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A FORMULA FOR THE DISCRIMINANT OF NUMBER FIELDS

PEI-CHU HU AND ZHUAN YE

(Communicated by Ken Ono)

Abstract. We obtain a formula for the discriminant Dκ/Q of an algebraic
number field κ in terms of a ratio of the first two coefficients of the Taylor
series of ζκ at 1/2.

Let κ be a number field of degree n = r1 + 2r2, where r1, r2 are the number of
real, complex places respectively. The Dedekind ζ-function of the number field κ
is defined by the series

ζκ(s) =
∑

a

1

N (a)s
,

where a varies over the non-zero integral ideals of κ and N (a) denotes the absolute
norm of a. Denote by Dκ/Q the discriminant of κ.

The Dedekind function ζκ(s) admits a holomorphic continuation with the exclu-
sion of a simple pole at s = 1 and satisfies the following functional equation

(1) ζκ(1− s) = A(s)ζκ(s),

where

A(s) = |Dκ/Q|s−
1
2

(
cos

πs

2

)r1+r2 (
sin

πs

2

)r2
2(1−s)nπ−snΓn(s).

A straightforward computation gives A(1/2) = 1. Furthermore, let β1,κ ( �= 0), γ1,κ
be defined by the Taylor expansion of ζκ(s) at s = 1/2, i.e.,

(2) ζκ(s) = β1,κ

(
s− 1

2

)μ

+ γ1,κ

(
s− 1

2

)μ+1

+ · · · .

It turns out from (1) that μ is a non-negative even integer. It is well-known ([2])
that

|Dκ/Q|1/n ≥ (4πeγ+1)r1/n(4πeγ)2r2/n − O(n−2/3),

and further, if the Generalized Riemann Hypothesis is assumed, a much stronger
inequality states that

(3) |Dκ/Q|1/n ≥ (8πeγ+π/2)r1/n(8πeγ)2r2/n −O(log−2 n),

where γ is the Euler constant. We refer the reader to the survey paper [2] for the
history of these bounds. Many mathematicians, such as A. Odlyzko, G. Poitou,
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J.-P. Serre and H. Stark, have contributed to this theory. Moreover, explicit forms
of these inequalities have proven quite useful in several types of applications in
algebraic number theory, as described in [2] for example.

In this short paper, we prove the following theorem.

Theorem. Let κ be a number field of degree n and let Dκ/Q, r1, r2, β1,κ and γ1,κ
be defined as above. Then we have

|Dκ/Q|1/n = (8πeγ+π/2)r1/n (8πeγ)2r2/n e−2γ1,κ/(nβ1,κ).

Proof. It is clear from (2) that

ζ ′κ(s)

ζκ(s)
=

μ

s− 1
2

+
γ1,κ
β1,κ

+O((s− 1

2
)) and − ζ ′κ(1− s)

ζκ(1− s)
=

μ

s− 1
2

− γ1,κ
β1,κ

+O((s− 1

2
)).

Logarithmically differentiating (1) gives

−γ1,κ
β1,κ

= log |Dκ/Q| −
r1π

2
− n log(2π) + n

Γ′ ( 1
2

)

Γ
(
1
2

) +
γ1,κ
β1,κ

.

By using the fact (e.g. [1], page 482) that Γ′ ( 1
2

)
/Γ

(
1
2

)
= −γ − log 4, we obtain

γ1,κ
β1,κ

=
n

2
{γ + log(8π)}+ r1π

4
− 1

2
log |Dκ/Q|,

which completes the proof. �
Clearly, the theorem provides us with a formula to compute the discriminant of

individual number fields. Further, it is worth pointing out that the main term in
(3) appears exactly in the theorem. Thus, the Serre-Odlyzko inequality (3) can be
achieved without assuming the Generalized Riemann Hypothesis if one can give an
absolute upper bound for γ1,κ/β1,κ. Indeed, even a slightly weaker bound on the
ratio γ1,κ/β1,κ could still improve the unconditional bound.
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2006. MR2245631 (2008c:32021)

[2] Odlyzko, A. M., Bounds for discriminants and related estimates for class numbers, regulators
and zeros of zeta functions: a survey of recent results, Séminaire de Théorie des Nombres,
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