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Abstract Periodic gravity waves travelling in irrotational deep water flows are examined. A new method of implicit
approximation to the travelling waves along the free water surface rather than the explicit Stokes wave expansions
along the calm water surface is formulated. Therefore, the approximate waves satisfy exactly the dynamic free
surface boundary condition along the free water surface, while the corresponding Stokes waves satisfy the dynamic
free surface boundary condition approximately along the calm water surface based on the Taylor expansion. The
distinction between the proposed wave and the corresponding Stokes wave can be ignored at small wave steepness
but becomes clear with the increment of the wave steepness due to the nonphysical form of the Stokes wave at large
wave steepness. Approximation to the Stokes highest wave is demonstrated.

Keywords Free surface wave approximation · Nonlinear periodic gravity wave · Potential flow ·
Stokes waves

1 Introduction

As a fundamental problem in the field of free surface gravity waves, the study of two-dimensional periodic gravity
waves travelling in an irrotational flow dates back to the early 19th century, presented by Gerstner [1], showing
continuity and free surface pressure conditions of the gravity wave problem. Later, Stokes [2] employed the potential
flow theory of gravity waves to propose a perturbation expansion approach to gravity wave solution in a power
series of the dimensionless wave steepness ε = ak for wave number k and wave amplitude a of the associated
linear wave. The convergence of the Stokes wave power series was given by Levi-Civita [3] and Struik [4] with
respect to small steepness. An explicit formulation of the fifth order steady Stokes wave was provided by Fenton
[5]. However, Schwartz [6] found that the Stokes expansion method is fundamentally invalid when ε is not small.
Therefore he developed a different expansion method based on a more suitable expansion parameter. The further
developments of the method were examined by Cokelet [7], Longuet-Higgins [8], Longuet-Higgins and Fox [9],
Longuet-Higgins and Cleaver [10], Williams [11] and Maklakov [12].
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76 Z.-M. Chen

Actually, the numerical method of Schwartz [6] is based on a holomorphic function technique stemming from
Stokes [13] so that the unknown fluid domain in the complex plane x + iy is conformally mapped onto the fixed
domain ψ < 0 in the complex velocity potential plane and then conformally mapped onto a unit disc of a complex
plane [14]. Therefore, the unknown free surface wave with a complete wave length L becomes the fixed unit circle
{eis; −π < s < π} and the complex velocity reciprocal function 1/(u − iv) is holomorphic in the unit disc. This
holomorphic function technique also gives rise to the Nekrasov integral equation [14] of α(s), which denotes the
angle of the wave surface inclined to the horizontal. With the use of the Nekrasov integral equation, Krasovskii [15]
and Keady and Norbury [16] proved the existence of the periodic wave with angle 0◦ < α < 30◦. The existence of
the limiting wave α = 30◦ or the Stokes highest crest wave with crest angle 120◦ was proved by Toland [17] and
Amick, Fraenkel and Toland [18].

Although the solutions of the periodic gravity wave problem have been well studied theoretically and numerically
with respect to various steepness values, the Stokes wave is still fundamentally important in the understanding of
the periodic gravity wave problem. The present paper aims to introduce a new approximation formulation scheme,
comparable with the Stokes approximation expansion, of the periodic gravity wave without the requirement of the
small steepness assumption. More precisely, the periodic gravity wave η can be approximated implicitly from the
following dynamic free surface boundary condition:

kη = − k

g
∂tφ − k

2g
|∇φ|2

= ω√
kg

n∑

m=1

mεmameikη cos mθ − 1

2

n∑

m=1

m2ε2ma2
me2ikη

−
n−1∑

m=1

n−m∑

j=1

m( j + m)ε j+2me( j+2m)kηama j+m cos jθ

for θ = kx − ωt + ϕ, provided that the nth order velocity potential

φ = g

k

1√
kg

n∑

m=1

εmameikz sin mθ + O(εn+1)

and the dispersion relation

ω√
kg

= 1 +
n∑

m=1

εmbm + O(εn+1)

are defined by the Stokes wave approximation [2], where g is the gravitational acceleration, ω is a wave frequency
and ϕ is a phase constant. In contrast with the Stokes explicit expansion method approximating the wave solution
through a power series expansion along the calm water surface, the proposed implicit method is to approach the
wave solution along the original free surface wave boundary. However, for a gravity wave expanded in a Taylor
series along the average water surface with respect to the small steepness ε, the proposed nth order approximate
wave is equivalent to a corresponding nth order Stokes wave on ignoring a higher order term O(εn+1).

The validity of the approximation formulation of the periodic gravity wave η = η(θ) is largely based on the
following wave elevation bound:

kη ≤ ω2

2kg

(∂xφ)
2

|∇φ|2 ,
which is also true for a periodic gravity wave of a three-dimensional flow travelling in the x-direction.

It should be mentioned that the waves obtained in the present formulation are always smooth, and thus it is
necessary to choose a very high order form to approach the Stokes highest wave with non-smooth crest.

Similar to the Stokes waves, the first five order approximate waves are fundamentally important. Thus, the present
investigation mainly focusses on the approximations with respect to the second and third orders, then the fourth
and fifth orders. Finally, we introduce the general approximation formulation for arbitrary order waves.
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A new approximate formulation 77

The 2D periodic gravity waves can be considered as channel waves, which are generated from a wavemaker
in a towing tank. For 2D gravity waves generated from a hydrofoil advancing at uniform speed, a dissipative free
surface Green’s function approach was developed by the author [19]. For the approximation of 3D Kelvin gravity
waves (see Stoker [20]) generated from a moving vehicle, a harmonic function expansion formulation was recently
introduced by the author [21].

2 Free surface wave equations and the wave upper bound

The pure gravity 2D flow considered is irrotational and incompressible. The fluid domain is bounded by the free
surface wave elevation η and a horizontal impermeable bed y = −h. The origin of the Oxy frame is fixed on the
calm water surface y = 0. The periodic wave travels from left to right. The velocity potential φ of the irrotational
flow is subject to the Bernoulli equation (see, for example, Lamb [22] and Whitham [23])

∂tφ + 1

2
|∇φ|2 + 1

ρ
p + gy = 0 (1)

and the Laplace equation

∂2
xφ + ∂2

yφ = 0 (2)

in the fluid domain −h < y < η. Here ∇ denotes the gradient (∂x , ∂y), p is the pressure and ρ is the density of
the fluid. In fact, if the frame is moving at the wave speed ω/k, this propagating periodic wave is identical to the
steady periodic wave (see, for example, Fenton [5]).

The free surface gravity wave problem is to solve the velocity potential φ and the wave elevation y = η(x, t). The
main difficulty of the wave problem is the nonlinear free surface boundary, which can be defined by the kinematic
free surface boundary condition (see, for example, Stoker [20] and Whitham [23])

(∂t + ∇φ · ∇) (y − η) = 0 on y = η (3)

and the dynamic free surface boundary condition

η = − 1

g
∂tφ − 1

2g
|∇φ|2 on y = η. (4)

Here Eq. (4) is implied from Eq. (1) by assuming the atmospheric pressure p = 0 on the free surface. The kinematic
boundary condition can be equivalently replaced by the assumption that the free surface is a streamline [5] for the
steady wave problem.

To solve the wave problem, it is necessary to provide the free surface boundary condition on the velocity potential
without involving η explicitly. This can be obtained from Eqs. (3) and (4), that is, the substitution of Eq. (4) into
Eq. (3) gives the required free surface boundary condition as

0 = (∂t + ∇φ · ∇)
(

gy + ∂tφ + 1

2
|∇φ|2

)

= ∂2
t φ + g∂yφ + ∇φ · ∇∂tφ + 1

2
∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2

on y = η, or

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2 on y = η. (5)

Therefore, we have the complete gravity wave Eqs. (2), (4) and (5) by adding the impermeable bed condition

∂yφ = 0 on y = −h. (6)

To derive the upper bound of the gravity wave η, we employ Eq. (4) to produce the inequality

η ≤ max
s>0

(
− s

g
∂tφ − s2

2g
|∇φ|2

)
= (∂tφ)

2

2g|∇φ|2 whenever |∇φ| �= 0 (7)
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on the free surface boundary y = η. For the travelling wave η = η(θ), the velocity potential φ on the free surface
is also in the travelling form and hence

∂tφ = −ω
k
∂xφ,

since θ = kx − ωt + ϕ. This together with Eq. (7) implies that

kη ≤ ω2

2kg

(∂xφ)
2

|∇φ|2 whenever |∇φ| �= 0, (8)

which reduces to the wave upper bound

kη ≤ ω2

2kg
. (9)

3 Approximate waves of order 1, 2 and 3

3.1 Initial formulation

The gravity wave problem governed by Eqs. (2), (4), (5) and (6) can be approximately formulated with respect to the
wave steepness ε = ak. Classifying the nonlinear free surface boundary Eqs. (4) and (5) with respect to the order
O(εn) on the free surface boundary y = η rather than on the calm water surface y = 0, we obtain the following
nonlinear approximation wave equations at first order:

∂2
xφ + ∂2

yφ = 0,
∂2

t φ + g∂yφ
∣∣
y=η = O(ε2),

∂yφ
∣∣
y=−h = 0,

⎫
⎪⎬

⎪⎭
(10)

η = − 1

g
∂tφ

∣∣
y=η, (11)

at second order:

∂2
xφ + ∂2

yφ = 0,
∂2

t φ + g∂yφ + ∂t |∇φ|2∣∣y=η = O(ε3),

∂yφ|y=−h = 0,

⎫
⎬

⎭ (12)

η = − 1

g
∂tφ − 1

2g
|∇φ|2∣∣y=η, (13)

and at third order:

∂2
xφ + ∂2

yφ = 0,
∂2

t φ + g∂yφ + ∂t |∇φ|2 + 1
2∇φ · ∇|∇φ|2∣∣y=η = O(ε4),

∂yφ|y=−h = 0,

⎫
⎪⎬

⎪⎭
(14)

η = − 1

g
∂tφ − 1

2g
|∇φ|2∣∣y=η. (15)

3.2 Additional formulation for infinite water depth h → ∞

When the water depth is infinite h → ∞, the approximation problem can be simplified significantly. Therefore,
from now on, we examine the approximation problem based on the deep water assumption, h → ∞.
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A new approximate formulation 79

In order to be comparable with the Stokes waves, we choose the same velocity potential with respect to the
Stokes waves up to the third order in the following form (see Fenton [5]):

φ = aδ

√
g

k
eky sin θ with θ = kx − ωt + ϕ, (16)

where δ is defined as

δ =
⎧
⎨

⎩

1 for order 1,
1 for order 2,
1 − 1

2ε
2 for order 3.

The velocity potential φ is a suitable solution to the boundary value problems (10), (12) and (14). Especially, upon
substitution of Eq. (16) into the free surface boundary conditions (10), (12) and (14), the first two order free surface
equations are

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2

∣∣∣
y=η = ∂2

t φ + g∂yφ

∣∣∣
y=η

=
(
−ω2 + kg

)
a

√
g

k
ekη sin θ,

which gives the linear dispersion relation

ω2

kg
= 1, (17)

while the third order free surface equation is

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2

∣∣∣∣
y=η

+ O(ε4)

=
(
−ω2 + kg + ε2δ2kge2kη

)
aδ

√
g

k
ekη sin θ + O(ε4)

=
(
−ω2 + kg + ε2δ2kg

)
aδ

√
g

k
ekη sin θ + O(ε4),

which gives the dispersion relation

ω2

kg
= 1 + ε2δ2 = 1 + ε2

(
1 − 1

2
ε2

)2

. (18)

Here the third order approximation relies on the observation

e2kη = 1 + O(ε).

Therefore, the combination of the velocity potential φ given by Eq. (16), the dynamic free surface boundary
conditions (11), (13) and (15) and the dispersion relations (17) and (18) produce the implicit expression of the
periodic wave solutions in the first order form

η = aekη cos θ,
ω2

kg
= 1, (19)

the second order form

η = ω√
kg

aekη cos θ − a2k

2
e2kη,

ω2

kg
= 1, (20)

and the third order form

η = ω√
kg

aδekη cos θ − a2k

2
δ2e2kη,

ω2

kg
= 1 + ε2δ2. (21)
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80 Z.-M. Chen

3.3 The Stokes waves and the approximate waves

The relationship between the Stokes waves [5,2] and the approximate waves (20), (21) can be derived by applying
the Taylor expansion to the approximate waves along the calm water surface.

Indeed, the Taylor series of the waves (20), (21) with respect to small kη is

kη = ω√
kg
εδekη cos θ − ε2

2
δ2e2kη

=
∞∑

n=0

1

n!∂
n
s

[
ω√
kg
εδes cos θ − ε2

2
δ2e2s

]

s=0
knηn,

which implies that

kη = εδ
ω√
kg

cos θ − ε2

2
δ2

+
(
εδ

ω√
kg

cos θ − ε2δ2
) (

εδ
ω√
kg

cos θ − 1

2
ε2δ2 + ε2δ2ω

2

kg
cos2 θ

)

+1

2

(
εδ

ω√
kg

cos θ − 2ε2δ2
)
ε2δ2ω

2

kg
cos2 θ + O(ε4).

By the linear dispersion relation (17) for the second order wave and the nonlinear dispersion relation (18) for the
third order wave or

ω√
kg

=
√

1 + ε2δ2 = 1 + 1

2
ε2 + O(ε4), (22)

we have

kη = εδ
ω√
kg

cos θ − 1

2
ε2 + ε2ω

2

kg
cos2 θ − 3

2
ε3 ω√

gk
cos θ

+ ε3
(
ω2

kg

)3

cos3 θ + 1

2
ε3

(
ω2

kg

)3

cos3 θ + O(ε4)

= ε

(
1 − 1

2
ε2

) (
1 + 1

2
ε2

)
cos θ − 1

2
ε2 + ε2 cos2 θ − 3

2
ε3 cos θ + 3

2
ε3 cos3 θ + O(ε4)

= ε cos θ + 1

2
ε2 cos 2θ + 3

8
ε3(cos 3θ − cos θ)+ O(ε4).

This gives the linear wave

kζ1 = ε cos θ,
ω2

kg
= 1, (23)

the second order Stokes wave (see [2,5])

kζ2 = ε cos θ + 1

2
ε2 cos 2θ,

ω2

kg
= 1, (24)

and the third order Stokes wave (see [2,5])

kζ3 = ε cos θ + ε2

2
cos 2θ + 3

8
ε3 (cos 3θ − cos θ) , (25)

together with the dispersion relation defined by Eq. (22).
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A new approximate formulation 81

4 Numerical simulation of the second and the third order waves

It is proved in Appendix A that the second order wave (20) and the third order wave (21) exist uniquely. The
existence analysis also shows the convergence of the following elementary iteration scheme:

ηn+1 = ω√
kg

aδekηn cos θ − a2k

2
δ2e2kηn for n ≥ 0, (26)

for any initial wave elevation η0.
Let the contraction constant be defined as

τ = max
{√

1 + ε2δ2εδ + ε2δ2, 0.633
}

for ε < 0.75,

due to Eqs. (44), (45) and (46). The error between the analytic solution η from Eqs. (20) and (21) and the numerical
solution ηn is estimated as, for −π ≤ θ < π ,

|η(θ)− ηn(θ)| ≤
∞∑

m=n

|ηm+1(θ)− ηm(θ)|

≤
∞∑

m=n

τm |η1(θ)− η0(θ)|≤ τ n+1

1 − τ

for ε ≤ 0.6, if the round-off error is ignored and η0 = 0. Here we have used Eq. (41).
For example, for ε ≤ 0.6, the following estimate:

√
1 + ε2δ2εδ + ε2δ2 < 0.8,

is true and hence

τ = max {0.8, 0.633} = 0.8, ε ≤ 0.6,

and so the convergence is estimated as

max−π<θ<π |η(θ)− ηn(θ)| ≤ τ n+1

1 − τ
= 5 × 0.8n+1.

The existence of the analytic solution given in the previous section is subject to the bound ε ≤ 0.75. Actually,
this bound can be increased if the rigorous analysis in Appendix A is replaced by numerical computation.

For presentation purpose, selected numerical results are shown in Fig. 1 for propagation wave in the time domain
[0, 4] and steady wave in the spatial domain [2π, 6π ]. Especially, the grid points for the space and time domains
are between 101 and 201, and the iteration step number is 40 since the wave difference ηn+1 − ηn = O(10−16) for
n ≥ 40 can be ignored. A double-precision FORTRAN 90 code is used. The CPU time to achieve convergence is
always less than 0.1 s.

Define the upper bound function

ξ = 1

k

ω2

2kg

(∂xφ)
2

|∇φ|2 .
Then Eq. (8) gives

kη ≤ kξ. (27)

It is readily seen that the velocity potential expressed by Eq. (16) implies the simple formulation of the upper bound
function forms

ξ2 ≡ ξ = 1

2k
cos2(kx − ωt) for the second order wave (28)

and

ξ3 ≡ ξ = 1 + ε2δ2

2k
cos2(kx − ωt) for the third order wave. (29)
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82 Z.-M. Chen

The comparisons of the approximate waves, the associated Stokes waves and the upper bound waves are displayed
respectively in Figs. 1 and 2 with respect to different wave number k and different linear wave amplitude a.

Figures 1 and 2 illustrate that the gaps between the upper bound functions and the approximate waves become
narrower as the steepness ε increases. In particular, for the third order wave, the inequality (27) reduces to an identity
around the crests when the steepness ε ≥ 0.7. Therefore, it follows from Eq. (29) and Fig. 1 that the third order
wave (21) crest is subject to the limit relation

kηcrest ≈ ω2

2kg
= 1 + ε2(1 − 1

2ε
2)2

2
for ε = 0.7, 0.8.

To understand the approximation, it is necessary to provide comparison between the approximation wave and the
exact water wave solution to Eqs. (2), (4–6) or the exact gravity wave equations

0 = ∂2
xφ + ∂2

yφ,

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2

∣∣∣∣
y=η

,

η = − 1

g
∂tφ − 1

2g
|∇φ|2

∣∣∣∣
y=η

,

0 = lim
y→−∞ ∂yφ.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(30)

The existence of the analytic wave solution to this problem was proved in [15–18]. Its numerical wave elevation
was simulated by Schwartz [6] in a dimensionless form based on the nonlinear wave steepness H/L , where the wave
height H denotes the vertical distance between a wave crest and a wave trough and the wave length L = 2π/k.

The nonlinear wave steepness value

H/L ≈ 0.1412

was measured by Schwartz [6] numerically for the Stokes highest wave with crest angle 120◦. The numerical
solution comparison between the third order wave and the gravity wave of Eq. (30) is displayed in Fig. 3, which
shows excellent agreement for H/L = 0.1 and H/L = 0.13, but not good enough for the Stokes highest wave with
H/L = 0.1412. The comparison in Fig. 3 indicates the trend that the crest gap between the present third order wave
and the exact wave enlarges with increment of the ratio H/L .

5 A modified third order approximation

Actually, the wave solutions within the same order of the approximation are not unique. For a better approximation
result, the third order wave (21) is now modified as

kη = ω√
kg
ε

(
1 − 1

2
ε2

)
ekη cos θ − ε2

2
(1 − 2ε2)e2kη, (31)

with the same dispersion relation

ω2

kg
= 1 + ε2

(
1 − 1

2
ε2

)2

(32)

and the same velocity potential φ given by Eq. (16). Therefore, this is the third order approximate wave satisfying
the following equations:

0 = ∂2
xφ + ∂2

yφ,

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2 + O(ε4)

∣∣∣∣
y=η

,

η = − 1

g
∂tφ − 1

2g
|∇φ|2

∣∣∣∣
y=η

+ O(ε4),

0 = lim
y→−∞ ∂yφ.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭
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Fig. 1 Comparison of the third order wave kη (21) (continuous
line), the upper bound wave kξ3 (29) (dashed line) and the third
order Stokes wave kζ3 (25) (dotted line), with respect to various
values of wave steepness ε = ak, travelling from the position
x = 0

Fig. 2 Comparison of the third order wave kη (21) (continuous
line), the upper bound wave kξ3 (29) (dashed dotted line), the
second order wave kη (20) (dotted line) and the upper bound
wave kξ2 (28) (dashed line), with respect to various values of the
wave steepness ε = ak, at the initial stage t = 0

Applying the iteration scheme

ηn+1 = ω√
kg

a

(
1 − 1

2
ε2

)
ekηn cos θ − a2k

2
(1 − 2ε2)e2kηn

with the initial wave η0 = 0 and the same computation parameters as in the third order problem in the previous
section, we produce the results displayed in Fig. 4, which improves the original third order approximation (Fig. 3)
significantly. More precisely, the agreement between the modified wave and the exact wave remains excellent for the
ratio H/L = 0.1, while the crest gaps between them (Fig. 4) with respect to the ratios H/L = 0.13 and H/L = 0.1412
are substantially narrowed compared with the corresponding crest gaps illustrated in Fig. 3.

6 The fourth and the fifth order approximate waves

This section contributes to the further approximate wave problem defined by the free surface boundary condition

0 = ∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2 + O(εn+1) (33)
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Fig. 3 Comparison of the third order approximate waves (14),
(15) and (16) (solid lines) and the nonlinear exact waves (30)
(circles lines) from Schwartz [6, Fig. 9] with respect to moder-
ate ratio of wave height to wave length H/L = 0.1, large ratio
H/L = 0.13 and the largest ratio H/L = 0.1412

Fig. 4 Comparison of the modified third order approximate
waves (16), (31) and (32) (solid lines) and the nonlinear exact
waves (30) (circles lines) from Schwartz [6, Fig. 9]

for the orders n = 4 and n = 5. Recall that ε = ak and θ = kx − ωt + ϕ. It follows from Fenton [5] that the free
surface boundary condition (33) is satisfied by the velocity potential

φ =
√

g

k3

((
ε − 1

2
ε3

)
ekη sin θ + ε4

2
e2kη sin 2θ

)
(34)

together with the dispersion relation

ω√
kg

= 1 + 1

2
ε2 + 1

8
ε4 (35)

for the order n = 4, and is satisfied by the velocity potential

φ =
√

g

k3

((
ε − 1

2
ε3 − 37

24
ε5

)
ekη sin θ + ε4

2
e2kη sin 2θ + ε5

12
e3kη sin 3θ

)
(36)

together with the same dispersion relation (35) for the order n = 5.
For the fourth order velocity potential (34), we see that

− k

g
∂tφ = ω√

kg

((
ε − 1

2
ε3

)
ekη cos θ + ε4e2kη cos 2θ

)
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and

k

g
|∇φ|2 =

((
ε − 1

2
ε3

)
ekη cos θ + ε4e2kη cos 2θ

)2

+
((
ε − 1

2
ε3

)
ekη sin θ + ε4e2kη sin 2θ

)2

=
(
ε − 1

2
ε3

)2

e2kη + 2

(
ε − 1

2
ε3

)
ε4e3kη cos θ + ε8e4kη.

Thus, the dynamic free surface boundary condition (4) together with the dispersion relation (35) gives rise to the
fourth order approximate wave equation

kη = − k

g
∂tφ − k

2g
|∇φ|2

=
(

1 + 1

2
ε2 + 1

8
ε4

) ((
ε − 1

2
ε3

)
ekη cos θ + ε4e2kη cos 2θ

)

−1

2

((
ε − 1

2
ε3

)2

e2kη + 2

(
ε − 1

2
ε3

)
ε4e3kη cos θ + ε8e4kη

)
. (37)

Iterating the following equation:

kηn+1 =
(

1 + 1

2
ε2 + 1

8
ε4

)((
ε − 1

2
ε3

)
ekηn cos θ + ε4e2kηn cos 2θ

)

−1

2

((
ε − 1

2
ε3

)2

e2kηn + 2

(
ε − 1

2
ε3

)
ε4e3kηn cos θ + ε8e4kηn

)

up to 40 steps with 101 grid points in a single wave length, we obtain the numerical results with respect to the
nonlinear steepness values H/L = 0.1, 0.13 and 0.1412 displayed in Fig. 5, which shows very good agreement
between the fourth order wave and exact wave for H/L = 0.1 and H/L = 0.13, and the difference between these
waves at H/L = 0.1412 is also further reduced.

Similarly, for the fifth order velocity potential (36), we see that

− k

g
∂tφ = ω√

kg

((
ε − 1

2
ε3 − 37

24
ε5

)
ekη cos θ + ε4e2kη cos 2θ + ε5

4
e3kη cos 3θ

)

=
(

1 + 1

2
ε2 + 1

8
ε4

) ((
ε − 1

2
ε3 − 37

24
ε5

)
ekη cos θ + ε4e2kη cos 2θ

)

+
(

1 + 1

2
ε2 + 1

8
ε4

)
ε5

4
e3kη cos 3θ

and

k

g
|∇φ|2 =

((
ε − 1

2
ε3 − 37

24
ε5

)
ekη cos θ + ε4e2kη cos 2θ + ε5

4
e3kη cos 3θ

)2

+
((
ε − 1

2
ε3 − 37

24
ε5

)
ekη sin θ + ε4e2kη sin 2θ + ε5

4
e3kη sin 3θ

)2

=
(
ε − 1

2
ε3 − 37

24
ε5

)2

e2kη + 2

(
ε − 1

2
ε3 − 37

24
ε5

)
ε4e3kη cos θ

+ε
9

2
e5kη cos θ +

(
ε − 1

2
ε3 − 37

24
ε5

)
ε5

2
e4kη cos 2θ + ε8e4kη + ε10

16
e6kη.

Thus, the dynamic free surface boundary condition (33) becomes the following fifth order approximate wave
equation:
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Fig. 5 Comparison of the fourth order approximate waves (37)
(solid lines) and the nonlinear exact waves (30) (circles lines)
from Schwartz [6, Fig. 9]

Fig. 6 Comparison of the fifth order approximate waves (38)
(solid lines) and the nonlinear exact waves (30) (circles lines)
from Schwartz [6, Fig. 9]

kη = − k

g
∂tφ − k

2g
|∇φ|2 (38)

=
(

1 + 1

2
ε2 + 1

8
ε4

) ((
ε − 1

2
ε3 − 37

24
ε5

)
ekη cos θ + ε4e2kη cos 2θ

)

+
(

1 + 1

2
ε2 + 1

8
ε4

)
ε5

4
e3kη cos 3θ

−1

2

((
ε − 1

2
ε3 − 37

24
ε5

)2

e2kη + 2

(
ε − 1

2
ε3 − 37

24
ε5

)
ε4e3kη cos θ

+ ε9

2
e5kη cos θ +

(
ε − 1

2
ε3 − 37

24
ε5

)
ε5

2
e4kη cos 2θ + ε8e4kη + ε10

16
e6kη

)
.

Employing the same iteration scheme as in the fourth order wave by setting η = ηn on the right-hand side
of Eq. (38) and η = ηn+1 on the left-hand side of Eq. (38) and choosing the same computation parameters as in the
fourth order problem, we obtain numerical results for the values H/L = 0.1, 0.13 and 0.1412 displayed in Fig. 6,
which shows that very little difference can be observed even for the limit case H/L = 0.1412. The CPU time to
achieve the result in the FORTRAN 90 code is still less than 0.1 s.

The comparison of the approximate waves at H/L = 0.1412 and the Stokes highest wave in Fig. 7 shows that
the wave crests are sharpened as the approximation order increases. This gives the convergence tendency of the
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Fig. 7 Comparison of the approximate waves and the nonlinear
exact wave from Schwartz [6, Fig. 9] for H/L = 0.1412

Fig. 8 Approximate waves for H/L = 0.1412 at the initial time
t = 0 (bottom) and at time t = 1 (top)

approximate waves to the Stokes highest wave, although higher order approximate waves are necessary to further
approximate the non-smooth crest of the Stokes highest wave.

Figure 8 shows that lower order approximate waves travel slowly and implies the tendency that the exact wave
defined by Eq. (30) travels at the highest speed of the approximate waves.

By following the expansion analysis in Subsect. 3.3 to the third order wave, it is not difficult to prove that the
Taylor expansion of the fifth order wave η in Eq. (38) with respect to ε is identical to the fifth order Stokes wave
[5] in the following sense:

η = the fifth order Stokes wave + O(ε6).

This also implies the relationship between the fourth order wave η in Eq. (37) and the fourth order Stokes wave [5]
in the following form:

η = the fourth order Stokes wave + O(ε5).

However, the existence of the analytic solutions to Eqs. (37) and (38) are much more complicated and is not discussed
herein.

Fortunately, the numerical iteration scheme for the fourth and the fifth orders is always convergent for all the
periodic gravity waves including the highest one with steepness H/L = 0.1412. For the understanding of the
iteration convergence, numerical simulation of the fifth order wave is applied on the half non-dimensional wave
length interval [−0.5, 0] with 31 grid points. The numerical error

1

L
|ηn − ηn−1| = 1

L

(
31∑

i=1

|ηn(i)− ηn−1(i)|2
)1/2

with regard to the iteration number n ≤ 50 and the wave difference ηn − η50 are displayed in Fig. 9, which
shows ηn = ηn+1 for n > 30 since the error 1

L |ηn − ηn−1| with n > 30 almost equals the round-off error of the
double-precision FORTRAN programming.

123



88 Z.-M. Chen

Fig. 9 Errors of the fifth
order approximate wave
with H/L = 0.1412 and
t = 0

0 10 20 30 40 50
0

0.1

0.2

|η
n−

η n−
1|/L

n

15 20 25 30 35 40 45 50
0

0.5

1

1.5

2x 10
−8

| η
n−

η n−
1|/L

n

30 35 40 45 50
0

2

4

6

8 x 10
−16

|η
n−

η n−
1|/L

n

−0.5 −0.4 −0.3 −0.2 −0.1 0
−4

−2

0

2

4 x 10
−15

x/L

y/
L

(η
28

−η
50

)/L

(η
29

−η
50

)/L

(η
30

−η
50

)/L

7 Approximation formulation in higher orders

Following the approximation scheme in the previous section, we can produce a general approximation formulation
for arbitrary orders. For n ≥ 6, let the velocity potential

φ =
√

g

k3

n∑

m=1

εmamemky sin(mkx − mωt + mϕ)

and the dispersion relation

ω√
kg

= 1 +
n∑

m=1

εmbm

be defined by the nth order Stokes wave [20], where the coefficients am are polynomials of the steepness ε = ak, the
coefficients bm are independent of ε and bm = 0 for odd number m. Therefore, the nth order free surface boundary
condition (33) holds true.

Upon the observation

− k

g
∂tφ = ω√

kg

n∑

m=1

mεmamemky cos mθ
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and

k

g
|∇φ|2 =

(
n∑

m=1

mεmamemky cos mθ

)2

+
(

n∑

m=1

mεmamemky sin mθ

)2

= 2
n−1∑

m=1

n−m∑

j=1

m( j + m)ε j+2me( j+2m)kyama j+m cos jθ

+
n∑

m=1

m2ε2ma2
me2mky,

we see that the nth order approximate wave is defined by the dynamic free surface boundary condition (4) as

kη = − k

g
∂tφ − k

2g
|∇φ|2

∣∣∣∣
y=η

=
(

1 +
n∑

m=1

εmbm

)
n∑

m=1

mεmamemkη cos mθ − 1

2

n∑

m=1

m2ε2ma2
me2mkη

−
n−1∑

m=1

n−m∑

j=1

m( j + m)ε j+2me( j+2m)kηama j+m cos jθ,

after the dispersion relation is taken into account.

8 Discussion

A new approximation scheme for travelling gravity waves based on an implicit formulation along the dynamic free
surface boundary Eq. (4) is obtained. The approximation wave satisfies exactly Eq. (4), while the nth order Stokes
wave satisfies Eq. (4) up to nth order. In particular, it can be obtained from the Taylor expansion of the dynamic
free surface boundary equation along the average water surface in terms of the steepness ε = ak that the nth order
approximate wave becomes the nth order Stokes waves if a higher order term O(εn+1) is ignored. The approximate
wave is not in a Fourier expansion form and thus the smallness requirement on the steepness ε as in Stokes wave
expansion can be reduced.

The proposed scheme up to the fifth order approximation provides a simple numerical computation method for
the periodic wave problem. Although Fig. 7 shows the convergence tendency with respect to the Stokes highest wave
with H/L = 0.1412 produced by the approximation method of Schwartz [6], the numerical simulations restricted
to the fifth order are not enough to present the Stokes highest wave by the present scheme. For the convergence
of the present approximation scheme to the Stokes highest wave, numerical simulations of higher order waves are
necessary, and then the approximation scheme becomes complicated as the order number increases. This problem
will be discussed elsewhere. The present approximation scheme is comparable with the Stokes expansion scheme,
but is quite different to the traditional approximation method of Schwartz [6] based on conformal mappings and
the Laurent expansion.

The present scheme relies on the assumption that there is an approximation velocity potential φ satisfying the
nth order free surface boundary condition

∂2
t φ + g∂yφ + ∂t |∇φ|2 + 1

2
∇φ · ∇|∇φ|2 = O(εn+1)

on the calm water surface y = 0. Fortunately, this velocity potential φ can be derived from the Stokes wave
expansion scheme.

It should be mentioned that nonlinear term − 1
2 |∇φ|2 in the dynamic free surface boundary Eq. (4) is not only for

the physics of the problem, but also for the convergence of the numerical iteration in the derivation of approximate
waves.
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Appendix A: Analytic solutions of the deep water wave equations (19–21)

The velocity potentials for the first three order waves are in a simple form. The unique existence for the first three
order waves can be now proved.

The derivation of the analytic solution to the first order problem (19) is quite straightforward, and the solution
can be determined by the iteration scheme

ηn+1 = ε

k
ekηn cos θ for n ≥ 0

initially from the calm water line η0 = 0. Therefore, detailed derivations are only provided for the more interesting
wave solutions (20) and (21).

Now we use the iteration scheme

ηn+1 = εω

k
√

kg
δekηn cos θ − ε2

2k
δ2e2kηn for n ≥ 0 (39)

to show the unique existence of the analytic solutions (20), (21) under the steepness bound assumption

ε ≤ 0.75. (40)

To do so, we let X+ be the space of continuous functions kη ≤ ω2/(2kg) defined over the interval [−π
2 ,

π
2 ] where

cos θ ≥ 0, and let X− be the space of continuous functions η ≤ 0 defined over the interval [π2 , 3π
2 ] where cos θ ≤ 0.

Therefore, the definition of the spaces X± implies that ηn+1 ∈ X± whenever ηn ∈ X± in terms of the bound (9).
In order to show the convergence of the iteration scheme in terms of the Banach contraction principle, it remains

to prove the contraction property

|ηn+1(θ)− ηm+1(θ)| ≤ τ |ηn(θ)− ηm(θ)| with ηn, ηm ∈ X±, n, m ≥ 0 (41)

for a contraction constant τ < 1 independent of θ , n, m, ηn and ηm . Indeed, it follows from Eq. (39) that

|ηn+1(θ)− ηm+1(θ)| ≤
1∫

0

|�|ds |ηn(θ)− ηm(θ)|, (42)

where

� = ω√
kg
εδ cos θek[ηm (θ)+s(ηn(θ)−ηm (θ))] − ε2δ2e2k[ηm (θ)+s(ηn(θ)−ηm (θ))]. (43)

For θ ∈ [π2 , 3π
2 ], we see that cos θ ≤ 0 and hence

1∫

0

|�|ds ≤ ω√
kg
εδ + ε2δ2 ≤ εδ

√
1 + ε2δ2 + ε2δ2, (44)

which is a straightforward consequence of Eq. (42) and the dispersion relations Eqs. (17) and (18), observing that
the inequality

εδ
√

1 + ε2δ2 + ε2δ2 < 1

or
√

1

ε2δ2 + 1 <
1

ε2δ2 − 1

is equivalent to the bound

εδ = ε

(
1 − 1

2
ε2

)
<

1√
3
,

which is true for ε ≤ 0.75.
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Next, we show the contraction property in the space X+ when εδ ≤ 1/
√

3.
Since the functions in the space X+ are nonnegative, it suffices to show the contraction property of the sequence

η̂n instead of that of the sequence ηn . Here η̂ denotes the cut-off function

η̂ =
{
η for η ≥ 0,
0 for η < 0.

Therefore for ηn, ηm ∈ X+, we may suppose ηn+1(θ) ≥ 0 and ηm+1(θ) ≥ 0. Eq. (39) with ηn replaced by η̂n

produces

|η̂n+1(θ)− η̂m+1(θ)| = |ηn+1(θ)− ηm+1(θ)| ≤
1∫

0

|�|ds |η̂n(θ)− η̂m(θ)|.

To estimate the function �, we begin with the assumption � ≤ 0. Without loss of generality, we may suppose that
ηn(θ)− ηm(θ) ≥ 0. It follows from Eqs. (39), (43) that

|�| ≤ 1

2
ε2δ2e2k[ηm (θ)+s(ηn(θ)−ηm (θ))] − εδ

ω√
kg

ek[ηm (θ)+s(ηn(θ)−ηm (θ))] cos θ

≤ 1

2
ε2δ2e

ω2
kg .

The contraction constant is now derived as
1∫

0

|�|ds ≤ 1

2
ε2δ2e1+ε2δ2 ≤ 0.633 (45)

in terms of the dispersion relations (17), (18) and the bound εδ ≤ 1/
√

3.
For the remaining case � ≥ 0, we find that

|�| ≤ max
σ>0

(
σεδ

ω√
kg

cos θek[ηm (θ)+s(ηn(θ)−ηm (θ))] − σ 2ε2δ2e2k[ηm (θ)+s[ηn(θ)−ηm (θ))]
)

≤ ω2

4kg
cos2 θ.

This gives the contraction constant

1∫

0

|�|ds ≤ ω2

4kg
≤ 1 + ε2δ2

4
≤ 1

3
(46)

due to the dispersion relations (17), (18) and bound εδ ≤ 1/
√

3.
Consequently, the iteration sequences ηn in the space X− and η̂n in the space X+ are convergent uniquely for

any initial functions η0 ∈ X− and η̂0 ∈ X+. The convergence of the sequences is also confirmed rigorously by
the Banach contraction principle. Thus, the unique existence of the desired analytic solution η is defined to be
η(θ) = limn→∞ ηn(θ) for θ ∈ [−π

2 ,
π
2 ] and η(θ) = limn→∞ η̂n(θ) for θ ∈ [π2 , 3π

2 ]. The analytic solution is
continuously defined in the whole interval [−π

2 ,
3π
2 ] due to the uniqueness.
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