate School，Chinese Academy of Sciences，Beijing 100049， E－mail：pcq1979＠163．com Yang Jianfu（杨健夫）
Wuhan Institute of Physics and Mathematics，Chinese Academy of Sciences，Wuhan 430071， E－mail：jfyang＠wipm．ac．cn

Abstract

The authors consider the semilinear Schrödinger equation $$
-\Delta_{A} u+V_{\lambda}(x) u=Q(x)|u|^{\gamma-2} u \quad \text { in } \quad \mathbb{R}^{N}
$$ where $1<\gamma<2^{*}$ and $\gamma \neq 2, V_{\lambda}=V^{+}-\lambda V^{-}$．Exploiting the relation between the Nehari manifold and fibrering maps，the existence of nontrivial solutions for the problem is discussed．

Key words Nehari manifold，fibrering maps，Schrödinger equation
2000 MR Subject Classification 35J60，35J65

1 Introduction

In this article，we study the existence of nontrivial solutions of the semilinear Schrödinger equation

$$
\begin{equation*}
-\Delta_{A} u+V_{\lambda}(x) u=Q(x)|u|^{\gamma-2} u, \quad x \in \mathbb{R}^{N} \tag{1.1}
\end{equation*}
$$

where $-\Delta_{A}=(-i \nabla+A)^{2}, u: \mathbb{R}^{N} \rightarrow \mathbb{C}, N \geq 3,1<\gamma<2^{*}$ and $\gamma \neq 2$ ．The coefficient V_{λ} is the scalar（or electric）potential and $A=\left(A_{1}, \cdots, A_{N}\right): \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ the vector（or magnetic） potential．We assume in this paper that $A \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{N}\right), V_{\lambda}(x)$ and $Q(x)$ are continuous functions changing signs on $\mathbb{R}^{N} . V_{\lambda}(x)=V^{+}(x)-\lambda V^{-}(x)$ ，where $V^{+}(x)=\max (V(x), 0), V^{-}(x)=$ $\max (-V(x), 0)$ and $V^{-}(x) \in L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right)$ ．It is assumed that $\lim _{|x| \rightarrow \infty} Q(x)=Q(\infty)<0$ ．Further assumptions on $V_{\lambda}(x)$ and $Q(x)$ will be formulated later．

In the case $A=0$ ，the problem was extensively studied．In particular，in a bounded domain Ω ，it was established in［4］the existence and multiplicity of non－negative solutions of

[^0](1.1) for $\gamma>2$. Later, the case $1<\gamma<2$ was considered in [2]. In the whole space \mathbb{R}^{N}, if $V \in L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right)$, the eigenvalue problem
$$
-\Delta u=\lambda V(x) u \quad \text { in } \mathbb{R}^{N}
$$
has a sequence of eigenvalues, $0<\lambda_{1}(V) \leq \lambda_{2}(V) \leq \cdots \leq \lambda_{n}(V) \leq \cdots$, of finite multiplicity and going to infinity. Under this condition, it was proved in [8], that, for $V_{\lambda}=-\lambda V$,
(i) problem (1.1) has a positive solution for every $0<\lambda<\lambda_{1}(V)$,
(ii) if $\int_{\mathbb{R}^{N}} Q \phi_{1}^{\gamma} \mathrm{d} x<0$, where ϕ_{1} is the eigenfunction corresponding to $\lambda_{1}(V)$, then there exists a constant $\delta>0$ such that problem (1.1) admits at least two positive solutions for every $\lambda_{1}(V)<\lambda<\lambda_{1}(V)+\delta$. These solutions were obtained by the mountain-pass lemma and local minimization. Similar results were obtained for the $p-$ Laplacian in \mathbb{R}^{N} in [6] and [10].

Recently, much interest in the case $A \neq 0$ has arisen and various existence results were obtained, see for instance, [1], [5], [7], [11] and references therein. Inspired by [2] and [4], we consider the existence of nontrivial solutions for (1.1) with $A \neq 0$. We classify the Nehari manifold, and find solutions of (1.1) as minimizers of the associated functional on two distinct components of the Nehari manifold.

It is known from [7] that the eigenvalue problem

$$
\begin{equation*}
-\Delta_{A} u+V^{+}(x) u=\mu V^{-}(x) u \quad \text { in } \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

has a sequence of eigenvalues $0<\mu_{1}<\mu_{2} \leq \mu_{3} \leq \ldots \leq \mu_{n} \rightarrow \infty$ if $V^{-} \neq 0$ and $V^{-} \in L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right)$. Let us denote the corresponding orthonormal system of eigenfunctions by $\varphi_{1}(x), \varphi_{2}(x), \cdots$. The sequence is complete in the Hilbert space $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$, where $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ is the closure of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the norm

$$
\|u\|=\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V^{+}(x)|u|^{2}\right) \mathrm{d} x\right)^{\frac{1}{2}}
$$

and $\nabla_{A} u=(\nabla+i A) u, V^{+}(x)=\max (V(x), 0)$. The first eigenvalue μ_{1} is defined by the Rayleigh quotient

$$
\begin{equation*}
\mu_{1}=\inf _{u \in H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)} \frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V^{+}(x)|u|^{2}\right) \mathrm{d} x}{\int_{\mathbb{R}^{N}} V^{-}(x)|u|^{2} \mathrm{~d} x} . \tag{1.3}
\end{equation*}
$$

Our main result is as follows.
Theorem 1.1 If $2<\gamma<2^{*}$, then
(i) problem (1.1) has a solution for $0<\lambda<\mu_{1}$,
(ii) if $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$ and $\lambda=\mu_{1}$, then problem (1.1) has a solution.
(iii) if $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then there exists a constant $\delta>0$ such that problem (1.1) admits at least two solutions for $\mu_{1}<\lambda<\mu_{1}+\delta$.

For the case of $1<\gamma<2$, we have
Theorem 1.2 (i) Problem (1.1) has a solution for $0<\lambda<\mu_{1}$,
(ii) If $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then there exists a constant $\delta>0$ such that problem (1.1) admits at least two solutions for $\mu_{1}<\lambda<\mu_{1}+\delta$.

We point out that φ_{1} may not belong to $L^{\gamma}\left(\mathbb{R}^{N}\right)$. The condition $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$ is an extra assumption on Q.

In Section 2 we discuss the relation between the Nehari manifold and the fibrering maps. Theorems 1.1 and 1.2 are proved in Section 3 and Section 4.

2 Preliminaries

Suppose $u \in H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$, by the diamagnetic inequality ([12], Theorem 7.21), $|u| \in$ $D^{1,2}\left(\mathbb{R}^{N}\right)$, where $D^{1,2}\left(\mathbb{R}^{N}\right)$ is the usual Sobolev space of real valued functionals defined by

$$
D^{1,2}\left(\mathbb{R}^{N}\right)=\left\{u ; u \in L^{2^{*}}\left(\mathbb{R}^{N}\right), \nabla u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

Therefore, $u \in L^{2^{*}}\left(\mathbb{R}^{N}\right)$, where $2^{*}=\frac{2 N}{N-2}$. Functions in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ may not belong to $L^{\gamma}\left(\mathbb{R}^{N}\right)$ with $1<\gamma<2$ or $2<\gamma<2^{*}$. So we look for solutions of problem (1.1) in the space $E=H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right) \cap L^{\gamma}\left(\mathbb{R}^{N}\right)$ equipped with norm

$$
\|u\|_{E}=\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V^{+}(x)|u|^{2}\right) \mathrm{d} x+\left(\int_{\mathbb{R}^{N}}|u|^{\gamma} \mathrm{d} x\right)^{\frac{2}{\gamma}}\right)^{\frac{1}{2}}
$$

Alternatively, E can be defined as the completion of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ with respect to the above norm.
It is apparent that the functional

$$
J_{\lambda}(u)=\frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x-\frac{1}{\gamma} \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x
$$

is a C^{1}-functional in E. Critical points of J_{λ} in E are solutions of problem (1.1), which belong to the so-called Nehari manifold

$$
S=\left\{u \in E: \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x\right\}
$$

On S, we have that

$$
\begin{equation*}
J_{\lambda}(u)=\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x \tag{2.1}
\end{equation*}
$$

The Nehari manifold S is closely linked to the behavior of functions $\Phi_{u}: t \rightarrow J_{\lambda}(t u)(t \geq 0)$. Such maps are known as fibrering maps introduced in [9], and were also discussed in [2], [4], [6]. If $u \in E$, we have

$$
\begin{gather*}
\Phi_{u}(t)=\frac{t^{2}}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x-\frac{t^{\gamma}}{\gamma} \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x \tag{2.2}\\
\Phi_{u}^{\prime}(t)=t \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x-t^{\gamma-1} \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x \tag{2.3}\\
\Phi_{u}^{\prime \prime}(t)=\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x-(\gamma-1) t^{\gamma-2} \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x . \tag{2.4}
\end{gather*}
$$

Obviously, $u \in S$ if and only if $\Phi_{u}^{\prime}(1)=0$. More generally, $\Phi_{u}^{\prime}(t)=0$ if and only if $t u \in S$, i.e., elements in S correspond to stationary points of fibrering maps. It follows from (??) and (??) that if $\Phi_{u}^{\prime}(t)=0$, then $\Phi_{u}^{\prime \prime}(t)=(2-\gamma) t^{\gamma-2} \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x$. So we may divide S into three subsets S^{+}, S^{-}and S^{0} as follows:

$$
\begin{aligned}
& S^{+}=\left\{u \in S:(2-\gamma) \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0\right\} \\
& S^{-}=\left\{u \in S:(2-\gamma) \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x<0\right\}
\end{aligned}
$$

$$
S^{0}=\left\{u \in S:(2-\gamma) \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x=0\right\}
$$

S^{+}, S^{-}and S^{0} correspond to local minima, local maxima and inflection points of the fibrering maps $\Phi_{u}(t)$, respectively. Consequently,

Lemma 2.1 Let $u \in S$. Then
(i) $\Phi_{u}^{\prime}(1)=0$;
(ii) $u \in S^{+}, S^{-}, S^{0}$ if $\Phi_{u}^{\prime \prime}(1)>0, \Phi_{u}^{\prime \prime}(1)<0, \Phi_{u}^{\prime \prime}(1)=0$, respectively.

On the other hand, for $u \in E$,
(i) if $\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x$ and $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x$ have the same sign, Φ_{u} has a unique turning point at

$$
t(u)=\left(\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x}{\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x}\right)^{\frac{1}{\gamma-2}}
$$

If $2<\gamma<2^{*}, t(u)$ is a local minimum (maximum) of $\Phi_{u}(t)$ and $t(u) u \in S^{+}\left(S^{-}\right)$if and only if $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x<0(>0)$. The case $1<\gamma<2$ can be discussed analogously.
(ii) if $\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x$ and $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x$ have different signs, then Φ_{u} has no turning points and so no multiples of u lying in S.

We define

$$
L^{+}(\lambda)=\left\{u \in E:\|u\|=1, \quad \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x>0\right\}
$$

$L^{-}(\lambda), L^{0}(\lambda)$ are defined by replacing $>$ in L^{+}by $<$and $=$respectively. We also define

$$
B^{+}=\left\{u \in E:\|u\|=1, \quad \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0\right\}
$$

and B^{-}, B^{0} are defined by replacing $>$ in B^{+}by $<$and $=$, respectively.
Thus, if $2<\gamma<2^{*}(1<\gamma<2)$ and $u \in L^{+}(\lambda) \cap B^{+}$, we have $\Phi_{u}(t)>0(<0)$ for $t>0$ small and $\Phi_{u}(t) \rightarrow-\infty(+\infty)$ as $t \rightarrow \infty, \Phi_{u}(t)$ has a unique maximum (minimum) point at $t(u)$ with $t(u) u \in S^{-}\left(S^{+}\right)$. Similarly, if $u \in L^{-}(\lambda) \cap B^{-}, \Phi_{u}(t)<0(>0)$ for t small, $\Phi_{u}(t) \rightarrow+\infty(-\infty)$ as $t \rightarrow \infty$ and $\Phi_{u}(t)$ has a unique minimum (maximum) point at $t(u)$ with $t(u) u \in S^{+}\left(S^{-}\right)$. Finally, if $u \in L^{+}(\lambda) \cap B^{-}\left(L^{-}(\lambda) \cap B^{+}\right), \Phi_{u}$ is strictly increasing (decreasing) for all $t>0$. Consequently, if $u \in E \backslash\{0\}$ and $2<\gamma<2^{*}(1<\gamma<2)$, we have
(i) $t \rightarrow \Phi_{u}(t)$ has a local minimum (local maximum) at $t=t(u)$ and $t(u) u \in S^{+}\left(S^{-}\right)$if and only if $\frac{u}{\|u\|} \in L^{-}(\lambda) \bigcap B^{-}$;
(ii) $t \rightarrow \Phi_{u}(t)$ has a local maximum (local minimum) at $t=t(u)$ and $t(u) u \in S^{-}\left(S^{+}\right)$if and only if $\frac{u}{\|u\|} \in L^{+}(\lambda) \bigcap B^{+}$;
(iii) if $\frac{u}{\|u\|} \in L^{-}(\lambda) \bigcap B^{+}$or $L^{+}(\lambda) \bigcap B^{-}$, no multiple of u lies in S.

We shall prove the existence of solutions of (1.1) by looking for minimizers of J_{λ} on S. Although S is a subset of E, minimizers of J_{λ} on S are actually critical points of J_{λ} on E. Indeed, as proved in [4], Theorem 2.3, we have

Lemma 2.2 Suppose that u is a local minimum for J_{λ} on S. If $u \notin S^{0}$, then u is a critical point of J_{λ}.

3 Superlinear Case

Suppose in this section that $2<\gamma<2^{*}$. Since the range of the parameter λ affects the existence of solutions of problem (1.1), we distinguish the following cases to be discussed:
(i) $0<\lambda<\mu_{1}$;
(ii) $\lambda>\mu_{1}$;
(iii) $\lambda=\mu_{1}$.

In the case (i) $0<\lambda<\mu_{1}$, by (1.3), we see that there exists a $\delta(\lambda)>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x \geq \delta(\lambda) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V^{+}(x)|u|^{2}\right) \mathrm{d} x>0 \tag{3.1}
\end{equation*}
$$

for every $u \in H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$. Thus, $L^{-}(\lambda), L^{0}(\lambda)$ and S^{+}are empty, and $S^{0}=\{0\}$.
Lemma 31 Let $\left\{u_{n}\right\} \subset S^{-}$be a minimizing sequence of $A=\inf _{u \in S^{-}} J_{\lambda}(u)$. Suppose $\left\{u_{n}\right\}$ is bounded in E, then $\left\{u_{n}\right\}$ has a subsequence strongly convergent in E.

Proof We may assume that $u_{n} \rightharpoonup u$ in E as $n \rightarrow \infty$. We first show that $u_{n} \rightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. By Brézis-Lieb Lemma,

$$
\begin{align*}
& \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \\
= & \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x+\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x+o(1) \\
= & \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x+\int_{\{|x| \leq R\}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x+\int_{\{|x| \geq R\}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x+o(1) \\
= & \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x+\int_{\{|x| \geq R\}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x+o(1), \tag{3.2}
\end{align*}
$$

where $Q(x) \leq 0$ if $|x| \geq R$. Suppose $u_{n} \nrightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$, by the assumption $0<\lambda<\mu_{1}$ and (3.2), we would have

$$
\begin{align*}
0 & <\int_{\{|x| \geq R\}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x \\
& \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \\
& \leq \int_{\{|x| \geq R\}} Q(x)|u|^{\gamma} \mathrm{d} x+\int_{\{|x| \geq R\}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x+o(1) \\
& <\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x . \tag{3.3}
\end{align*}
$$

So there is an $s(0<s<1)$ such that

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A}(s u)\right|^{2}+V_{\lambda}(x)|s u|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)|s u|^{\gamma} \mathrm{d} x .
$$

It implies from (??) that $s u \in S^{-}$. On the other hand,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x & \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\frac{A}{\frac{1}{2}-\frac{1}{\gamma}} \\
& \leq \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A}(s u)\right|^{2}+V_{\lambda}(x)|s u|^{2}\right) \mathrm{d} x,
\end{aligned}
$$

this yields $s \geq 1$ which is a contradiction. Hence $u_{n} \rightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$.
Next, we show that $u_{n} \rightarrow u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ up to a subsequence. On the contrary, we would have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}-Q(x)|u|^{\gamma}\right) \mathrm{d} x & <\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}-Q(x)\left|u_{n}\right|^{\gamma}\right) \mathrm{d} x \\
& =0,
\end{aligned}
$$

which yields

$$
\Phi_{u}^{\prime}(1)=\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}-Q(x)|u|^{\gamma}\right) \mathrm{d} x<0
$$

So there exists $0<\alpha<1$ such that $\Phi_{u}^{\prime}(\alpha)=0$, that is, $\alpha u \in S^{-}$. Since each $\Phi_{u}(t)$ attains its maximum at $t=1$ if $0 \leq t \leq 1$ and $u \in S^{-}$, we see that

$$
J_{\lambda}(\alpha u)<\lim _{n \rightarrow \infty} J_{\lambda}\left(\alpha u_{n}\right) \leq \lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=A
$$

which is impossible. Therefore, $u_{n} \rightarrow u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and hence $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$.
Proposition 3.1 We have
(i) $\inf _{u \in S^{-}} J_{\lambda}(u)>0$;
(ii) there exists $u \in S^{-}$such that $J_{\lambda}(u)=\inf _{v \in S^{-}} J_{\lambda}(v)$.

Proof (i) Obviously, $J_{\lambda}(u) \geq 0$ if $u \in S^{-}$. We claim that $\inf _{u \in S^{-}} J_{\lambda}(u)>0$. Indeed, for $u \in S^{-}, v=\frac{u}{\|u\|} \in L^{+}(\lambda) \cap B^{+}$and $u=t(v) v$ with

$$
t(v)=\left(\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x}{\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x}\right)^{\frac{1}{\gamma-2}}
$$

u satisfies

$$
\begin{aligned}
J_{\lambda}(u) & =J_{\lambda}(t(v) v)=\left(\frac{1}{2}-\frac{1}{\gamma}\right) t^{2}(v) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x \\
& =\left(\frac{1}{2}-\frac{1}{\gamma}\right) \frac{\left(\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x\right)^{\frac{\gamma}{\gamma-2}}}{\left(\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x\right)^{\frac{2}{\gamma-2}}} \\
& \geq\left(\frac{1}{2}-\frac{1}{\gamma}\right) \frac{(\delta(\lambda))^{\frac{\gamma}{\gamma-2}}}{\left(\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x\right)^{\frac{2}{\gamma-2}}}
\end{aligned}
$$

by (3.1). To estimate the integral appeared in the denominator, we choose $R>0$ such that $Q(x)<0$ for $|x| \geq R$. Applying the Hölder and Sobolev inequalities, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x & \leq \int_{\{|x| \leq R\}} Q(x)|v|^{\gamma} \mathrm{d} x \leq c(R)\|Q\|_{\infty}\left(\int_{\{|x| \leq R\}}|v|^{2^{*}} \mathrm{~d} x\right)^{\frac{\gamma}{2^{*}}} \\
& \leq c(R)\|Q\|_{\infty}\|v\|^{\gamma}=c(R)\|Q\|_{\infty}
\end{aligned}
$$

where $c(R)>0$ is a constant depending on R. It yields

$$
\inf _{u \in S^{-}} J_{\lambda}(u) \geq\left(\frac{1}{2}-\frac{1}{\gamma}\right) \frac{(\delta(\lambda))^{\frac{\gamma}{\gamma-2}}}{\left(\|Q\|_{\infty} c(R)\right)^{\frac{2}{\gamma-2}}}>0
$$

(ii) Let $\left\{u_{n}\right\} \subset S^{-}$be a minimizing sequence for $A=\inf _{u \in S^{-}} J_{\lambda}(u)$. Since $0<\lambda<\mu_{1}$, $\left\{u_{n}\right\}$ is bounded in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and $\left\{\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x\right\}$ is also bounded. We now show that $\left\{u_{n}\right\}$ is bounded in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. We choose $R>0$ such that $Q(x) \leq \frac{Q(\infty)}{2}$ for $|x| \geq R$, then

$$
\begin{aligned}
\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x & =\int_{\{|x| \leq R\}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x+\int_{\{|x| \geq R\}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \\
& \leq \int_{\{|x| \leq R\}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x+\frac{Q(\infty)}{2} \int_{\{|x| \geq R\}}\left|u_{n}\right|^{\gamma} \mathrm{d} x .
\end{aligned}
$$

So

$$
\begin{equation*}
-\frac{Q(\infty)}{2} \int_{\{|x| \geq R\}}\left|u_{n}\right|^{\gamma} \mathrm{d} x \leq-\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x+\int_{\{|x| \leq R\}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x . \tag{3.4}
\end{equation*}
$$

It yields

$$
\begin{equation*}
\int_{\{|x| \geq R\}}\left|u_{n}\right|^{\gamma} \mathrm{d} x \leq c(R) \tag{3.5}
\end{equation*}
$$

Therefore, $\left\{u_{n}\right\}$ is bounded in $L^{\gamma}\left(\mathbb{R}^{N}\right)$ and then in E. By Lemma 3.1, we may assume that $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$. If $u(x)=0$ on \mathbb{R}^{N}, since

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x=\frac{A}{\frac{1}{2}-\frac{1}{\gamma}}>0 \tag{3.6}
\end{equation*}
$$

and $Q(x)<0$ provided that $|x| \geq R$, we obtain from (3.2) that

$$
0<\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \leq \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x=0
$$

a contradiction. Hence, $u \neq 0$. Furthermore, $J_{\lambda}(u)=\lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=\inf _{v \in S^{-}} J_{\lambda}(v)$, that is, u is a minimizer on S^{-}. This completes the proof.

In the case (ii) $\lambda>\mu_{1}$, we see that φ_{1} satisfies

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} \varphi_{1}\right|^{2}+V_{\lambda}(x)\left|\varphi_{1}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}}\left(\mu_{1}-\lambda\right) V^{-}(x)\left|\varphi_{1}\right|^{2} \mathrm{~d} x<0 .
$$

This yields $\varphi_{1} \in L^{-}(\lambda)$. If $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then $\varphi_{1} \in L^{-}(\lambda) \cap B^{-}$and S^{+}is non-empty. In this case, S may consist of two distinct components, so it is possible to obtain two solutions by showing that J_{λ} has an appropriate minimizer on each component.

Lemma 3.2 Suppose $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then there exists $\delta>0$ such that $\overline{L^{-}(\lambda)} \cap$ $\overline{B^{+}}=\emptyset$ whenever $\mu_{1} \leq \lambda<\mu_{1}+\delta$.

Proof Suppose that the result is false. Then there would exist sequences $\left\{\lambda_{n}\right\}$ and $\left\{u_{n}\right\}$ such that $\lambda_{n} \rightarrow \mu_{1}^{+},\left\|u_{n}\right\|=1$ and

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda_{n}}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \leq 0, \quad \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \geq 0 .
$$

Since $\left\{u_{n}\right\}$ is bounded in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and $V^{-} \in L^{\frac{N}{2}}\left(\mathbb{R}^{N}\right)$, we may assume that $u_{n} \rightharpoonup u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and $\int_{\mathbb{R}^{N}} V^{-}(x)\left|u_{n}\right|^{2} \mathrm{~d} x \rightarrow \int_{\mathbb{R}^{N}} V^{-}(x)|u|^{2} \mathrm{~d} x$ as $n \rightarrow \infty$. We have $u_{n} \rightarrow u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$. Otherwise, we would have

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x<\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda_{n}}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \leq 0 \tag{3.7}
\end{equation*}
$$

a contradiction. As a result

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V^{+}(x)|u|^{2}-\mu_{1} V^{-}(x)|u|^{2}\right) \mathrm{d} x=0 .
$$

It implies that there exists a constant k such that $u=k \varphi_{1}$. Since

$$
\int_{\mathbb{R}^{N}} Q^{-}(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \leq \int_{\mathbb{R}^{N}} Q^{+}(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x
$$

and $\operatorname{supp} Q^{+}$is bounded, similar to the proof of Proposition 3.1 (ii), we may show that $\left\{u_{n}\right\}$ is bounded in $L^{\gamma}\left(\mathbb{R}^{N}\right)$, by Brézis-Lieb Lemma,

$$
\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|k \varphi_{1}\right|^{\gamma} \mathrm{d} x+\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}-k \varphi_{1}\right|^{\gamma} \mathrm{d} x+o(1)
$$

This, together with $\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \geq 0$, implies that

$$
\int_{\mathbb{R}^{N}} Q(x)\left|k \varphi_{1}\right|^{\gamma} \mathrm{d} x \geq 0
$$

However, by the assumption that $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, we would have $k=0$. This is impossible as $\|u\|=\left\|k \varphi_{1}\right\|=1$.

Proposition 3.2 Suppose that $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$. Then
(i) $S^{0}=\{0\}$;
(ii) $0 \notin \overline{S^{-}}$and S^{-}is closed;
(iii) $\overline{S^{-}} \cap \overline{S^{+}}=\emptyset$;
(iv) S^{+}is bounded.

Proof (i) Suppose that there is a $u \in S^{0} \backslash\{0\}$, then $\frac{u}{\|u\|} \in L^{0}(\lambda) \cap B^{0} \subset \overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$, which is impossible.
(ii) Arguing by contradiction, we assume that there exists $\left\{u_{n}\right\} \subset S^{-}$such that $u_{n} \rightarrow 0$ in E as $n \rightarrow \infty$. Hence

$$
0<\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \rightarrow 0
$$

as $n \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|}$. We may assume that $v_{n} \rightharpoonup v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and $\int_{\mathbb{R}^{N}} V^{-}(x)\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow$ $\int_{\mathbb{R}^{N}} V^{-}(x)|v|^{2} \mathrm{~d} x$ as $n \rightarrow \infty$. Since the set $\{x: Q(x)>0\}$ is bounded, we see that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q^{+}(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|^{\gamma-2} \mathrm{~d} x=0
$$

as $n \rightarrow \infty$. So

$$
\begin{aligned}
0 & <\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|^{\gamma-2} \mathrm{~d} x \\
& \leq \int_{\mathbb{R}^{N}} Q^{+}(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|^{\gamma-2} \mathrm{~d} x
\end{aligned}
$$

This yields

$$
\lim _{n \rightarrow \infty} \lambda \int_{\mathbb{R}^{N}} V^{-}(x)\left|v_{n}\right|^{2} \mathrm{~d} x=\lambda \int_{\mathbb{R}^{N}} V^{-}(x)|v|^{2} \mathrm{~d} x=1
$$

and $v \neq 0$. We also have

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=0,
$$

which implies $\frac{v}{\|v\|} \in \overline{L^{-}(\lambda)}$. On the other hand, we may deduce from $\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x>0$ and the Brézis-Lieb Lemma that $\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x \geq 0$, so $\frac{v}{\|v\|} \in \overline{B^{+}}$. Consequently, $\frac{v}{\|v\|} \in$ $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, contradicting to the assumption. Hence, $0 \notin \overline{S^{-}}$.

Next, we prove that S^{-}is closed. By (i), we know that $\overline{S^{-}} \subset S^{-} \cup S^{0}=S^{-} \cup\{0\}$. Since $0 \notin \overline{S^{-}}$, it follows that $\overline{S^{-}}=S^{-}$.
(iii) According to (i) and (ii) we have

$$
\overline{S^{-}} \cap \overline{S^{+}} \subset \overline{S^{-}} \cap\left(S^{+} \cup S^{0}\right)=S^{-} \cap\left(S^{+} \cup\{0\}\right)=\left(S^{-} \cap S^{+}\right) \cup\left(S^{-} \cap\{0\}\right)=\emptyset .
$$

(iv) Suppose by contradiction that S^{+}is unbounded, then there would exist a sequence $\left\{u_{n}\right\} \subset S^{+}$such that $\left\|u_{n}\right\|_{E} \rightarrow \infty$. Setting $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$, we have

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|_{E}^{\gamma-2} \mathrm{~d} x
$$

giving

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x=0
$$

as $n \rightarrow \infty$. Suppose $v_{n} \rightharpoonup v$ in E, we may deduce as before that $\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x \geq 0$.
We have $v_{n} \rightarrow v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$. Indeed, if it is not true, then

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x<\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x \leq 0
$$

implies $v \neq 0$ and $\frac{v}{\|v\|} \in \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, a contradiction. Thus, $\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x \leq 0$.
We distinguish two cases to be discussed, (a) $v_{n} \rightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$; (b) $v_{n} \nrightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. If (a) occurs, then $v_{n} \rightarrow v$ in $E,\|v\|_{E}=1$ and $\frac{v}{\|v\|} \in \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, which is impossible. If (b) occurs, by Brézis-Lieb lemma, $\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x>0$, again we have $\frac{v}{\|v\|} \in \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, a contradiction. Hence, S^{+}is bounded.

Lemma 3.3 Suppose that $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$. Then
(i) every minimizing sequence for J_{λ} on S^{-}is bounded;
(ii) $\inf _{u \in S^{-}} J_{\lambda}(u)>0$;
(iii) there exists a minimizer of $J_{\lambda}(u)$ on S^{-}.

Proof (i) Let $\left\{u_{n}\right\} \subset S^{-}$be a minimizing sequence for J_{λ}. Then

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \rightarrow c \geq 0 . \tag{3.8}
\end{equation*}
$$

Suppose by contradiction that $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$, we have

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|_{E}^{\gamma-2} \mathrm{~d} x \rightarrow 0,
$$

and

$$
\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \rightarrow 0
$$

as $n \rightarrow \infty$. It implies $\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x \geq 0$. Actually, we have $v_{n} \rightarrow v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$. In fact, otherwise we would have

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x<\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=0
$$

and so $v \neq 0$ and $\frac{v}{\|v\|} \in \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, a contradiction. Now, we may obtain a contradiction as the proof of (iv) of Proposition 3.2, we omit the detail.
(ii) It is apparent that $\inf _{u \in S^{-}} J_{\lambda}(u) \geq 0$. We claim that $\inf _{u \in S^{-}} J_{\lambda}(u)>0$. In fact, if $\inf _{u \in S^{-}} J_{\lambda}(u)=0$, let $\left\{u_{n}\right\} \subset S^{-}$be a minimizing sequence, then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x=0
$$

By (i), $\left\{u_{n}\right\}$ is bounded in E. Applying the arguments of the proof of (iv) of Proposition 3.2, we may show that $u_{n} \rightarrow u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$ and

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=0
$$

If $u_{n} \nrightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$, we have $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0$, and then $\frac{u}{\|u\|} \in L^{0}(\lambda) \cap B^{+} \subset \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, a contradiction. Therefore, $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$. By Proposition 3.1 (ii), we know that $0 \notin \overline{S^{-}}$and S^{-}is closed, so $u \neq 0$. It yields $\frac{u}{\|u\|} \in L^{0}(\lambda) \cap B^{0} \subset \overline{L^{-}(\lambda)} \cap \overline{B^{+}}$, a contradiction.
(iii) Let $\left\{u_{n}\right\}$ be a minimizing sequence for J_{λ} on S^{-}. By (i), $\left\{u_{n}\right\}$ is bounded in E. Since

$$
\left(\frac{1}{2}-\frac{1}{\gamma}\right) \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x=\inf _{u \in S^{-}} J_{\lambda}(u)>0
$$

we have $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0$. The assumption $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$ implies $B^{+} \subset L^{+}(\lambda)$. Consequently

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x>0
$$

So we may assume by Lemma 3.1 that $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$. Hence, $u \in S$. We know from $\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0$ that $u \in S^{-}$. It follows

$$
J_{\lambda}(u)=\lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=\inf _{u \in S^{-}} J_{\lambda}(u)
$$

i.e., u is a minimizer for $J_{\lambda}(u)$ on S^{-}.

We now proceed to the investigation of J_{λ} on S^{+}.
Lemma 3.4 If $L^{-}(\lambda) \neq \emptyset$ and $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$, then there exists $u \in S^{+}$such that $J_{\lambda}(u)=\inf _{v \in S^{+}} J_{\lambda}(v)$.

Proof By the assumptions, $L^{-}(\lambda) \subset B^{-}$, so $S^{+} \neq \emptyset$. By Proposition 3.1 (iv), S^{+}is bounded. Using Hölder inequality and Sobolev inequality, we find for $u \in S^{+}$that

$$
\begin{aligned}
J_{\lambda}(u) & =\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x \geq-\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}} \lambda V^{-}(x)|u|^{2} \mathrm{~d} x \\
& \geq-C\left\|V^{-}\right\|_{\frac{N}{2}}
\end{aligned}
$$

so the problem $B:=\inf _{u \in S^{+}} J_{\lambda}(u)$ is well defined, it is obvious that $B<0$. Let $\left\{u_{n}\right\} \subset S^{+}$be a minimizing sequence for J_{λ}. Then

$$
J_{\lambda}\left(u_{n}\right)=\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x=\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \rightarrow B<0
$$

Since $\left\{u_{n}\right\}$ is bounded in E, assuming $u_{n} \rightharpoonup u$ in E, we obtain

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x<0
$$

It yields $\frac{u}{\|u\|} \in L^{-} \subset B^{-}$and there is a $t(u)$ such that $t(u) u \in S^{+}$with

$$
t(u)=\left(\frac{\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x}{\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x}\right)^{\frac{1}{\gamma-2}}
$$

We now show that $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$. First we establish the convergence of $\left\{u_{n}\right\}$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$. In the contrary case, there would hold

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x & <\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x<0
\end{aligned}
$$

because $\frac{u}{\|u\|} \in B^{-}$. From this we derive that $t(u)>1$, it leads to a contradiction as

$$
J_{\lambda}(t(u) u)<J_{\lambda}(u) \leq \lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=B
$$

Next, we show $u_{n} \rightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$ as $n \rightarrow \infty$. If it is not true, by Brézis-Lieb Lemma,

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \\
& <\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x
\end{aligned}
$$

which implies $t(u)>1$ and leads to a contradiction. Consequently, $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$, and then

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x<0
$$

i.e., $u \in S^{+}$and

$$
J_{\lambda}(u)=\lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=\inf _{v \in S^{+}} J_{\lambda}(v)
$$

Thus, u is a minimizer for $J_{\lambda}(u)$ on S^{+}.
Suppose $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then $\varphi_{1} \in L^{-}(\lambda)$ if $\lambda>\mu_{1}, L^{-}(\lambda) \neq \emptyset$. By Lemmas 3.2-3.4, there exists a $\delta>0$ such that J_{λ} has a minimizer on S^{-}and S^{+}respectively whenever $\mu_{1}<\lambda<\mu_{1}+\delta$. These minimizers are different from each other because $\overline{L^{-}(\lambda)} \cap \overline{B^{+}}=\emptyset$. By Lemma 2.2, we have

Proposition 3.3 If $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, then there exists a $\delta>0$ such that problem (1.1) has two distinct solutions for $\mu_{1}<\lambda<\mu_{1}+\delta$.

In the case (iii) $\lambda=\mu_{1}$, we prove that there is a mountain-pass solution of (1.1). We commence by establishing the (PS) ${ }_{c}$ condition.

Proposition 3.4 Suppose that $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$. Then the functional J_{λ} satisfies the $(\mathrm{PS})_{c}$ condition for $c \in \mathbb{R}$.

Proof Let $\left\{u_{n}\right\}$ be a $(\mathrm{PS})_{c}$ sequence.We show that $\left\{u_{n}\right\}$ is bounded in E. If it is not the case, suppose $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$, we may assume that $v_{n} \rightharpoonup v$ in E and $\int_{\mathbb{R}^{N}} V^{-}(x)\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow \int_{\mathbb{R}^{N}} V^{-}(x)|v|^{2} \mathrm{~d} x$ as $n \rightarrow \infty .\left\{v_{n}\right\}$ satisfies

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\mu_{1}}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|^{\gamma-2} \mathrm{~d} x+o(1)
$$

and

$$
\frac{\gamma}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\mu_{1}}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma}\left\|u_{n}\right\|^{\gamma-2} \mathrm{~d} x+o(1)
$$

This implies

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\mu_{1}}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x \rightarrow 0 \quad \text { and } \quad \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \rightarrow 0
$$

as $n \rightarrow \infty$. Therefore,

$$
0 \leq \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\mu_{1}}(x)|v|^{2}\right) \mathrm{d} x \leq \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\mu_{1}}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=0
$$

Then we have $v=k \varphi_{1}$ for some constant k. By Brézis-Lieb Lemma,

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \\
& =\int_{\mathbb{R}^{N}} Q(x)\left|k \varphi_{1}\right|^{\gamma} \mathrm{d} x+\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}-k \varphi_{1}\right|^{\gamma} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}} Q(x)\left|k \varphi_{1}\right|^{\gamma} \mathrm{d} x .
\end{aligned}
$$

However, $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, it should have $k=0$. So $v_{n} \rightarrow 0$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$. Choose $R>0$ so that $Q(x)<0$ if $|x| \geq R$, then

$$
0=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{\{|x| \geq R\}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \leq 0
$$

It yields $v_{n} \rightarrow 0$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. Consequently, $v_{n} \rightarrow 0$ in E. However, $\left\|v_{n}\right\|_{E}=1$, this contradiction leads to that $\left\{u_{n}\right\}$ is bounded in E. Assuming $u_{n} \rightharpoonup u$ in E, we deduce

$$
\begin{aligned}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x & \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\mu_{1}}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x \\
& =\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x \\
& =\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x+\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}-u\right|^{\gamma} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x \\
& \leq \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x
\end{aligned}
$$

The result follows.
Proposition 3.5 Suppose $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$ and $\lambda=\mu_{1}$, then problem (1.1) has a mountain-pass solution.

Proof Observing that $E \subset H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$, let V denote the orthogonal complement of the subspace span $\left\{\varphi_{1}\right\}$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$, that is

$$
V=\left\{v \mid v \in H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right) \text { and } \int_{\mathbb{R}^{N}} \nabla_{A} v \overline{\nabla_{A} \varphi_{1}}+V^{+}(x) v \overline{\varphi_{1}} \mathrm{~d} x=0\right\}
$$

we decompose $u \in E$ as $u=t \varphi_{1}+v$, where $v \in V \cap L^{\gamma}\left(\mathbb{R}^{N}\right)$. Choosing $R>0$ such that $-Q(x) \geq-\frac{Q(\infty)}{2}=m>0$ for $|x| \geq R$ and $\int_{\{|x| \leq R\}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$, we have

$$
\begin{aligned}
J_{\mu_{1}}(u) \geq & \frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x-\frac{1}{\gamma} \int_{\{|x| \leq R\}} Q(x)|u|^{\gamma} \mathrm{d} x+\frac{m}{\gamma} \int_{\{|x| \geq R\}}|u|^{\gamma} \mathrm{d} x \\
\geq & \frac{1}{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x-\frac{1}{\gamma} \int_{\{|x| \leq R\}} Q(x)\left(|u|^{\gamma}-\left|t \varphi_{1}\right|^{\gamma}\right) \mathrm{d} x \\
& -\frac{1}{\gamma} \int_{\{|x| \leq R\}} Q(x)\left|t \varphi_{1}\right|^{\gamma} \mathrm{d} x+\frac{m}{\gamma} \int_{\{|x| \geq R\}}|u|^{\gamma} \mathrm{d} x .
\end{aligned}
$$

Let $u_{1}=u, u_{2}=t \varphi_{1}, f\left(u_{1}\right)=\left|u_{1}\right|^{\gamma}, f\left(u_{2}\right)=\left|t \varphi_{1}\right|^{\gamma}$, then

$$
f\left(u_{1}\right)-f\left(u_{2}\right)=\int_{0}^{1}\left[f\left(s u_{1}+(1-s) u_{2}\right)\right]_{s}^{\prime} d s
$$

Since $s u_{1}+(1-s) u_{2}=s v+t \varphi_{1}$, we have $f\left(s u_{1}+(1-s) u_{2}\right)=\left|s v+t \varphi_{1}\right|^{\gamma}$ and

$$
\left|s v+t \varphi_{1}\right|^{\gamma}=\left[\left(s \operatorname{Re} v+\operatorname{Re}\left(t \varphi_{1}\right)\right)^{2}+\left.\left(s \operatorname{Im} v+\operatorname{Im}\left(t \varphi_{1}\right)\right)^{2}\right|^{\frac{\gamma}{2}}\right.
$$

It yields

$$
\begin{aligned}
\left(f\left(s u_{1}+(1-s) u_{2}\right)\right)_{s}^{\prime}= & \left(\left|s v+t \varphi_{1}\right|^{\gamma}\right)_{s}^{\prime} \\
= & \frac{\gamma}{2}\left[\left(s \operatorname{Re} v+\operatorname{Re}\left(t \varphi_{1}\right)\right)^{2}+\left(s \operatorname{Im} v+\operatorname{Im}\left(t \varphi_{1}\right)\right)^{2}\right]^{\frac{\gamma}{2}-1}[2(s \operatorname{Re} v \\
& \left.\left.+\operatorname{Re}\left(t \varphi_{1}\right)\right) \operatorname{Re} v+2\left(s \operatorname{Im} v+\operatorname{Im}\left(t \varphi_{1}\right)\right) \operatorname{Im} v\right] \\
= & \frac{\gamma}{2}\left[\left(s \operatorname{Re} v+\operatorname{Re}\left(t \varphi_{1}\right)\right)^{2}+\left(s \operatorname{Im} v+\operatorname{Im}\left(t \varphi_{1}\right)\right)^{2}\right]^{\frac{\gamma}{2}-1}\left[2 s|\operatorname{Re} v|^{2}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+2 \operatorname{Re}\left(t \varphi_{1}\right) \operatorname{Re} v+2 s|\operatorname{Im} v|^{2}+2 \operatorname{Im}\left(t \varphi_{1}\right) \operatorname{Im} v\right] \\
\leq & \frac{\gamma}{2}\left[2(s \operatorname{Re} v)^{2}+2\left(\operatorname{Re}\left(t \varphi_{1}\right)\right)^{2}+2(s \operatorname{Im} v)^{2}+2\left(\operatorname{Im}\left(t \varphi_{1}\right)\right)^{2}\right]^{\frac{\gamma}{2}-1}\left[2 s|v|^{2}\right. \\
& \left.+2\left(\operatorname{Re}\left(t \varphi_{1}\right) \operatorname{Re} v+\operatorname{Im}\left(t \varphi_{1}\right) \operatorname{Im} v\right)\right] \\
\leq & \frac{\gamma}{2}\left[2 s^{2}|v|^{2}+2\left|t \varphi_{1}\right|^{2}\right]^{\frac{\gamma}{2}-1}\left[2 s|v|^{2}+4|v|\left|t \varphi_{1}\right|\right] \\
\leq & c\left(|v|^{\gamma-2}+\left|t \varphi_{1}\right|^{\gamma-2}\right)\left(|v|^{2}+|v|\left|t \varphi_{1}\right|\right) \\
= & c\left(|v|^{\gamma}+|v|^{\gamma-1}\left|t \varphi_{1}\right|+|v|^{2}\left|t \varphi_{1}\right|^{\gamma-2}+|v|\left|t \varphi_{1}\right|^{\gamma-1}\right) .
\end{aligned}
$$

By Young's inequality,

$$
\begin{aligned}
& |v|^{\gamma-1}\left|t \varphi_{1}\right| \leq c_{1}|v|^{\left(\gamma-1-\frac{1}{\gamma-1}\right) \frac{\gamma}{\gamma-1-\frac{1}{\gamma-1}}}+c_{2}\left(|v|^{\frac{1}{\gamma-1}}\left|t \varphi_{1}\right|\right)^{\gamma-1}=c_{1}|v|^{\gamma}+c_{2}|v|\left|t \varphi_{1}\right|^{\gamma-1} . \\
& |v|^{2}\left|t \varphi_{1}\right|^{\gamma-2} \leq c_{1}\left(|v|^{2-\frac{\gamma-2}{\gamma-1}}\right)^{\frac{\gamma}{2-\frac{\gamma-2}{\gamma-1}}}+c_{2}\left(|v|^{\frac{\gamma-2}{\gamma-1}}\left|t \varphi_{1}\right|^{\gamma-2}\right)^{\frac{\gamma-1}{\gamma-2}}=c_{1}|v|^{\gamma}+c_{2}|v|\left|t \varphi_{1}\right|^{\gamma-1} .
\end{aligned}
$$

It follows $\left(f\left(s u_{1}+(1-s) u_{2}\right)\right)_{s}^{\prime} \leq c\left(|v|^{\gamma}+|v|\left|t \varphi_{1}\right|^{\gamma-1}\right)$. By Hölder inequality,

$$
\int_{\{|x| \leq R\}}\left|v\left\|\left.t \varphi_{1}\right|^{\gamma-1} \mathrm{~d} x \leq c t^{\gamma-1}\right\| v \|\right.
$$

Thus

$$
\int_{\{|x| \leq R\}} Q(x)\left(|u|^{\gamma}-\left|t \varphi_{1}\right|^{\gamma}\right) \mathrm{d} x \leq c \int_{\{|x| \leq R\}}|v|^{\gamma} \mathrm{d} x+c t^{\gamma-1}\|v\|
$$

On the other hand,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\mu_{1}}(x)|u|^{2}\right) \mathrm{d} x \\
= & t^{2} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} \varphi_{1}\right|^{2}+V_{\mu_{1}}(x)\left|\varphi_{1}\right|^{2}\right) \mathrm{d} x+\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\mu_{1}}(x)|v|^{2}\right) \mathrm{d} x \\
= & \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\mu_{1}}(x)|v|^{2}\right) \mathrm{d} x \\
\geq & \left(1-\frac{\mu_{1}}{\mu_{2}}\right) \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V^{+}(x)|v|^{2}\right) \mathrm{d} x=\left(1-\frac{\mu_{1}}{\mu_{2}}\right)\|v\|^{2},
\end{aligned}
$$

we obtain

$$
J_{\mu_{1}}(u) \geq\left(1-\frac{\mu_{1}}{\mu_{2}}\right)\|v\|^{2}+c|t|^{\gamma}-c \int_{\{|x| \leq R\}}|v|^{\gamma} \mathrm{d} x-c t^{\gamma-1}\|v\|+\frac{m}{\gamma} \int_{\{|x| \geq R\}}|u|^{\gamma} \mathrm{d} x
$$

for some constant $c>0$. Introducing the following equivalent norm on E :

$$
\|u\|_{E}=\left(\max (|t|,\|v\|)^{2}+\|u\|_{\gamma}^{2}\right)^{\frac{1}{2}}:=\left(\|u\|_{*}^{2}+\|u\|_{\gamma}^{2}\right)^{\frac{1}{2}}
$$

we obtain that

$$
J_{\mu_{1}}(u) \geq c_{0} \delta^{\gamma}+\frac{m}{\gamma} \int_{\{|x| \geq R\}}|u|^{\gamma} \mathrm{d} x
$$

for some constant $c_{0}>0$ and $\|u\|_{*}=\delta$ sufficiently small. If $\|u\|_{E}=\rho$ and $\|u\|_{*}=\delta \rightarrow 0$, then $\|u\|_{\gamma} \rightarrow \rho$. Hence

$$
\liminf _{\|u\|_{E}=\rho, \delta \rightarrow 0} \int_{|x| \geq R}|u|^{\gamma} \mathrm{d} x \geq c_{1} \rho^{\gamma}
$$

for some constant $c_{1}>0$. Therefore, $J_{\mu_{1}}(u) \geq \alpha$ for $\|u\|_{E}=\rho$ and $\alpha, \rho>0$. Finally, let $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$ be with $\operatorname{supp} \eta \subset\{x, Q(x)>0\}$. Then for sufficiently large $t>0$ we get $J_{\mu_{1}}(t \eta)<0$. The result follows by the mountain pass lemma.

Proof of Theorem 1.1 The consequence of Theorem 1.1 follows from Lemma 2.2, Propositions 3.1, 3.3 and 3.5.

4 Sublinear case

In this section, we prove Theorem 1.2. We know from Section 3 that, $\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+\right.$ $\left.V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x \geq\left(\mu_{1}-\lambda\right) \int_{\mathbb{R}^{N}} V^{-}(x)|u|^{2} \mathrm{~d} x>0$ for all $u \in E \backslash\{0\}$ provided that $\lambda<\mu_{1}$, so $L^{+}(\lambda)=\{u \in E:\|u\|=1\}$ and $L^{-}(\lambda)=L^{0}(\lambda)=\emptyset$. If $\lambda>\mu_{1}, L^{-}(\lambda)$ becomes non-empty and gets larger as λ increases. So, to prove Theorem 1.2, we discuss the vital role played by the condition $L^{-}(\lambda) \subset B^{-}$in determining the nature of the Nehari manifold, and we get a result similar to the Proposition 3.2. It is always true that $L^{-}(\lambda) \subset B^{-}$if $\lambda<\mu_{1}$, and this may or may not be satisfied if $\lambda>\mu_{1}$.

Proposition 4.1 Suppose there exists $\hat{\lambda}$ such that for all $\lambda<\hat{\lambda}, L^{-}(\lambda) \subset B^{-}$. Then, for $\lambda<\hat{\lambda}$,
(i) $\quad L^{0}(\lambda) \subset B^{-}$and so $L^{0}(\lambda) \bigcap B^{0}=\emptyset$;
(ii) S^{+}is bounded;
(iii) $0 \notin \overline{S^{-}}$and S^{-}is closed;
(iv) $\overline{S^{+}} \bigcap S^{-}=\emptyset$.

Proof (i) Suppose that the result is false. Then there would exist $u \in L^{0}(\lambda)$ and $u \notin B^{-}$. If $\lambda<\mu<\hat{\lambda}$, then $u \in L^{-}(\mu)$ and $L^{-}(\mu) \not \subset B^{-}$, which is a contradiction.
(ii) Suppose that S^{+}is unbounded. Then there would exist $\left\{u_{n}\right\} \subset S^{+}$such that $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$. We may assume $v_{n} \rightharpoonup v$ in E and $\int_{\mathbb{R}^{N}} V^{-}(x)\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow$ $\int_{\mathbb{R}^{N}} V^{-}(x)|v|^{2} \mathrm{~d} x$ as $n \rightarrow \infty$. Since $u_{n} \in S$,

$$
\begin{equation*}
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) d x=\frac{\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x}{\left\|u_{n}\right\|_{E}^{2-\gamma}} \tag{4.1}
\end{equation*}
$$

We deduce from

$$
\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \leq \sup _{x \in \mathbb{R}^{N}} Q(x) \int_{\mathbb{R}^{N}}\left|v_{n}\right|^{\gamma} \mathrm{d} x<\infty
$$

and (4.1) that

$$
\int_{\mathbb{R}^{N}}\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow 0
$$

as $n \rightarrow \infty$. By the fact $u_{n} \in S^{+}$and Brézis-Lieb Lemma, we deduce

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x \geq 0 \tag{4.2}
\end{equation*}
$$

We have $v_{n} \rightarrow v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$. Indeed, if not,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x<\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=0
$$

Thus $v \neq 0$ and by (i), $\frac{v}{\|v\|} \in L^{-}(\lambda) \subset B^{-}$, a contradiction to (4.2). Hence,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x=\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+\lambda V(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=0
$$

We now distinguish two cases: (a) $v_{n} \rightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$; (b) $v_{n} \nrightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. If (a) occurs, then $v_{n} \rightarrow v$ in E and so $\|v\|_{E}=1$, thus $v \neq 0$ and we have $\frac{v}{\|v\|} \in L^{0}(\lambda) \subset B^{-}$which contradicts to (4.2). If (b) occurs, then by Brézis-Lieb Lemma, $\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x>0$, again $v \neq 0$ and we have $\frac{v}{\|v\|} \in L^{-}(\lambda) \subset B^{-}$, which is impossible either. As a result, S^{+}is bounded.
(iii) Suppose $0 \in \overline{S^{-}}$. Then there exists $\left\{u_{n}\right\} \subset S^{-}$such that $u_{n} \rightarrow 0$ in E as $n \rightarrow \infty$. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$. We may assume $v_{n} \rightharpoonup v$ in E and $\int_{\mathbb{R}^{N}} \lambda V^{-}(x)\left|v_{n}\right|^{2} \mathrm{~d} x \rightarrow \int_{\mathbb{R}^{N}} \lambda V^{-}(x)|v|^{2} \mathrm{~d} x$ as $n \rightarrow \infty$. Since $u_{n} \in S^{-}$, by (4.1),

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x \rightarrow 0 \tag{4.3}
\end{equation*}
$$

We have $v_{n} \rightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. Indeed, otherwise, by Brézis-Lieb Lemma and (??), we obtain

$$
\int_{\mathbb{R}^{N}} Q(x)|v|^{\gamma} \mathrm{d} x>0
$$

This implies $v \neq 0$ and $\frac{v}{\|v\|} \in B^{+}$. On the other hand,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x \leq \liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x \leq 0
$$

so $\frac{v}{\|v\|} \in L^{0}(\lambda)$ or $L^{-}(\lambda)$, but $\frac{v}{\|v\|} \in B^{+}$which contradicts to (i). Therefore, $v_{n} \rightarrow v$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$.
If $v_{n} \rightarrow v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$, we get $v_{n} \rightarrow v$ in E. So $\|v\|_{E}=1$ and $\frac{v}{\|v\|} \in L^{0}(\lambda) \cap B^{0}$ or $\frac{v}{\|v\|} \in L^{-}(\lambda) \cap B^{0}$, which is impossible. Hence $v_{n} \nrightarrow v$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v\right|^{2}+V_{\lambda}(x)|v|^{2}\right) \mathrm{d} x<\liminf _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x \leq 0
$$

that is, $v \neq 0$ and $\frac{v}{\|v\|} \in L^{-}(\lambda) \cap B^{0}$, which again gives a contradiction. Thus $0 \notin \overline{S^{-}}$.
We now prove that S^{-}is closed. Suppose that $\left\{u_{n}\right\} \subset S^{-}$and $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$. Then $u \in \overline{S^{-}}$and $u \neq 0$ by (iii). Moreover,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x \leq 0 .
$$

If both integrals equal 0 , then $\frac{u}{\|u\|} \in L^{0}(\lambda) \bigcap B^{0}$, which contradicts (i). Hence both integrals must be negative and so $u \in S^{-}$. Thus S^{-}is closed.
(iv) If there is a $u \in \overline{S^{+}} \bigcap S^{-}$, then $u \neq 0$. Moreover,

$$
\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u\right|^{2}+V_{\lambda}(x)|u|^{2}\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x=0
$$

and so $\frac{u}{\|u\|} \in L^{0}(\lambda) \bigcap B^{0}$, a contradiction to (i).
Obviously, $J_{\lambda}(u)>0$ on S^{-}. Moreover,
Proposition 4.2 Suppose there exists $\hat{\lambda}$ such that for all $\lambda<\hat{\lambda}, L^{-}(\lambda) \subset B^{-}$and S^{-}is non-empty, then
(i) every minimizing sequence for J_{λ} on S^{-}is bounded;
(ii) $\inf _{u \in S^{-}} J_{\lambda}(u)>0$.

Proof (i) Let $\left\{u_{n}\right\} \subset S^{-}$be a sequence such that $\lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=\inf _{u \in S^{-}} J_{\lambda}(u)$. Suppose by contradiction that $\left\{u_{n}\right\}$ is unbounded in E. We may assume that $\left\|u_{n}\right\|_{E} \rightarrow \infty$ as $n \rightarrow \infty$. Since $J_{\lambda}\left(u_{n}\right)$ is bounded and $\left\{u_{n}\right\} \subset S$, it follows that both $\left\{\int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} u_{n}\right|^{2}+V_{\lambda}(x)\left|u_{n}\right|^{2}\right) \mathrm{d} x\right\}$ and $\left\{\int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x\right\}$ are bounded. Let $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{E}}$, we have

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}}\left(\left|\nabla_{A} v_{n}\right|^{2}+V_{\lambda}(x)\left|v_{n}\right|^{2}\right) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|v_{n}\right|^{\gamma} \mathrm{d} x=0
$$

Similar to the proof of Proposition 4.1 (iii), we may get a contradiction.
(ii) We know that $\inf _{u \in S^{-}} J_{\lambda}(u) \geq 0$. To show $\inf _{u \in S^{-}} J_{\lambda}(u)>0$, we may assume, on the contrary, that there exists a sequence $\left\{u_{n}\right\} \subset S^{-}$such that $\lim _{n \rightarrow \infty} J_{\lambda}\left(u_{n}\right)=\inf _{u \in S^{-}} J_{\lambda}(u)=0$. By (i), $\left\{u_{n}\right\}$ is bounded in E. Then we may obtain a contradiction by the same argument as the proof of (i). The proof is completed.

Lemma 4.1 Suppose there exists a $\hat{\lambda}$ such that $L^{-}(\lambda) \subset B^{-}$for all $\lambda<\hat{\lambda}$. Then for all $\lambda<\hat{\lambda}$,
(i) there exists a minimizer for J_{λ} on S^{+};
(ii) there exists a minimizer for J_{λ} on S^{-}provided that S^{-}is non-empty.

Proof The proof of (i) is similar to that of Lemma 3.4, we sketch it. For $u \in S^{+}$, $J_{\lambda}(u)=\left(\frac{1}{2}-\frac{1}{\gamma}\right) \int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x<0$, thus $\inf _{u \in S^{+}} J_{\lambda}(u)<0$. Let $\left\{u_{n}\right\} \subset S^{+}$be a minimizing sequence, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x>0 \tag{4.4}
\end{equation*}
$$

By Proposition 4.1, S^{+}is bounded, we may assume that $u_{n} \rightharpoonup u$ in E. It yields

$$
\begin{equation*}
\int_{\mathbb{R}^{N}} Q(x)|u|^{\gamma} \mathrm{d} x>0 \tag{4.5}
\end{equation*}
$$

So $u \neq 0$ and $\frac{u}{\|u\|} \in B^{+}$. By Proposition 4.1, $\frac{u}{\|u\|} \in L^{+}(\lambda)$. So there exists a $t(u)$ such that $t(u) u \in S^{+}$. Now, we may show $u_{n} \rightarrow u$ in E as in the proof of Lemma 3.4. The assertion then follows readily.

The idea of the proof of (ii) is similar to that of Lemma 3.3, we sketch it.
Let $\left\{u_{n}\right\}$ be a minimizing sequence of $\inf _{u \in S^{-}} J_{\lambda}(u)$. By Proposition 4.2, $\left\{u_{n}\right\}$ is bounded in E. We assume $u_{n} \rightharpoonup u$ in E. By Proposition 4.2 (ii),

$$
\left(\frac{1}{2}-\frac{1}{\gamma}\right) \lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x=\inf _{u \in S^{-}} J_{\lambda}(u)>0
$$

it follows that $\lim _{n \rightarrow \infty} \int_{\mathbb{R}^{N}} Q(x)\left|u_{n}\right|^{\gamma} \mathrm{d} x<0$.
To complete the proof, it is sufficient to show $u_{n} \rightarrow u$ in E as $n \rightarrow \infty$.
First, we have $u_{n} \rightarrow u$ in $H_{A, V^{+}}^{1}\left(\mathbb{R}^{N}\right)$. Otherwise, we would have $u \neq 0, \frac{u}{\|u\|} \in L^{-}(\lambda) \bigcap B^{-}$ and there exists a $t(u)<1$ such that $t(u) u \in S^{-}$.

However, the map $J_{\lambda}(t u)$ attains its maximum at $t=1$ if $0 \leq t \leq 1$ and $t(u) u \in S^{-}$. Then, we obtain

$$
J_{\lambda}(t(u) u)<\lim _{n \rightarrow \infty} J_{\lambda}\left(t(u) u_{n}\right) \leq J_{\lambda}\left(u_{n}\right)=\inf _{u \in S^{-}} J_{\lambda}(u)
$$

a contradiction.
Next, we show $u_{n} \rightarrow u$ in $L^{\gamma}\left(\mathbb{R}^{N}\right)$. Otherwise, we may find a $t(u)<1$ such that $t(u) u \in S^{-}$, again we may obtain a contradiction. The result then follows.

Lemma 4.2 Suppose $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$. Then there exists $\delta_{1}>0$ such that $u \in$ $L^{-}(\lambda) \Rightarrow u \in B^{-}$whenever $\mu_{1} \leq \lambda<\mu_{1}+\delta_{1}$.

The result can be proved similar to the proof of Lemma 3.2.
Corollary 4.1 Suppose $\int_{\mathbb{R}^{N}} Q(x)\left|\varphi_{1}\right|^{\gamma} \mathrm{d} x<0$ and $\mu_{1}<\lambda<\mu_{1}+\delta_{1}$, then there exist minimizers u_{λ} and v_{λ} of J_{λ} on S^{+}and S^{-}, respectively.

Proof We know that $\varphi_{1} \in L^{-}(\lambda)$, so $L^{-}(\lambda)$ is non-empty if $\mu_{1}<\lambda$. By Lemma 4.2, the hypotheses of Lemma 4.1 are satisfied with $\hat{\lambda}=\mu_{1}+\delta_{1}$, the result follows.

Proof of Theorem 1.2 Since $L^{-}(\lambda)$ is empty for $\lambda<\mu_{1}$, it follows from Lemma 4.1 that J_{λ} has a minimizer on S^{+}if $\lambda<\mu_{1}$. Theorem 1.2 is a direct consequence of Lemmas 2.2 and 4.1, and Corollary 4.1.

References

[1] Arioli G, Szulkin A. A semilinear Schrödinger equation in the presence of a magnetic field. Arch Rat Mech Anal, 2003, 170: 277-295
[2] Brown K J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc Var PDE, 2005, 22: 483-494
[3] Binding P A, Drabek P, Huang Y X. On Neumann boundary value problems for some quasilinear elliptic equations. Elec Jour Diff Equations, 1997, 5: 1-11
[4] Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic problem with a sign changing weight function. Jour Diff Equations, 2003, 193: 481-499
[5] Cingolani S. Semilinear stationary states of Nonlinear Schrödinger equations with an external magnetic field. Jour Diff Equations, 2003, 188: 52-79
[6] Chabrowski J, Costa D G. On a class of Schrödinger-type equations with indefinite weight functions. (preprint)
[7] Chabrowski J, Andrzej Szulkin. On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol Mech Nonl Anal, 2005, 4: 59-78
[8] Costa D G, Tehrani H. Existence of positive solutions for a class of indefinite elliptic problems. Calc Var PDE, 2001, 13(2): 159-189
[9] Drabek P, Pohozaev S I. Positive solutions for the P-Laplacian: application of the fibering method. Proc Royal Soc Edinburgh, 1997, 127: 703-726
[10] Dai Shuang, Yang Jianfu. Existence of nonnegative solutions for a class of p-Laplacian equations in \mathbb{R}^{N}. Adv Nonlinear Studies, 2007, 7(1): 107-130
[11] Kurata Kazuhiro. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger equation with electromagnetic fields. Nonlinear Analysis, 2000, 41: 763-778
[12] Lieb E H, Loss M. Analysis, Graduate Studies in Mathematics 14, AMS (1997)
[13] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case Part I, Revista Math Iberoamericano, 1985, 1(1): 145-201
[14] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case, Part II, Revista Math Iberoamericano, 1985, 1(2): 45-121
[15] Nehari Z. On a class of nonlinear second-order differential equations. Trans Amer Math Soc, 1960, 95 : 101-123
[16] Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkhauser, 1996

[^0]: ＊Received April 24，2007．This work was supported by NNSF of China（10571175）

