
(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Mechanics Research Communications 40 (2012) 34– 40

Contents lists available at SciVerse ScienceDirect

Mechanics  Research  Communications

jo ur nal homep age : www.elsev ier .com/ locate /mechrescom

Analytical  solution  of  a  semi-permeable  crack  in  a  2D  piezoelectric  medium
based  on  the  PS  model

CuiYing  Fana, YanFei  Zhaoc, MingHao  Zhaoa,b,∗, Ernian  Pana,c

a The School of Mechanical Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
b Department of Engineering Mechanics, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
c Department of Civil Engineering, University of Akron, Ohio 44325, USA

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 22 June 2011
Received in revised form
22 November 2011
Available online xxx

Keywords:
Piezoelectric fracture
Dislocation density method
Polarization saturation (PS)
Semi-permeable crack
Intensity factor

a  b  s  t  r  a  c  t

This  paper  considers  a straight  but  nonlinear  crack  in  a two-dimensional  piezoelectric  plane.  Different
to  the  existing  theoretical  solution  of  the  well-known  polarization  saturation  (PS)  model,  we assume  the
crack to  be  semi-permeable.  By  introducing  the  dislocation  density  along  the  crack  line,  we  derive  the
analytical  solution  for the  field  quantities.  Numerical  results  show  that  the  effect  of  different  boundary
conditions  on  the  electric  yielding  zone  and  the  stress  intensity  factor  is significant  and  should  not  be
ignored.  The  influence  of the  saturated  electric  displacement  on  the  stress  intensity  factor  and  the  electric
displacement  in  the  crack  cavity  is  also  demonstrated.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Due to the wide use of piezoelectric ceramics in smart struc-
tures, research on fracture of this type of materials becomes
extremely important (i.e., Suo et al., 1992; Pan, 1999; Zhang et al.,
2002; Jin and Zhong, 2002; Lin et al., 2003; Fang et al., 2004; Kuna,
2010; Zhong and Zhang, 2010). As is well known, the extension
of the current fundamental fracture concepts or criteria in pure
elasticity to piezoelectricity is not straightforward since the cou-
pling between the mechanical and electric fields is complicated
(Suo et al., 1992; Zhang et al., 2002).

Gao et al. (1997) extended the classical Dugdale model (Dugdale,
1960) to a strip polarization saturation (PS) model in piezoelec-
tricity by assuming that the electric displacement is constant on a
strip adjacent to a crack tip. The piezoelectric fields and fracture
features predicted based on the PS model are in broad agreement
with experimental observations (Park and Sun, 1995). McMeeking
(2001) pointed out, from the energy point of view, that the PS model
actually corresponds to a mechanical Dugdale model in which the
strain remains constant. For this reason, Zhang et al. (2005) pro-
posed a strip dielectric breakdown (DB) model assuming that the
electric field strength should be constant in a strip adjacent to a
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crack tip. It is found that the DB model gives the same results as
the PS model in predicting the effects of an applied electric field
on the fracture of piezoelectric media (Zhang et al., 2005). The
study of the PS and DB models was also conducted by Ru and Mao
(1999), Wang (2000),  Beom et al. (2006),  Loboda et al. (2010),  Gao
et al. (2006), among others. Recently, Fan et al. (2009) developed a
numerical method, the nonlinear hybrid extended displacement
discontinuity-fundamental solution (NHEDD-FS) method, where
both the PS and DB models can be considered, to study the effect of
the electric boundary condition on the field quantities. The numer-
ical results by Fan et al. (2009) show that the electric displacement
in the crack cavity was approximately constant and that the cal-
culated result of the field quantities under the semi-permeable
electric crack condition was  very close to that under the imper-
meable condition for the given loadings and material parameters.
However, the influence of the electric boundary condition on the
fracture features could be significant as demonstrated by Loboda
et al. (2010) and Fan et al. (2011),  among others.

Several models were proposed in the literature to consider the
effect of the electric field in the crack cavity, e.g., the self-consistent,
energetically consistent, electrostatic traction (Zhang et al., 2002;
Landis, 2004; Ricoeur and Kuna, 2009) and semi-permeable bound-
ary conditions (Hao and Shen, 1994). Fan et al. (2011) studied these
models and found that the self-consistent one would lead to almost
the same result as the semi-permeable boundary condition model.
As such, the simple boundary condition, i.e., the semi-permeable
boundary condition will be adopted in this paper in order to obtain
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the analytical solution of the problem. In other words, in this paper,
we assume a semi-permeable crack for the opening part of the
crack and the PS model for the electric yielding zone (EYZ). The
dislocation density concept is then applied to derive the integral
equations. Simple numerical solutions of these equations show sig-
nificant influence of the semi-permeable crack model on the field
quantities as compared to the simple impermeable crack model.
The paper is organized as follows: In Section 2, we  present the basic
equations; In Section 3, the semi-permeable as well as the imper-
meable crack models are described along with the corresponding
boundary conditions; The boundary integral equations are derived
in Section 4, and the expressions for the field intensity factors and
local J-integral are given in Section 5; Numerical examples are car-
ried out in Section 6, and conclusions are drawn in Section 7.

2. Basic equations

In the absence of body force and free electric charge, the
extended equilibrium equations, geometric relations, and the con-
stitutive relations of piezoelectric media are given by

�ij,j = 0, Di,i = 0, i, j = 1, 2, 3 (or x, y, z), (1)

εij = 1
2 (ui,j + uj,i), Ei = −ϕ,i, (2)

�ij = Cijklεkl − ekijEk, k, l = 1, 2, 3 or x, y, z, (3a)

Dk = ekijεij + �klEl, (3b)

where �ij and Di are the stresses and electric displacements, respec-
tively; εij and Ei are the strain and electric fields, respectively;
ui(i = 1–3) and ϕ = u4 are the elastic displacements and the elec-
tric potential, respectively; and Cijkl, eijk and �ij stand for the elastic
constants, the piezoelectric constants and the dielectric constants,
respectively. A subscript comma  denotes the partial differentiation
with respect to the coordinate after the comma.

For a generalized two-dimensional deformation in which the
extended displacement vector u = (u1 u2 u3 ϕ )T and the
extended stress function vector � = (�1 �2 �3 �4)T depends only on
x1 and x2, the general solution takes the form (Suo et al., 1992;
Zhang et al., 2002):

u = Af(z) + Af(z), (4a)

� = Bf(z) + Bf(z), (4b)

where A = ( a1 a2 a3 a4 ) and B = ( b1 b2 b3 b4 ) with ai
and bi (i = 1, 2, 3, 4) being both the four-dimensional eigenvec-

tors; f (z) =
(

f1(z1) f2(z2) f3(z3) f4(z4)
)T

is an analytic function
vector; zi = x1 + pix2 with pi being the eigenvalue with a positive
imaginary part. The eigenvalues and eigenvetors are determined
by the following eigenvalue relations

[Q + p(R + RT ) + p2T]A = 0, (5)

bi =
[
RT + piT

]
ai = − 1

pi
[R + piT] ai, (6)

where

Qjk = C1jk1, Rjk = C1jk2, Tjk = C2jk2. (7)

The extended stress vectors are calculated from the extended stress
function vector:

˙2 = ( �21 �22 �23 D2 )T = �,1, (8)

˙1 = ( �11 �12 �13 D1 )T = −�,2. (9)

x1

x2 

a -a 

∞∞
222

, Dσ

c-c

o

Fig. 1. Schematic of distributed dislocations along the crack line in the PS model
where |x1|<a is the opening part of the crack and a<|x1|<c the electric yielding zone
(EYZ).

In addition, matrix H, which was  defined in Zhang et al. (2005),  will
be used in the following analyses

H = 2Re[iAB−1], H−1 =
(

F1 FT
2

F2 F44

)
, (10)

where

F1 =
(

F11 F12 F13
F21 F22 F23
F31 F32 F33

)
, F2 = ( F41 F42 F43 ), (11)

and Fij(i, j = 1, 2, 3, 4) are material-related constants (Zhang et al.,
2005).

3. The crack models and associated boundary conditions

Fig. 1 shows a crack S based on the PS model where the poling
direction of the piezoelectric medium is along the x2-axis, (−a,a)
denotes the opening part of the crack, and (−c,a) and (a,c) denote
the electric yielding zone (EYZ). The external loading is applied
uniformly at infinity,

�∞
2 = ( �∞

21 �∞
22 �∞

23 D∞
2 )T

. (12)

The extended boundary conditions on the crack surface for the
general case require

�2 = ( �21 �22 �23 D2 )T = ( 0 0 0 Dc
2(x1) )T

, −a < x1 < a,

(13)

where Dc
2 denotes the electric displacement in the crack cavity.

For an electrically impermeable crack model, we have

D+
2 (x1) = D−

2 (x1) = 0, Dc
2(x1) = 0, (14)

where the superscripts “+” and “−” denote the upper and lower
crack surfaces, respectively.

For a semi-permeable crack model, the electric displacement
in the crack cavity along the crack is related to the crack opening
displacement and electric potential jump by (Hao and Shen, 1994)

Dc
2(x1) = −�c ϕ+(x1) − ϕ−(x1)

u+
2 (x1) − u−

2 (x1)
= −�c

∥∥ϕ(x1)
∥∥∥∥u2(x1)
∥∥ , (15)

where �c is the dielectric constant of the medium inside the open-
ing crack,

∥∥ϕ(x1)
∥∥ ≡ ϕ+(x1) − ϕ−(x1) is the potential jump, and∥∥u2(x1)

∥∥ ≡ u+
2 (x1) − u−

2 (x1) is the crack opening displacement.
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Eqs. (13)–(15) give the boundary conditions in the opening part
of the crack (|x1| ≤ a). Along the EYZ, we assume the PS model, which
takes the following form (Gao et al., 1997),

u+
i

(x1) = u−
i

(x1), D+
2 (x1) = D−

2 (x1) = DS, a < |x1| < c, i = 1, 2, 3,

(16)

where DS is the saturated electric displacement.

4. Solutions in terms of integral equations

We  will solve the crack problem described above via the inte-
gral equation method. We  introduce four functions to represent the
distributed dislocations, gi(x1), which are actually associated with
the Burgers vector components (the conventional elastic disloca-
tions b∗ = ( b1 b2 b3 ), and the electric dislocation �ϕ) such that
gi(x1) bi dx1 (i = 1,2,3,4; with b4 ≡ �ϕ) represents the strength of the
Burgers vector located at x1 in the interval dx1. We  now distribute
the conventional dislocations from −a to a, and the electric disloca-
tion from −c to c. Therefore, the crack opening displacements and
the potential jump can be expressed by the extended dislocations,
as∣∣∣∣ui(x1)

∣∣∣∣ = u+
i

(x1) − u−
i

(x1) =
∫ a

x1

gi(x
′
1)bidx′

1, |x1| ≤ a,

∣∣∣∣ϕ(x1)
∣∣∣∣ = ϕ+(x1) − ϕ−(x1) =

∫ c

x1

g4(x′
1)�ϕdx′

1, |x1| ≤ c.

(17)

Making use of the extended dislocation Green’s functions (Zhang
et al., 2005) and the boundary conditions in Eqs. (12) and (13), we
derive the following integral equations for the general case (Eq.
(13)) based on the PS model

a∫
−a

1
�(x1 − x′

1)
F1
〈

gi

〉
b∗dx′

1 +
c∫

−c

1
�(x1 − x′

1)
FT

2g4�ϕdx′
1 + t∗ = 0,

|x1| ≤ a, (18a)

a∫
−a

1
�(x1 − x′

1)
F2
〈

gi

〉
b∗dx′

1 +
c∫

−c

1
�(x1 − x′

1)
F44g4�ϕdx′

1 + D∞
2

= Dc
2(x1), |x1| ≤ a, (18b)

a∫
−a

1
�(x1 − x′

1)
F2
〈

gi

〉
b∗dx′

1 +
c∫

−c

1
�(x1 − x′

1)
F44g4�ϕdx′

1+D∞
2 = DS,

a ≤ |x1| ≤ c, (18c)

where
〈

gi(x1)
〉

is a 3 × 3 diagonal matrix, and

t = ( �∞
12 �∞

22 �∞
32 D∞

2 )T
, t∗ = ( �∞

12 �∞
22 �∞

32 )T
. (19)

Generally speaking, the potential jump
∥∥ϕ(x1)

∥∥and the crack open-

ing displacement
∥∥u2(x1)

∥∥ depend on the location along the crack
surface. As such, Dc

2(x1) in Eq. (15) or in Eq. (18b) would generally
be the function of x1.

However, for a given loading, the crack opening displacement
and the potential jump are approximately proportional to each
other. Therefore, to the first-order approximation, the electric dis-
placement Dc

2 within the opening part of crack can be assumed
as constant, except for points near the crack tip (Fan et al., 2009;
Loboda et al., 2010). This approximation will be validated numeri-
cally later on.

From Eqs. (18a) and (18b), we can obtain

a∫
−a

1
�(x1 − x′

1)
F∗

1

〈
gi

〉
b∗dx′

1 + T∗ = 0, |x1| ≤ a, (20)

where

F∗
1 = F1 − FT

2F2

F44
, T∗ = t∗ −

(
FT

2
F44

)
(D∞

2 − Dc
2). (21)

Thus, the solution to Eq. (20) is given by〈
gi

〉
b∗ = F∗−1

1 T∗ x1(
a2 − x2

1

)1/2
, |x1| ≤ a. (22)

From Eqs. (18b) and (18c), we  derive the following dual integral
equations

c∫
−c

1
�(x1 − x′

1)

(
F2
〈

gi

〉
b∗ + F44g4�ϕ

)
dx′

1 + D∞
2 − Dc

2 = 0,

|x1| ≤ a, (23a)

c∫
−c

1
�(x1 − x′

1)

(
F2
〈

gi

〉
b∗ + F44g4�ϕ

)
dx′

1 + D∞
2 − Dc

2 = DS − Dc
2,

a ≤ |x1| ≤ c, (23b)

where

〈
gi

〉
b∗ =

⎧⎨⎩ F∗−1
1 T∗ x1(

a2 − x2
1

)1/2
, |x1| ≤ a,

0 a < |x1| < c,

(24)

Using the Muskhelishvili method (Muskhelishvili, 1953), we find
the solution of Eqs. (23a) and (23b) as

F2 〈gi〉 b∗ + F44g4�ϕ = DS − Dc
2

�

[
ch−1

∣∣∣ c2 − ax1

c(a − x1)

∣∣∣− ch−1

∣∣∣ c2 + ax1

c(a + x1)

∣∣∣] . (25)

We therefore have

g4�ϕ  =

⎧⎪⎪⎨⎪⎪⎩
DS − Dc

2
F44�

[
ch−1

∣∣∣∣ c2 − ax1

c(a − x1)

∣∣∣∣− ch−1

∣∣∣∣ c2 + ax1

c(a + x1)

∣∣∣∣]− F2

F44
F∗−1

1 T∗ x1

(a2 − x2
1)

1/2
, |x1| ≤ a,

DS − Dc
2

F44�

[
ch−1

∣∣∣∣ c2 − ax1

c(a − x1)

∣∣∣∣− ch−1

∣∣∣∣ c2 + ax1

c(a + x1)

∣∣∣∣] , a < |x1| < c.

(26)

Up to now, the size of the EYZ c and the electric displacement Dc
2 are

still unknowns, and thus extra conditions are needed to obtain the
final solutions. From Eq. (15) for the semi-permeable crack model,
the electric displacement Dc

2 in the crack cavity is related to the
crack opening displacement and the potential jump. Based on the PS
model for piezoelectric media (Gao et al., 1997), we know that the
electric displacement has no singularity at the tip of the EYZ. There-
fore, in order to satisfy the non-singularity of electric displacement
at |x1| = c, we  require that for a given Dc

2, similar to the DB model
and PS model (Gao et al., 1997; Wang, 2000; Zhang et al., 2005), the
following equation be satisfied

c

a
= sec

(
� (D∞

2 − Dc
2)

2 (DS − Dc
2)

)
, (27)
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which determines the size of the EYZ.
For the impermeable crack model (Eq. (14)), we  have Dc

2 = 0,
and thus the size of the EYZ from Eq. (27) is reduced to

a

c
= cos

(
�D∞

2
2DS

)
, (28)

which is the same as in Gao et al. (1997) and Wang (2000).  In
other words, Eq. (27) extends the non-singularity condition in the
impermeable crack model to the general crack surface loading case.

Substituting Eq. (27) into Eq. (26) and Eq. (17), the crack opening
displacement and the potential jump at an arbitrary point (x1, 0)
along the crack surface and on the EYZ can be expressed in terms
of the extended dislocation. Then, substituting the crack opening
displacement and the potential jump into Eq. (15), we obtain the
electric displacement Dc

2 at any point (x1, 0) along the crack

Dc
2

�c
= − 1

�F44[F∗−1
1 T∗]2

(
(DS − Dc

2) [M1(DS, x1) − M2(DS, x1)]

M3(x1)
− �F2F∗−1

1 T∗
)

,

|x1| ≤ a, (29)

where [F∗−1
1 T∗]2 denotes the second row of the matrix, and

M1(DS, x1) =
c∫

x1

[
ch−1

∣∣∣∣ c2 − ax′
1

c(a − x′
1)

∣∣∣∣]dx′
1, (30a)

M2(DS, x1) =
c∫

x1

[
ch−1

∣∣∣∣ c2 + ax′
1

c(a + x′
1)

∣∣∣∣]dx′
1, (30b)

M3(x1) =
√

a2 − x′
1

2. (30c)

Eq. (29) is used to determine the electric displacement Dc
2 in the

crack cavity for the semi-permeable crack model. It is obvious that,
under the condition Eq. (15), the electric displacement would be,
in general, not constant but the function of x1. As stated before, we
assume it to be a constant in this paper. Substituting the derived
Dc

2 in Eq. (29) into Eq. (27), we finally obtain the EYZ.

5. Field intensity factors and local J-integral

The stress in front of the crack tip on the x1-axis is calculated by

˙2 ≡ ( �21 �22 �23 D2 )T =
a∫

−a

1
�(x1 − x′

1)

(
F1
F2

)〈
gi(x

′
1)
〉

b∗dx′
1

+
c∫

−c

1
�(x1 − x′

1)

(
FT

2
F44

)
g4(x′

1)��dx′
1

+ t. (31)

Defining the field intensity factor vector,

K = lim
x1→a

√
2�(x1 − a)�2, (32)

we obtain the local field intensity factor vector as

K(l) =
(

K (1)
II K (l)

I K (l)
III K (l)

D

)T
= √

�a

[(
F1

0

)
−
(

FT
2

0

)
F2

F44

]
F∗−1

1 T∗, (33)

which can be further written as

K(l) =

⎛⎜⎜⎜⎝
K (a)

II

K (a)
I

K (a)
III

0

⎞⎟⎟⎟⎠− 1
F44

⎛⎜⎜⎜⎝
F41K (a)

D

F42K (a)
D

F43K (a)
D

0

⎞⎟⎟⎟⎠+ 1
F44

⎛⎜⎜⎝
F41KDc

F42KDc

F43KDc

0

⎞⎟⎟⎠ , (34)

where(
K (a)

II K (a)
I K (a)

III K (a)
D

)T = √
�a
(

�∞
12 �∞

22 �∞
32 D∞

2

)T
,

KDc = √
�aDc

2. (35)

We  point out again that Eq. (34) is the solution of the local field
intensity factor and that there are three sources contributing to
it: the first term on the right-hand side of Eq. (34) is related to
the far-field mechanical loading, the second to the far-field electric
displacement loading, and finally the third term to the electric dis-
placement in the crack cavity. It can be easily shown that if Dc

2 = 0
and KDc = 0, Eq. (34) reduces to the solutions for the impermeable
crack model as in Wang (2000) and Fan et al. (2009).

For the piezoelectric medium, the J-integral is related to the field
intensity factor as (Zhang et al., 2005)

J = KT H
4

K. (36)

Therefore, substituting Eq. (34) into Eq. (36) yields the local
J-integral J(l) of the piezoelectric medium as

J(l) = K(l)T H
4

K(l). (37)

Since the last term on the right-hand side of Eq. (34) is the contribu-
tion of the electric displacement Dc

2 in the crack cavity to the local
intensity factor, it can be seen, from Eqs. (29), (34) and (37), that the
local field intensity factor and local J-integral are related not only
to the material coefficients and the applied far-field, but also to the
saturated electric displacement DS. This is the major observation
which has not been reported in existing literature.

6. Numerical examples

To investigate the effect of the electric displacement in the crack
cavity on the piezoelectric fracture, we numerically calculate the
size of the EYZ and the local stress intensity factor under different
crack boundary conditions (semi-impermeable and impermeable
crack models). Two  types of far-field loadings are considered:
mechanical loading �∞

22 ≡ � and electric loading D∞
2 ≡ D. We  take a

finite crack in an infinite PZT-4 piezoelectric material as an example
with the material properties being listed in Table 1. The dielec-
tric constant of the material in the crack cavity is taken to be
�c = 8.85 × 10−12 Fm−1. Two cases are studied: one with fixed DS
and the other with varying DS.

6.1. Results based on different boundary conditions with fixed
saturated electric displacement

We  first assume that the saturated electric displacement is
DS = 0.2C/m2. Fig. 2 shows the electric displacement in the crack
cavity calculated using Eq. (15). It can be seen that under differ-
ent mechanical �∞

22 ≡ � and electric D∞
2 ≡ D loadings, the electric

displacement in the crack cavity is indeed constant except for the
region near the crack tip. This result validates the assumption we
made on the electric displacement. Therefore, in the following cal-
culation, we take the electric displacement at the center (0,0) of the
crack as the uniform value in the crack cavity.

Figs. 3 and 4 show the EYZ size versus the far-field mechanical
and electric loadings for both semi-permeable and impermeable
crack models. These two figures clearly demonstrate the influ-
ence of different crack surface conditions on the EYZ size. It is
observed from Fig. 3 that under a relatively small mechanical
load (with fixed far-field electric displacement), the EYZ size of a
semi-impermeable crack model is usually smaller than that of the
impermeable crack model (the EYZ size of the impermeable crack
is independent of the mechanical load). However, with increas-
ing mechanical load, the EYZ size of the semi-permeable crack
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Table  1
Material properties of PZT-4.

Elastic constant (109 N/m2) Piezoelectric constant (c/m2) Dielectric constant (10−9 F/m)

c11 c33 c44 c13 c12 e15 e31 e33 �11 �33

139 113 25.6 74.3 77.8 13.4 −6.98 13.8 6.0 5.47

x1/a

1.0.8.6.4.20.0

D
2

c
 (

C
/m

2
)

0.00

.01

.02

.03

.04

.05

σ=10 MPa, D=0.08 C/m2

σ=10 MPa, D=0.04 C/m2

σ=20 MPa, D=0.04 C/m2

Fig. 2. Variation of the electric displacement in the crack cavity along the crack
using Eq. (15).

increases and eventually reaches the EYZ size of the impermeable
crack (at around � = 450 MPa). With further increase of the far-field
mechanical load, the electric displacement in the crack cavity
becomes negative for the semi-permeable crack (as shown in the
inserted figure in Fig. 3), which means that the electric potential
jump is in the opposite direction. Fig. 4 shows the correspond-
ing EYZ size versus the applied far-field electric displacement
for both crack models. It is interesting that the EYZ size of the
impermeable and semi-permeable cracks increases monotonically
with increasing far-field electric displacement. It is noted that,
under a small electric loading (e.g., D<0.025 or <12.5% of DS), the
electric displacement in the crack cavity corresponding to the
semi-permeable crack could not be determined (as shown in the
inserted figure for the regular part only). The reason is unclear yet.
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Fig. 3. Size of the electric yielding zone (EYZ) versus the mechanical loading �∞
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for semi-permeable and impermeable crack models with fixed D∞
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and DS = 0.2C/m2. Inserted figure shows the electric displacement in the crack cavity
versus the mechanical loading.

Applied far-field electric displacement D (C/m
2
) 

.10.08.06.04.02

R
=

(c
-a

)/
a

0.0

.1

.2

.3

.4

.5

semi-permeable crack

impermeable crack

D (C/m
2
) 

.12.10.08.06.04.02

D
2

c
 (

C
/m

2
)

0.000

.005

.010

.015

.020

.025

.030

.035

Fig. 4. Size of the electric yielding zone (EYZ) versus the electric loading D∞
2 ≡ D for

semi-permeable and impermeable crack models with fixed �∞
22 ≡ � = 10 MPa  and
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Figs. 5 and 6 display the stress intensity factor (SIF) versus the
electric and mechanical loads for both crack models. The normal-
ized local stress intensity factor is given by

K∗
I = K (l)

I√
�a�∞

22

. (38)

It is observed from Fig. 5 that for a given mechanical load, the
normalized SIF corresponding to the impermeable crack is larger
than that corresponding to the semi-permeable crack and that the
SIFs in both crack models decrease monotonically with increasing
far-field mechanical load. They both reach the same asymptotical
value (about 1.4) under a large mechanical load. This interest-
ing feature implies that, under a relatively large mechanical load
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and DS = 0.2C/m2.
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(say >150 MPa), the simple impermeable crack model can be safely
employed to calculate the normalized SIF (with a relative error less
than 5%) for D∞

2 ≡ D = 0.1C/m2 and DS = 0.2C/m2. Fig. 6 shows the
variation of the normalized SIF with the applied far-field electric
displacement. It is obvious that for a given electric displacement,
the SIF of the impermeable crack is much larger than that of the
semi-permeable crack. However, the SIF for impermeable crack
increases linearly with electric displacement, while the SIF for
semi-permeable crack varies nonlinearly with electric displace-
ment under the relatively small electric load.

It is observed from Figs. 3–6 that the difference between the
results based on the semi-permeable crack and the impermeable
crack is significant. This demonstrates that the effect of the electric
field in the crack cavity cannot be ignored except for the case of
large mechanical load. These nonlinear features are different from
those associated with the impermeable crack (Wang, 2000).

6.2. Influence of saturated electric displacement

Fig. 7 displays, for a semi-permeable crack model, the electric
displacement Dc

2 in the crack cavity versus the saturated electric
displacement DS for different far-field electric displacements but
with fixed far-field mechanical load �∞

22 ≡ � = 10 MPa. It is obvi-
ous that for a given saturated electric displacement, the electric
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displacement Dc
2 in the crack cavity decreases with decreasing far-

field D, and that for a given D, the electric displacement Dc
2 decreases

with increasing saturated electric displacement DS (approaches
asymptotically a limit value for larger DS). It is further observed
from Fig. 7 that the electric displacement Dc

2 in the crack cavity is
singular when D∞

2 = DS . Fig. 8 displays the normalized SIF of the
semi-permeable crack versus saturated electric displacement DS. It
is seen from Fig. 8 that the normalized SIF slightly increases with
increasing DS and that there is a singularity in the SIF when the
far-field electric displacement is close to certain value of DS.

7. Concluding remarks

We have proposed a semi-permeable polarization saturation
(PS) model. This relatively real boundary value problem of the crack
is solved via the integral equation approach by introducing the
dislocation density along the crack. Comparing to the simple imper-
meable crack model, our numerical results show clearly that, under
either a far-field mechanical or electric load, the effect of differ-
ent crack boundary conditions on the size of the electric yielding
zone and the stress intensity factor is significant and should not be
ignored in the piezoelectric fracture analysis. The influence of the
saturated electric displacement on the stress intensity factor and
on the electric displacement in the crack cavity is presented for the
first time.

We  further point out that the proposed approach can be
extended to include other nonlinear electric boundary conditions,
e.g., the electrostatic traction. However, in so doing, the quadratic
terms of Dc

2 would appear in the boundary condition, which makes
the analytical solution more difficult, if not impossible. This prob-
lem will be attacked in the future via the numerical approaches,
e.g., the extended displacement discontinuity method.
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