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EQUATION WITH MAGNETIC FIELD∗

Peng Chaoquan (���)
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071,

Graduate School, Chinese Academy of Sciences, Beijing 100049,

E-mail: pcq1979@163.com

Yang Jianfu (���)
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071,

E-mail: jfyang@wipm.ac.cn

Abstract The authors consider the semilinear Schrödinger equation

−∆Au + Vλ(x)u = Q(x)|u|γ−2u in R
N ,

where 1 < γ < 2∗ and γ 6= 2, Vλ = V + − λV −. Exploiting the relation between the

Nehari manifold and fibrering maps, the existence of nontrivial solutions for the problem

is discussed.
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1 Introduction

In this article, we study the existence of nontrivial solutions of the semilinear Schrödinger

equation

−∆Au + Vλ(x)u = Q(x)|u|γ−2u, x ∈ R
N , (1.1)

where −∆A = (−i∇ + A)
2
, u : R

N → C, N ≥ 3, 1 < γ < 2∗ and γ 6= 2. The coefficient Vλ is

the scalar (or electric) potential and A = (A1, · · · , AN ) : RN → RN the vector (or magnetic)

potential. We assume in this paper that A ∈ L2
loc(R

N ), Vλ(x) and Q(x) are continuous functions

changing signs on RN . Vλ(x) = V +(x) − λV −(x), where V +(x) = max(V (x), 0), V −(x) =

max(−V (x), 0) and V −(x) ∈ L
N
2 (RN ). It is assumed that lim

|x|→∞
Q(x) = Q(∞) < 0. Further

assumptions on Vλ(x) and Q(x) will be formulated later.

In the case A = 0, the problem was extensively studied. In particular, in a bounded

domain Ω, it was established in [4] the existence and multiplicity of non-negative solutions of

∗Received April 24, 2007. This work was supported by NNSF of China (10571175)
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(1.1) for γ > 2. Later, the case 1 < γ < 2 was considered in [2]. In the whole space RN , if

V ∈ L
N
2 (RN ), the eigenvalue problem

−∆u = λV (x)u in R
N

has a sequence of eigenvalues, 0 < λ1(V ) ≤ λ2(V ) ≤ · · · ≤ λn(V ) ≤ · · ·, of finite multiplicity

and going to infinity. Under this condition, it was proved in [8], that, for Vλ = −λV ,

(i) problem (1.1) has a positive solution for every 0 < λ < λ1(V ),

(ii) if
∫

RN Qφ
γ
1dx < 0, where φ1 is the eigenfunction corresponding to λ1(V ), then there

exists a constant δ > 0 such that problem (1.1) admits at least two positive solutions for every

λ1(V ) < λ < λ1(V ) + δ. These solutions were obtained by the mountain-pass lemma and local

minimization. Similar results were obtained for the p−Laplacian in RN in [6] and [10].

Recently, much interest in the case A 6= 0 has arisen and various existence results were

obtained, see for instance, [1], [5], [7], [11] and references therein. Inspired by [2] and [4], we

consider the existence of nontrivial solutions for (1.1) with A 6= 0. We classify the Nehari

manifold, and find solutions of (1.1) as minimizers of the associated functional on two distinct

components of the Nehari manifold.

It is known from [7] that the eigenvalue problem

−∆Au + V +(x)u = µV −(x)u in R
N (1.2)

has a sequence of eigenvalues 0 < µ1 < µ2 ≤ µ3 ≤ . . . ≤ µn → ∞ if V − 6= 0 and V − ∈ L
N
2 (RN ).

Let us denote the corresponding orthonormal system of eigenfunctions by ϕ1(x), ϕ2(x), · · ·. The

sequence is complete in the Hilbert space H1
A,V +(RN ), where H1

A,V +(RN ) is the closure of

C∞
0 (RN ) with respect to the norm

‖u‖ =
(

∫

RN

(

|∇Au|2 + V +(x)|u|2
)

dx
)

1
2

,

and ∇Au = (∇ + iA)u, V +(x) = max(V (x), 0). The first eigenvalue µ1 is defined by the

Rayleigh quotient

µ1 = inf
u∈H1

A,V +
(RN )

∫

RN (|∇Au|2 + V +(x)|u|2)dx
∫

RN V −(x)|u|2dx
. (1.3)

Our main result is as follows.

Theorem 1.1 If 2 < γ < 2∗, then

(i) problem (1.1) has a solution for 0 < λ < µ1,

(ii) if
∫

RN Q(x)|ϕ1|γdx < 0 and λ = µ1, then problem (1.1) has a solution.

(iii) if
∫

RN Q(x)|ϕ1|γdx < 0, then there exists a constant δ > 0 such that problem (1.1)

admits at least two solutions for µ1 < λ < µ1 + δ.

For the case of 1 < γ < 2, we have

Theorem 1.2 (i) Problem (1.1) has a solution for 0 < λ < µ1,

(ii) If
∫

RN Q(x)|ϕ1|γdx < 0, then there exists a constant δ > 0 such that problem (1.1)

admits at least two solutions for µ1 < λ < µ1 + δ.

We point out that ϕ1 may not belong to Lγ(RN ). The condition
∫

RN Q(x)|ϕ1|γdx < 0 is

an extra assumption on Q .

In Section 2 we discuss the relation between the Nehari manifold and the fibrering maps.

Theorems 1.1 and 1.2 are proved in Section 3 and Section 4.
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2 Preliminaries

Suppose u ∈ H1
A,V +(RN ), by the diamagnetic inequality ([12], Theorem 7.21), |u| ∈

D1,2(RN ), where D1,2(RN ) is the usual Sobolev space of real valued functionals defined by

D1,2(RN ) =
{

u; u ∈ L2∗

(RN ), ∇u ∈ L2(RN )
}

.

Therefore, u ∈ L2∗

(RN ), where 2∗ = 2N
N−2 . Functions in H1

A,V +(RN ) may not belong to

Lγ(RN ) with 1 < γ < 2 or 2 < γ < 2∗. So we look for solutions of problem (1.1) in the space

E = H1
A,V +(RN ) ∩ Lγ(RN ) equipped with norm

‖u‖E =
(

∫

RN

(|∇Au|2 + V +(x)|u|2)dx + (

∫

RN

|u|γdx)
2
γ

)
1
2

.

Alternatively, E can be defined as the completion of C∞
0 (RN ) with respect to the above norm.

It is apparent that the functional

Jλ(u) =
1

2

∫

RN

(

|∇Au|2 + Vλ(x)|u|2
)

dx −
1

γ

∫

RN

Q(x)|u|γdx

is a C1-functional in E. Critical points of Jλ in E are solutions of problem (1.1), which belong

to the so-called Nehari manifold

S =
{

u ∈ E :

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx =

∫

RN

Q(x)|u|γdx
}

.

On S, we have that

Jλ(u) =
(1

2
−

1

γ

)

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx =
(1

2
−

1

γ

)

∫

RN

Q(x)|u|γdx. (2.1)

The Nehari manifold S is closely linked to the behavior of functions Φu : t → Jλ(tu) (t ≥ 0).

Such maps are known as fibrering maps introduced in [9], and were also discussed in [2], [4],

[6]. If u ∈ E, we have

Φu(t) =
t2

2

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx −
tγ

γ

∫

RN

Q(x)|u|γdx; (2.2)

Φ′
u(t) = t

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx − tγ−1

∫

RN

Q(x)|u|γdx; (2.3)

Φ′′
u(t) =

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx − (γ − 1)tγ−2

∫

RN

Q(x)|u|γdx. (2.4)

Obviously, u ∈ S if and only if Φ′
u(1) = 0. More generally, Φ′

u(t) = 0 if and only if tu ∈ S, i.e.,

elements in S correspond to stationary points of fibrering maps. It follows from (??) and (??)

that if Φ′
u(t) = 0, then Φ′′

u(t) = (2 − γ)tγ−2
∫

RN Q(x)|u|γdx. So we may divide S into three

subsets S+, S− and S0 as follows:

S+ =
{

u ∈ S : (2 − γ)

∫

RN

Q(x)|u|γdx > 0
}

,

S− =
{

u ∈ S : (2 − γ)

∫

RN

Q(x)|u|γdx < 0
}

,
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S0 =
{

u ∈ S : (2 − γ)

∫

RN

Q(x)|u|γdx = 0
}

.

S+, S− and S0 correspond to local minima, local maxima and inflection points of the fibrering

maps Φu(t), respectively. Consequently,

Lemma 2.1 Let u ∈ S. Then

(i) Φ′
u(1) = 0;

(ii) u ∈ S+, S−, S0 if Φ′′
u(1) > 0, Φ′′

u(1) < 0, Φ′′
u(1) = 0, respectively.

On the other hand, for u ∈ E,

(i) if
∫

RN (|∇Au|2+Vλ(x)|u|2)dx and
∫

RN Q(x)|u|γdx have the same sign, Φu has a unique

turning point at

t(u) =

(

∫

RN (|∇Au|2 + Vλ(x)|u|2)dx
∫

RN Q(x)|u|γdx

)

1
γ−2

.

If 2 < γ < 2∗, t(u) is a local minimum (maximum) of Φu(t) and t(u)u ∈ S+ (S−) if and only if
∫

RN Q(x)|u|γdx < 0(> 0). The case 1 < γ < 2 can be discussed analogously.

(ii) if
∫

RN (|∇Au|2 + Vλ(x)|u|2)dx and
∫

RN Q(x)|u|γdx have different signs, then Φu has

no turning points and so no multiples of u lying in S.

We define

L+(λ) =
{

u ∈ E : ‖u‖ = 1,

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx > 0
}

.

L−(λ), L0(λ) are defined by replacing > in L+ by < and = respectively. We also define

B+ =
{

u ∈ E : ‖u‖ = 1,

∫

RN

Q(x)|u|γdx > 0
}

,

and B−, B0 are defined by replacing > in B+ by < and =, respectively.

Thus, if 2 < γ < 2∗ (1 < γ < 2) and u ∈ L+(λ) ∩ B+, we have Φu(t) > 0(< 0) for

t > 0 small and Φu(t) → −∞(+∞) as t → ∞, Φu(t) has a unique maximum (minimum)

point at t(u) with t(u)u ∈ S−(S+). Similarly, if u ∈ L−(λ) ∩ B−, Φu(t) < 0(> 0) for t small,

Φu(t) → +∞(−∞) as t → ∞ and Φu(t) has a unique minimum (maximum) point at t(u) with

t(u)u ∈ S+(S−). Finally, if u ∈ L+(λ)∩B− (L−(λ)∩B+), Φu is strictly increasing (decreasing)

for all t > 0. Consequently, if u ∈ E\{0} and 2 < γ < 2∗ (1 < γ < 2), we have

(i) t → Φu(t) has a local minimum (local maximum) at t = t(u) and t(u)u ∈ S+(S−) if

and only if u
‖u‖ ∈ L−(λ)

⋂

B−;

(ii) t → Φu(t) has a local maximum (local minimum) at t = t(u) and t(u)u ∈ S−(S+) if

and only if u
‖u‖ ∈ L+(λ)

⋂

B+;

(iii) if u
‖u‖ ∈ L−(λ)

⋂

B+ or L+(λ)
⋂

B−, no multiple of u lies in S.

We shall prove the existence of solutions of (1.1) by looking for minimizers of Jλ on S.

Although S is a subset of E, minimizers of Jλ on S are actually critical points of Jλ on E.

Indeed, as proved in [4], Theorem 2.3, we have

Lemma 2.2 Suppose that u is a local minimum for Jλ on S. If u 6∈ S0, then u is a

critical point of Jλ.
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3 Superlinear Case

Suppose in this section that 2 < γ < 2∗. Since the range of the parameter λ affects the

existence of solutions of problem (1.1), we distinguish the following cases to be discussed:

(i) 0 < λ < µ1;

(ii) λ > µ1;

(iii) λ = µ1.

In the case (i) 0 < λ < µ1, by (1.3), we see that there exists a δ(λ) > 0 such that
∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx ≥ δ(λ)

∫

RN

(|∇Au|2 + V +(x)|u|2)dx > 0, (3.1)

for every u ∈ H1
A,V +(RN )\{0}. Thus, L−(λ), L0(λ) and S+ are empty, and S0 = {0}.

Lemma 31 Let {un} ⊂ S− be a minimizing sequence of A = inf
u∈S−

Jλ(u). Suppose {un}

is bounded in E, then {un} has a subsequence strongly convergent in E.

Proof We may assume that un ⇀ u in E as n → ∞. We first show that un → u in

Lγ(RN ). By Brézis-Lieb Lemma,
∫

RN

Q(x)|un|
γdx

=

∫

RN

Q(x)|u|γdx +

∫

RN

Q(x)|un − u|γdx + o(1)

=

∫

RN

Q(x)|u|γdx +

∫

{|x|≤R}

Q(x)|un − u|γdx +

∫

{|x|≥R}

Q(x)|un − u|γdx + o(1)

=

∫

RN

Q(x)|u|γdx +

∫

{|x|≥R}

Q(x)|un − u|γdx + o(1), (3.2)

where Q(x) ≤ 0 if |x| ≥ R. Suppose un 6→ u in Lγ(RN ), by the assumption 0 < λ < µ1 and

(3.2), we would have

0 <

∫

{|x|≥R}

(|∇Au|2 + Vλ(x)|u|2)dx

≤ lim inf
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx

≤

∫

{|x|≥R}

Q(x)|u|γdx +

∫

{|x|≥R}

Q(x)|un − u|γdx + o(1)

<

∫

RN

Q(x)|u|γdx. (3.3)

So there is an s(0 < s < 1) such that
∫

RN

(|∇A(su)|2 + Vλ(x)|su|2)dx =

∫

RN

Q(x)|su|γdx.

It implies from (??) that su ∈ S−. On the other hand,
∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx ≤ lim inf
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx =
A

1
2 − 1

γ

≤

∫

RN

(|∇A(su)|2 + Vλ(x)|su|2)dx,
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this yields s ≥ 1 which is a contradiction. Hence un → u in Lγ(RN ) as n → ∞.

Next, we show that un → u in H1
A,V +(RN ) up to a subsequence. On the contrary, we

would have
∫

RN

(|∇Au|2 + Vλ(x)|u|2 − Q(x)|u|γ)dx < lim inf
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2 − Q(x)|un|
γ)dx

= 0,

which yields

Φ′
u(1) =

∫

RN

(|∇Au|2 + Vλ(x)|u|2 − Q(x)|u|γ)dx < 0.

So there exists 0 < α < 1 such that Φ′
u(α) = 0, that is, αu ∈ S−. Since each Φu(t) attains its

maximum at t = 1 if 0 ≤ t ≤ 1 and u ∈ S−, we see that

Jλ(αu) < lim
n→∞

Jλ(αun) ≤ lim
n→∞

Jλ(un) = A,

which is impossible. Therefore, un → u in H1
A,V +(RN ) and hence un → u in E as n → ∞.

Proposition 3.1 We have

(i) inf
u∈S−

Jλ(u) > 0;

(ii) there exists u ∈ S− such that Jλ(u) = inf
v∈S−

Jλ(v).

Proof (i) Obviously, Jλ(u) ≥ 0 if u ∈ S−. We claim that inf
u∈S−

Jλ(u) > 0. Indeed, for

u ∈ S−, v = u
‖u‖ ∈ L+(λ) ∩ B+ and u = t(v)v with

t(v) =

(

∫

RN (|∇Av|2 + Vλ(x)|v|2)dx
∫

RN Q(x)|v|γdx

)

1
γ−2

.

u satisfies

Jλ(u) = Jλ(t(v)v) =
(1

2
−

1

γ

)

t2(v)

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx

=
(1

2
−

1

γ

)

(∫

RN (|∇Av|2 + Vλ(x)|v|2)dx
)

γ
γ−2

(∫

RN Q(x)|v|γdx
)

2
γ−2

≥
(1

2
−

1

γ

) (δ(λ))
γ

γ−2

(∫

RN Q(x)|v|γdx
)

2
γ−2

,

by (3.1). To estimate the integral appeared in the denominator, we choose R > 0 such that

Q(x) < 0 for |x| ≥ R. Applying the Hölder and Sobolev inequalities, we have

∫

RN

Q(x)|v|γdx ≤

∫

{|x|≤R}

Q(x)|v|γdx ≤ c(R)‖Q‖∞
(

∫

{|x|≤R}

|v|2
∗

dx
)

γ
2∗

≤ c(R)‖Q‖∞‖v‖γ = c(R)‖Q‖∞,

where c(R) > 0 is a constant depending on R. It yields

inf
u∈S−

Jλ(u) ≥
(1

2
−

1

γ

) (δ(λ))
γ

γ−2

(‖Q‖∞c(R))
2

γ−2

> 0.
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(ii) Let {un} ⊂ S− be a minimizing sequence for A = inf
u∈S−

Jλ(u). Since 0 < λ < µ1,

{un} is bounded in H1
A,V +(RN ) and {

∫

RN Q(x)|un|γdx} is also bounded. We now show that

{un} is bounded in Lγ(RN ). We choose R > 0 such that Q(x) ≤ Q(∞)
2 for |x| ≥ R, then

∫

RN

Q(x)|un|
γdx =

∫

{|x|≤R}

Q(x)|un|
γdx +

∫

{|x|≥R}

Q(x)|un|
γdx

≤

∫

{|x|≤R}

Q(x)|un|
γdx +

Q(∞)

2

∫

{|x|≥R}

|un|
γdx.

So

−
Q(∞)

2

∫

{|x|≥R}

|un|
γdx ≤ −

∫

RN

Q(x)|un|
γdx +

∫

{|x|≤R}

Q(x)|un|
γdx. (3.4)

It yields
∫

{|x|≥R}

|un|
γdx ≤ c(R). (3.5)

Therefore, {un} is bounded in Lγ(RN ) and then in E. By Lemma 3.1, we may assume that

un → u in E as n → ∞. If u(x) = 0 on RN , since

lim
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx = lim
n→∞

∫

RN

Q(x)|un|
γdx =

A
1
2 − 1

γ

> 0, (3.6)

and Q(x) < 0 provided that |x| ≥ R, we obtain from (3.2) that

0 < lim
n→∞

∫

RN

Q(x)|un|
γdx ≤

∫

RN

Q(x)|u|γdx = 0,

a contradiction. Hence, u 6= 0. Furthermore, Jλ(u) = lim
n→∞

Jλ(un) = inf
v∈S−

Jλ(v), that is, u is a

minimizer on S−. This completes the proof.

In the case (ii) λ > µ1, we see that ϕ1 satisfies
∫

RN

(|∇Aϕ1|
2 + Vλ(x)|ϕ1|

2)dx =

∫

RN

(µ1 − λ)V −(x)|ϕ1|
2dx < 0.

This yields ϕ1 ∈ L−(λ). If
∫

RN Q(x)|ϕ1|γdx < 0, then ϕ1 ∈ L−(λ) ∩ B− and S+ is non-empty.

In this case, S may consist of two distinct components, so it is possible to obtain two solutions

by showing that Jλ has an appropriate minimizer on each component.

Lemma 3.2 Suppose
∫

RN Q(x)|ϕ1|γdx < 0, then there exists δ > 0 such that L−(λ) ∩

B+ = ∅ whenever µ1 ≤ λ < µ1 + δ.

Proof Suppose that the result is false. Then there would exist sequences {λn} and {un}

such that λn → µ+
1 , ‖un‖ = 1 and

∫

RN

(|∇Aun|
2 + Vλn

(x)|un|
2)dx ≤ 0,

∫

RN

Q(x)|un|
γdx ≥ 0.

Since {un} is bounded in H1
A,V +(RN ) and V − ∈ L

N
2 (RN ), we may assume that un ⇀ u

in H1
A,V +(RN ) and

∫

RN V −(x)|un|
2dx →

∫

RN V −(x)|u|2dx as n → ∞. We have un → u in

H1
A,V +(RN ) as n → ∞. Otherwise, we would have

∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx < lim inf

n→∞

∫

RN

(|∇Aun|
2 + Vλn

(x)|un|
2)dx ≤ 0, (3.7)
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a contradiction. As a result
∫

RN

(|∇Au|2 + V +(x)|u|2 − µ1V
−(x)|u|2)dx = 0.

It implies that there exists a constant k such that u = kϕ1. Since

∫

RN

Q−(x)|un|
γdx ≤

∫

RN

Q+(x)|un|
γdx,

and suppQ+ is bounded, similar to the proof of Proposition 3.1 (ii), we may show that {un} is

bounded in Lγ(RN ), by Brézis-Lieb Lemma,

∫

RN

Q(x)|un|
γdx =

∫

RN

Q(x)|kϕ1|
γdx +

∫

RN

Q(x)|un − kϕ1|
γdx + o(1).

This, together with
∫

RN Q(x)|un|γdx ≥ 0, implies that

∫

RN

Q(x)|kϕ1|
γdx ≥ 0,

However, by the assumption that
∫

RN Q(x)|ϕ1|γdx < 0, we would have k = 0. This is impossible

as ‖u‖ = ‖kϕ1‖ = 1.

Proposition 3.2 Suppose that L−(λ) ∩ B+ = ∅. Then

(i) S0 = {0};

(ii) 0 6∈ S− and S− is closed;

(iii) S− ∩ S+ = ∅;

(iv) S+ is bounded.

Proof (i) Suppose that there is a u ∈ S0\{0}, then u
‖u‖ ∈ L0(λ)∩B0 ⊂ L−(λ)∩B+ = ∅,

which is impossible.

(ii) Arguing by contradiction, we assume that there exists {un} ⊂ S− such that un → 0

in E as n → ∞. Hence

0 <

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx =

∫

RN

Q(x)|un|
γdx → 0

as n → ∞. Let vn = un

‖un‖ . We may assume that vn ⇀ v in H1
A,V +(RN ) and

∫

RN V −(x)|vn|2dx →
∫

RN V −(x)|v|2dx as n → ∞. Since the set {x : Q(x) > 0} is bounded, we see that

lim
n→∞

∫

RN

Q+(x)|vn|
γ‖un‖

γ−2dx = 0

as n → ∞. So

0 <

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx =

∫

RN

Q(x)|vn|
γ‖un‖

γ−2dx

≤

∫

RN

Q+(x)|vn|
γ‖un‖

γ−2dx.

This yields

lim
n→∞

λ

∫

RN

V −(x)|vn|
2dx = λ

∫

RN

V −(x)|v|2dx = 1,
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and v 6= 0. We also have

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx ≤ lim inf
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx = 0,

which implies v
‖v‖ ∈ L−(λ). On the other hand, we may deduce from

∫

RN Q(x)|vn|γdx > 0

and the Brézis-Lieb Lemma that
∫

RN Q(x)|v|γdx ≥ 0, so v
‖v‖ ∈ B+. Consequently, v

‖v‖ ∈

L−(λ) ∩ B+, contradicting to the assumption. Hence, 0 6∈ S−.

Next, we prove that S− is closed. By (i), we know that S− ⊂ S− ∪ S0 = S− ∪ {0}. Since

0 6∈ S−, it follows that S− = S−.

(iii) According to (i) and (ii) we have

S− ∩ S+ ⊂ S− ∩ (S+ ∪ S0) = S− ∩ (S+ ∪ {0}) = (S− ∩ S+) ∪ (S− ∩ {0}) = ∅.

(iv) Suppose by contradiction that S+ is unbounded, then there would exist a sequence

{un} ⊂ S+ such that ‖un‖E → ∞. Setting vn = un

‖un‖E
, we have

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx =

∫

RN

Q(x)|vn|
γ‖un‖

γ−2
E dx

giving

lim
n→∞

∫

RN

Q(x)|vn|
γdx = 0,

as n → ∞. Suppose vn ⇀ v in E, we may deduce as before that
∫

RN Q(x)|v|γdx ≥ 0.

We have vn → v in H1
A,V +(RN ). Indeed, if it is not true, then

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx < lim
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx ≤ 0

implies v 6= 0 and v
‖v‖ ∈ L−(λ) ∩ B+, a contradiction. Thus,

∫

RN (|∇Av|2 + Vλ(x)|v|2)dx ≤ 0.

We distinguish two cases to be discussed, (a) vn → v in Lγ(RN ); (b) vn 6→ v in Lγ(RN ).

If (a) occurs, then vn → v in E, ‖v‖E = 1 and v
‖v‖ ∈ L−(λ) ∩ B+, which is impossible. If

(b) occurs, by Brézis-Lieb lemma,
∫

RN Q(x)|v|γdx > 0, again we have v
‖v‖ ∈ L−(λ) ∩ B+, a

contradiction. Hence, S+ is bounded.

Lemma 3.3 Suppose that L−(λ) ∩ B+ = ∅. Then

(i) every minimizing sequence for Jλ on S− is bounded;

(ii) inf
u∈S−

Jλ(u) > 0;

(iii) there exists a minimizer of Jλ(u) on S−.

Proof (i) Let {un} ⊂ S− be a minimizing sequence for Jλ. Then

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx =

∫

RN

Q(x)|un|
γdx → c ≥ 0. (3.8)

Suppose by contradiction that ‖un‖E → ∞ as n → ∞. Let vn = un

‖un‖E
, we have

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx =

∫

RN

Q(x)|vn|
γ‖un‖

γ−2
E dx → 0,
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and
∫

RN

Q(x)|vn|
γdx → 0,

as n → ∞. It implies
∫

RN Q(x)|v|γdx ≥ 0. Actually, we have vn → v in H1
A,V +(RN ) as n → ∞.

In fact, otherwise we would have

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx < lim inf
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx = 0,

and so v 6= 0 and v
‖v‖ ∈ L−(λ) ∩ B+, a contradiction. Now, we may obtain a contradiction as

the proof of (iv) of Proposition 3.2, we omit the detail.

(ii) It is apparent that inf
u∈S−

Jλ(u) ≥ 0. We claim that inf
u∈S−

Jλ(u) > 0. In fact, if

inf
u∈S−

Jλ(u) = 0, let {un} ⊂ S− be a minimizing sequence, then

lim
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx = lim
n→∞

∫

RN

Q(x)|un|
γdx = 0.

By (i), {un} is bounded in E. Applying the arguments of the proof of (iv) of Proposition 3.2,

we may show that un → u in H1
A,V +(RN ) as n → ∞ and

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx = 0.

If un 6→ u in Lγ(RN ), we have
∫

RN Q(x)|u|γdx > 0, and then u
‖u‖ ∈ L0(λ)∩B+ ⊂ L−(λ)∩B+,

a contradiction. Therefore, un → u in E as n → ∞. By Proposition 3.1 (ii), we know that

0 6∈ S− and S− is closed, so u 6= 0. It yields u
‖u‖ ∈ L0(λ) ∩ B0 ⊂ L−(λ) ∩ B+, a contradiction.

(iii) Let {un} be a minimizing sequence for Jλ on S−. By (i), {un} is bounded in E.

Since

(1

2
−

1

γ

)

lim
n→∞

∫

RN

Q(x)|un|
γdx = inf

u∈S−

Jλ(u) > 0,

we have
∫

RN Q(x)|u|γdx > 0. The assumption L−(λ) ∩ B+ = ∅ implies B+ ⊂ L+(λ). Conse-

quently

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx > 0.

So we may assume by Lemma 3.1 that un → u in E as n → ∞. Hence, u ∈ S. We know from
∫

RN Q(x)|u|γdx > 0 that u ∈ S−. It follows

Jλ(u) = lim
n→∞

Jλ(un) = inf
u∈S−

Jλ(u),

i.e., u is a minimizer for Jλ(u) on S−.

We now proceed to the investigation of Jλ on S+.

Lemma 3.4 If L−(λ) 6= ∅ and L−(λ) ∩ B+ = ∅, then there exists u ∈ S+ such that

Jλ(u) = inf
v∈S+

Jλ(v).
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Proof By the assumptions, L−(λ) ⊂ B−, so S+ 6= ∅. By Proposition 3.1 (iv), S+ is

bounded. Using Hölder inequality and Sobolev inequality, we find for u ∈ S+ that

Jλ(u) =
(1

2
−

1

γ

)

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx ≥ −
(1

2
−

1

γ

)

∫

RN

λV −(x)|u|2dx

≥ −C‖V −‖N
2
,

so the problem B := inf
u∈S+

Jλ(u) is well defined, it is obvious that B < 0. Let {un} ⊂ S+ be a

minimizing sequence for Jλ. Then

Jλ(un) =
(1

2
−

1

γ

)

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx =
(1

2
−

1

γ

)

∫

RN

Q(x)|un|
γdx → B < 0.

Since {un} is bounded in E, assuming un ⇀ u in E, we obtain

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx ≤ lim
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx < 0.

It yields u
‖u‖ ∈ L− ⊂ B− and there is a t(u) such that t(u)u ∈ S+ with

t(u) =

(

∫

RN (|∇Au|2 + Vλ(x)|u|2)dx
∫

RN Q(x)|u|γdx

)

1
γ−2

.

We now show that un → u in E as n → ∞. First we establish the convergence of {un} in

H1
A,V +(RN ). In the contrary case, there would hold

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx < lim
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx

= lim
n→∞

∫

RN

Q(x)|un|
γdx

≤

∫

RN

Q(x)|u|γdx < 0,

because u
‖u‖ ∈ B−. From this we derive that t(u) > 1, it leads to a contradiction as

Jλ(t(u)u) < Jλ(u) ≤ lim
n→∞

Jλ(un) = B.

Next, we show un → u in Lγ(RN ) as n → ∞. If it is not true, by Brézis-Lieb Lemma,

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx = lim
n→∞

∫

RN

(|∇Aun|
2 + Vλ(x)|un|

2)dx

= lim
n→∞

∫

RN

Q(x)|un|
γdx

<

∫

RN

Q(x)|u|γdx,

which implies t(u) > 1 and leads to a contradiction. Consequently, un → u in E as n → ∞,

and then
∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx =

∫

RN

Q(x)|u|γdx < 0,
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i.e., u ∈ S+ and

Jλ(u) = lim
n→∞

Jλ(un) = inf
v∈S+

Jλ(v).

Thus, u is a minimizer for Jλ(u) on S+.

Suppose
∫

RN Q(x)|ϕ1|γdx < 0, then ϕ1 ∈ L−(λ) if λ > µ1, L−(λ) 6= ∅. By Lemmas

3.2–3.4, there exists a δ > 0 such that Jλ has a minimizer on S− and S+ respectively whenever

µ1 < λ < µ1 + δ. These minimizers are different from each other because L−(λ) ∩B+ = ∅. By

Lemma 2.2, we have

Proposition 3.3 If
∫

RN Q(x)|ϕ1|γdx < 0, then there exists a δ > 0 such that problem

(1.1) has two distinct solutions for µ1 < λ < µ1 + δ.

In the case (iii) λ = µ1, we prove that there is a mountain-pass solution of (1.1). We

commence by establishing the (PS)c condition.

Proposition 3.4 Suppose that
∫

RN Q(x)|ϕ1|γdx < 0. Then the functional Jλ satisfies

the (PS)c condition for c ∈ R.

Proof Let {un} be a (PS)c sequence.We show that {un} is bounded in E. If it is not

the case, suppose ‖un‖E → ∞ as n → ∞. Let vn = un

‖un‖E
, we may assume that vn ⇀ v in E

and
∫

RN V −(x)|vn|2dx →
∫

RN V −(x)|v|2dx as n → ∞. {vn} satisfies

∫

RN

(|∇Avn|
2 + Vµ1

(x)|vn|
2)dx =

∫

RN

Q(x)|vn|
γ‖un‖

γ−2dx + o(1),

and

γ

2

∫

RN

(|∇Avn|
2 + Vµ1

(x)|vn|
2)dx =

∫

RN

Q(x)|vn|
γ‖un‖

γ−2dx + o(1).

This implies

∫

RN

(|∇Avn|
2 + Vµ1

(x)|vn|
2)dx → 0 and

∫

RN

Q(x)|vn|
γdx → 0,

as n → ∞. Therefore,

0 ≤

∫

RN

(|∇Av|2 + Vµ1
(x)|v|2)dx ≤ lim

n→∞

∫

RN

(|∇Avn|
2 + Vµ1

(x)|vn|
2)dx = 0.

Then we have v = kϕ1 for some constant k. By Brézis-Lieb Lemma,

0 = lim
n→∞

∫

RN

Q(x)|vn|
γdx

=

∫

RN

Q(x)|kϕ1|
γdx + lim

n→∞

∫

RN

Q(x)|vn − kϕ1|
γdx

≤

∫

RN

Q(x)|kϕ1|
γdx.

However,
∫

RN Q(x)|ϕ1|γdx < 0, it should have k = 0. So vn → 0 in H1
A,V +(RN ). Choose R > 0

so that Q(x) < 0 if |x| ≥ R, then

0 = lim
n→∞

∫

RN

Q(x)|vn|
γdx = lim

n→∞

∫

{|x|≥R}

Q(x)|vn|
γdx ≤ 0.
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It yields vn → 0 in Lγ(RN ). Consequently, vn → 0 in E. However, ‖vn‖E = 1, this contradiction

leads to that {un} is bounded in E. Assuming un ⇀ u in E, we deduce

∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx ≤ lim inf

n→∞

∫

RN

(|∇Aun|
2 + Vµ1

(x)|un|
2)dx

= lim inf
n→∞

∫

RN

Q(x)|un|
γdx

=

∫

RN

Q(x)|u|γdx + lim inf
n→∞

∫

RN

Q(x)|un − u|γdx

≤

∫

RN

Q(x)|u|γdx

≤

∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx.

The result follows.

Proposition 3.5 Suppose
∫

RN Q(x)|ϕ1|γdx < 0 and λ = µ1, then problem (1.1) has a

mountain-pass solution.

Proof Observing that E ⊂ H1
A,V +(RN ), let V denote the orthogonal complement of the

subspace span{ϕ1} in H1
A,V +(RN ) , that is

V =

{

v| v ∈ H1
A,V +(RN ) and

∫

RN

∇Av∇Aϕ1 + V +(x)vϕ1dx = 0

}

,

we decompose u ∈ E as u = tϕ1 + v, where v ∈ V ∩ Lγ(RN ). Choosing R > 0 such that

−Q(x) ≥ −Q(∞)
2 = m > 0 for |x| ≥ R and

∫

{|x|≤R} Q(x)|ϕ1|γdx < 0, we have

Jµ1
(u) ≥

1

2

∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx −

1

γ

∫

{|x|≤R}

Q(x)|u|γdx +
m

γ

∫

{|x|≥R}

|u|γdx

≥
1

2

∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx −

1

γ

∫

{|x|≤R}

Q(x)(|u|γ − |tϕ1|
γ)dx

−
1

γ

∫

{|x|≤R}

Q(x)|tϕ1|
γdx +

m

γ

∫

{|x|≥R}

|u|γdx.

Let u1 = u, u2 = tϕ1, f(u1) = |u1|γ , f(u2) = |tϕ1|γ , then

f(u1) − f(u2) =

∫ 1

0

[f(su1 + (1 − s)u2)]
′
s ds.

Since su1 + (1 − s)u2 = sv + tϕ1, we have f(su1 + (1 − s)u2) = |sv + tϕ1|γ and

|sv + tϕ1|
γ = [(sRev + Re(tϕ1))

2 + (sImv + Im(tϕ1))
2|

γ
2 .

It yields

(f(su1 + (1 − s)u2))
′
s = (|sv + tϕ1|

γ)′s

=
γ

2
[(sRev + Re(tϕ1))

2 + (sImv + Im(tϕ1))
2]

γ
2
−1[2(sRev

+Re(tϕ1))Rev + 2(sImv + Im(tϕ1))Imv]

=
γ

2
[(sRev + Re(tϕ1))

2 + (sImv + Im(tϕ1))
2]

γ
2
−1[2s|Rev|2
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+2Re(tϕ1)Rev + 2s|Imv|2 + 2Im(tϕ1)Imv]

≤
γ

2
[2(sRev)2 + 2(Re(tϕ1))

2 + 2(sImv)2 + 2(Im(tϕ1))
2]

γ
2
−1[2s|v|2

+2(Re(tϕ1)Rev + Im(tϕ1)Imv)]

≤
γ

2
[2s2|v|2 + 2|tϕ1|

2]
γ
2
−1[2s|v|2 + 4|v||tϕ1|]

≤ c(|v|γ−2 + |tϕ1|
γ−2)(|v|2 + |v||tϕ1|)

= c(|v|γ + |v|γ−1|tϕ1| + |v|2|tϕ1|
γ−2 + |v||tϕ1|

γ−1).

By Young’s inequality,

|v|γ−1|tϕ1| ≤ c1|v|
(γ−1− 1

γ−1
) γ

γ−1− 1
γ−1 + c2(|v|

1
γ−1 |tϕ1|)

γ−1 = c1|v|
γ + c2|v||tϕ1|

γ−1.

|v|2|tϕ1|
γ−2 ≤ c1(|v|

2− γ−2

γ−1 )

γ

2−
γ−2
γ−1 + c2(|v|

γ−2

γ−1 |tϕ1|
γ−2)

γ−1

γ−2 = c1|v|
γ + c2|v||tϕ1|

γ−1.

It follows (f(su1 + (1 − s)u2))
′
s ≤ c(|v|γ + |v||tϕ1|γ−1). By Hölder inequality,

∫

{|x|≤R}

|v||tϕ1|
γ−1dx ≤ ctγ−1‖v‖.

Thus
∫

{|x|≤R}

Q(x)(|u|γ − |tϕ1|
γ)dx ≤ c

∫

{|x|≤R}

|v|γdx + ctγ−1‖v‖.

On the other hand,
∫

RN

(|∇Au|2 + Vµ1
(x)|u|2)dx

= t2
∫

RN

(|∇Aϕ1|
2 + Vµ1

(x)|ϕ1|
2)dx +

∫

RN

(|∇Av|2 + Vµ1
(x)|v|2)dx

=

∫

RN

(|∇Av|2 + Vµ1
(x)|v|2)dx

≥
(

1 −
µ1

µ2

)

∫

RN

(|∇Av|2 + V +(x)|v|2)dx =
(

1 −
µ1

µ2

)

‖v‖2,

we obtain

Jµ1
(u) ≥

(

1 −
µ1

µ2

)

‖v‖2 + c|t|γ − c

∫

{|x|≤R}

|v|γdx − ctγ−1‖v‖ +
m

γ

∫

{|x|≥R}

|u|γdx

for some constant c > 0. Introducing the following equivalent norm on E:

‖u‖E =
(

max(|t|, ‖v‖)2 + ‖u‖2
γ

)
1
2 :=

(

‖u‖2
∗ + ‖u‖2

γ

)
1
2 ,

we obtain that

Jµ1
(u) ≥ c0δ

γ +
m

γ

∫

{|x|≥R}

|u|γdx,

for some constant c0 > 0 and ‖u‖∗ = δ sufficiently small. If ‖u‖E = ρ and ‖u‖∗ = δ → 0, then

‖u‖γ → ρ. Hence

lim inf
‖u‖E=ρ,δ→0

∫

|x|≥R

|u|γdx ≥ c1ρ
γ ,
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for some constant c1 > 0. Therefore, Jµ1
(u) ≥ α for ‖u‖E = ρ and α, ρ > 0. Finally, let

η ∈ C∞
0 (RN ) be with suppη ⊂ {x, Q(x) > 0}. Then for sufficiently large t > 0 we get

Jµ1
(tη) < 0. The result follows by the mountain pass lemma.

Proof of Theorem 1.1 The consequence of Theorem 1.1 follows from Lemma 2.2,

Propositions 3.1, 3.3 and 3.5.

4 Sublinear case

In this section, we prove Theorem 1.2. We know from Section 3 that,
∫

RN (|∇Au|2 +

Vλ(x)|u|2)dx ≥ (µ1 − λ)
∫

RN V −(x)|u|2dx > 0 for all u ∈ E\{0} provided that λ < µ1, so

L+(λ) = {u ∈ E : ‖u‖ = 1} and L−(λ) = L0(λ) = ∅. If λ > µ1, L−(λ) becomes non-empty and

gets larger as λ increases. So, to prove Theorem 1.2, we discuss the vital role played by the

condition L−(λ) ⊂ B− in determining the nature of the Nehari manifold, and we get a result

similar to the Proposition 3.2. It is always true that L−(λ) ⊂ B− if λ < µ1, and this may or

may not be satisfied if λ > µ1.

Proposition 4.1 Suppose there exists λ̂ such that for all λ < λ̂, L−(λ) ⊂ B−. Then,

for λ < λ̂,

(i) L0(λ) ⊂ B− and so L0(λ)
⋂

B0 = ∅;

(ii) S+ is bounded;

(iii) 0 6∈ S− and S− is closed;

(iv) S+
⋂

S− = ∅.

Proof (i) Suppose that the result is false. Then there would exist u ∈ L0(λ) and

u 6∈ B−. If λ < µ < λ̂, then u ∈ L−(µ) and L−(µ) 6⊂ B−, which is a contradiction.

(ii) Suppose that S+ is unbounded. Then there would exist {un} ⊂ S+ such that

‖un‖E → ∞ as n → ∞. Let vn = un

‖un‖E
. We may assume vn ⇀ v in E and

∫

RN V −(x)|vn|
2dx →

∫

RN V −(x)|v|2dx as n → ∞. Since un ∈ S,

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2) dx =

∫

RN Q(x)|vn|γdx

‖un‖
2−γ
E

. (4.1)

We deduce from
∫

RN

Q(x)|vn|
γdx ≤ sup

x∈RN

Q(x)

∫

RN

|vn|
γdx < ∞,

and (4.1) that

∫

RN

|∇Avn|
2 + Vλ(x)|vn|

2dx → 0

as n → ∞. By the fact un ∈ S+ and Brézis-Lieb Lemma, we deduce
∫

RN

Q(x)|v|γdx ≥ 0. (4.2)

We have vn → v in H1
A,V +(RN ). Indeed, if not,

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx < lim inf
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx = 0.
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Thus v 6= 0 and by (i), v
‖v‖ ∈ L−(λ) ⊂ B−, a contradiction to (4.2). Hence,

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx = lim inf
n→∞

∫

RN

(|∇Avn|
2 + λV (x)|vn|

2)dx = 0.

We now distinguish two cases: (a) vn → v in Lγ(RN ); (b) vn 6→ v in Lγ(RN ). If (a)

occurs, then vn → v in E and so ‖v‖E = 1, thus v 6= 0 and we have v
‖v‖ ∈ L0(λ) ⊂ B− which

contradicts to (4.2). If (b) occurs, then by Brézis-Lieb Lemma,
∫

RN Q(x)|v|γdx > 0, again

v 6= 0 and we have v
‖v‖ ∈ L−(λ) ⊂ B−, which is impossible either. As a result, S+ is bounded.

(iii) Suppose 0 ∈ S−. Then there exists {un} ⊂ S− such that un → 0 in E as n → ∞.

Let vn = un

‖un‖E
. We may assume vn ⇀ v in E and

∫

RN λV −(x)|vn|2dx →
∫

RN λV −(x)|v|2dx

as n → ∞. Since un ∈ S−, by (4.1),

∫

RN

Q(x)|vn|
γdx → 0. (4.3)

We have vn → v in Lγ(RN ). Indeed, otherwise, by Brézis-Lieb Lemma and (??), we obtain

∫

RN

Q(x)|v|γdx > 0.

This implies v 6= 0 and v
‖v‖ ∈ B+. On the other hand,

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx ≤ lim inf
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx ≤ 0,

so v
‖v‖ ∈ L0(λ) or L−(λ), but v

‖v‖ ∈ B+ which contradicts to (i). Therefore, vn → v in Lγ(RN ).

If vn → v in H1
A,V +(RN ), we get vn → v in E. So ‖v‖E = 1 and v

‖v‖ ∈ L0(λ) ∩ B0 or
v

‖v‖ ∈ L−(λ) ∩ B0, which is impossible. Hence vn 6→ v in H1
A,V +(RN ) and

∫

RN

(|∇Av|2 + Vλ(x)|v|2)dx < lim inf
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx ≤ 0,

that is, v 6= 0 and v
‖v‖ ∈ L−(λ) ∩ B0, which again gives a contradiction. Thus 0 6∈ S−.

We now prove that S− is closed. Suppose that {un} ⊂ S− and un → u in E as n → ∞.

Then u ∈ S− and u 6= 0 by (iii). Moreover,

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx =

∫

RN

Q(x)|u|γdx ≤ 0.

If both integrals equal 0, then u
‖u‖ ∈ L0(λ)

⋂

B0, which contradicts (i). Hence both integrals

must be negative and so u ∈ S−. Thus S− is closed.

(iv) If there is a u ∈ S+
⋂

S−, then u 6= 0. Moreover,

∫

RN

(|∇Au|2 + Vλ(x)|u|2)dx =

∫

RN

Q(x)|u|γdx = 0

and so u
‖u‖ ∈ L0(λ)

⋂

B0, a contradiction to (i).

Obviously, Jλ(u) > 0 on S−. Moreover,

Proposition 4.2 Suppose there exists λ̂ such that for all λ < λ̂, L−(λ) ⊂ B− and S− is

non-empty, then
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(i) every minimizing sequence for Jλ on S− is bounded;

(ii) inf
u∈S−

Jλ(u) > 0 .

Proof (i) Let {un} ⊂ S− be a sequence such that lim
n→∞

Jλ(un) = inf
u∈S−

Jλ(u). Suppose

by contradiction that {un} is unbounded in E. We may assume that ‖un‖E → ∞ as n → ∞.

Since Jλ(un) is bounded and {un} ⊂ S, it follows that both {
∫

RN (|∇Aun|2 + Vλ(x)|un|2)dx}

and {
∫

RN Q(x)|un|γdx} are bounded. Let vn = un

‖un‖E
, we have

lim
n→∞

∫

RN

(|∇Avn|
2 + Vλ(x)|vn|

2)dx = lim
n→∞

∫

RN

Q(x)|vn|
γdx = 0.

Similar to the proof of Proposition 4.1 (iii), we may get a contradiction.

(ii) We know that inf
u∈S−

Jλ(u) ≥ 0. To show inf
u∈S−

Jλ(u) > 0, we may assume, on the

contrary, that there exists a sequence {un} ⊂ S− such that lim
n→∞

Jλ(un) = inf
u∈S−

Jλ(u) = 0. By

(i), {un} is bounded in E. Then we may obtain a contradiction by the same argument as the

proof of (i). The proof is completed.

Lemma 4.1 Suppose there exists a λ̂ such that L−(λ) ⊂ B− for all λ < λ̂. Then for all

λ < λ̂,

(i) there exists a minimizer for Jλ on S+;

(ii) there exists a minimizer for Jλ on S− provided that S− is non-empty.

Proof The proof of (i) is similar to that of Lemma 3.4, we sketch it. For u ∈ S+,

Jλ(u) = (1
2 − 1

γ
)
∫

RN Q(x)|u|γdx < 0, thus inf
u∈S+

Jλ(u) < 0. Let {un} ⊂ S+ be a minimizing

sequence, then

lim
n→∞

∫

RN

Q(x)|un|
γdx > 0. (4.4)

By Proposition 4.1, S+ is bounded, we may assume that un ⇀ u in E. It yields
∫

RN

Q(x)|u|γdx > 0. (4.5)

So u 6= 0 and u
‖u‖ ∈ B+. By Proposition 4.1, u

‖u‖ ∈ L+(λ). So there exists a t(u) such that

t(u)u ∈ S+. Now, we may show un → u in E as in the proof of Lemma 3.4. The assertion then

follows readily.

The idea of the proof of (ii) is similar to that of Lemma 3.3, we sketch it.

Let {un} be a minimizing sequence of inf
u∈S−

Jλ(u). By Proposition 4.2, {un} is bounded in

E. We assume un ⇀ u in E. By Proposition 4.2 (ii),

(1

2
−

1

γ

)

lim
n→∞

∫

RN

Q(x)|un|
γdx = inf

u∈S−

Jλ(u) > 0,

it follows that lim
n→∞

∫

RN Q(x)|un|
γdx < 0.

To complete the proof, it is sufficient to show un → u in E as n → ∞.

First, we have un → u in H1
A,V +(RN ). Otherwise, we would have u 6= 0, u

‖u‖ ∈ L−(λ)
⋂

B−

and there exists a t(u) < 1 such that t(u)u ∈ S−.

However, the map Jλ(tu) attains its maximum at t = 1 if 0 ≤ t ≤ 1 and t(u)u ∈ S−. Then,

we obtain

Jλ(t(u)u) < lim
n→∞

Jλ(t(u)un) ≤ Jλ(un) = inf
u∈S−

Jλ(u),
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a contradiction.

Next, we show un → u in Lγ(RN ). Otherwise, we may find a t(u) < 1 such that t(u)u ∈ S−,

again we may obtain a contradiction. The result then follows.

Lemma 4.2 Suppose
∫

RN Q(x)|ϕ1|γdx < 0. Then there exists δ1 > 0 such that u ∈

L−(λ) ⇒ u ∈ B− whenever µ1 ≤ λ < µ1 + δ1.

The result can be proved similar to the proof of Lemma 3.2.

Corollary 4.1 Suppose
∫

RN Q(x)|ϕ1|γdx < 0 and µ1 < λ < µ1 + δ1, then there exist

minimizers uλ and vλ of Jλ on S+ and S−, respectively.

Proof We know that ϕ1 ∈ L−(λ), so L−(λ) is non-empty if µ1 < λ. By Lemma 4.2, the

hypotheses of Lemma 4.1 are satisfied with λ̂ = µ1 + δ1, the result follows.

Proof of Theorem 1.2 Since L−(λ) is empty for λ < µ1, it follows from Lemma 4.1

that Jλ has a minimizer on S+ if λ < µ1. Theorem 1.2 is a direct consequence of Lemmas 2.2

and 4.1, and Corollary 4.1.

References

[1] Arioli G, Szulkin A. A semilinear Schrödinger equation in the presence of a magnetic field. Arch Rat Mech

Anal, 2003, 170: 277–295

[2] Brown K J. The Nehari manifold for a semilinear elliptic equation involving a sublinear term. Calc Var

PDE, 2005, 22: 483–494

[3] Binding P A, Drabek P, Huang Y X. On Neumann boundary value problems for some quasilinear elliptic

equations. Elec Jour Diff Equations, 1997, 5: 1–11

[4] Brown K J, Zhang Y. The Nehari manifold for a semilinear elliptic problem with a sign changing weight

function. Jour Diff Equations, 2003, 193: 481–499

[5] Cingolani S. Semilinear stationary states of Nonlinear Schrödinger equations with an external magnetic

field. Jour Diff Equations, 2003, 188: 52–79

[6] Chabrowski J, Costa D G. On a class of Schrödinger-type equations with indefinite weight functions.

(preprint)

[7] Chabrowski J, Andrzej Szulkin. On the Schrödinger equation involving a critical Sobolev exponent and

magnetic field. Topol Mech Nonl Anal, 2005, 4: 59–78

[8] Costa D G, Tehrani H. Existence of positive solutions for a class of indefinite elliptic problems. Calc Var

PDE, 2001, 13(2): 159–189

[9] Drabek P, Pohozaev S I. Positive solutions for the P-Laplacian: application of the fibering method. Proc

Royal Soc Edinburgh, 1997, 127: 703–726

[10] Dai Shuang, Yang Jianfu. Existence of nonnegative solutions for a class of p-Laplacian equations in R
N .

Adv Nonlinear Studies, 2007, 7(1): 107–130

[11] Kurata Kazuhiro. Existence and semi-classical limit of the least energy solution to a nonlinear Schrödinger

equation with electromagnetic fields. Nonlinear Analysis, 2000, 41: 763–778

[12] Lieb E H, Loss M. Analysis, Graduate Studies in Mathematics 14, AMS (1997)

[13] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case Part I,

Revista Math Iberoamericano, 1985, 1(1): 145–201

[14] Lions P L. The concentration-compactness principle in the calculus of variations. The limit case, Part II,

Revista Math Iberoamericano, 1985, 1(2): 45–121

[15] Nehari Z. On a class of nonlinear second-order differential equations. Trans Amer Math Soc, 1960, 95:

101–123

[16] Willem M. Minimax Theorems. Boston, Basel, Berlin: Birkhauser, 1996


