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a b s t r a c t

Dynamics of disentanglement as measured by the tripartite
negativity and Bell nonlocality as measured by the extent of
violation of the multipartite Bell-type inequalities are investigated
in this work. It is shown definitively that for the initial three-qubit
Greenberger–Horne–Zeilinger (GHZ) or W class state preparation,
the Bell nonlocality suffers sudden death under the influence of
thermal reservoirs. Moreover, all the Bell-nonlocal states are useful
for nonclassical teleportation, while there are entangled states that
do not violate any Bell-type inequalities, but still yield nonclassical
teleportation fidelity.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Entanglement and Bell nonlocality are two basic ingredients of a quantum state which are
intimately related to each other [1]. Their relations have been the focus of research interest for
many years and still remain an important subject deserving to be investigated. Entanglement, which
describes correlations between two or more subsystems, refers to the state of a composite system
that cannot be written as products of states of each subsystem. As a physical resource, entanglement
is crucial for nearly all applications related to quantum information processing (QIP). One such
application is quantum teleportation [2], by which an unknown state can be transmitted from the
sender to a distant receiver with the help of local operations and classical communication (LOCC).
However, not all the states that are entangled can be used for teleportation with fidelity (see sections
below) better than that achievable via classical communication alone, and the fidelity is even not
a monotonic function of the degree of entanglement of the resource [3–5]. This demonstrates that
entanglement may only reveal certain aspects of a quantum state.

Bell nonlocality corresponds to another quantum correlation of a quantum state that cannot
be reproduced by any classical local hidden variable models. This nonlocal property is manifested
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unambiguously by the violation of different Bell-type inequalities, which plays a fundamental role
in better understanding of the subtle aspects of quantum mechanics [1,6]. Historically, the violation
of Bell inequalities has been considered as a means of determining whether there is entanglement
between two qubits, for the inseparability of a bipartite pure state corresponds to the violation of the
Bell inequality in the Clauser–Horne–Shimony–Holt (CHSH) form, and vice versa [6]. But this is not
the case for the mixed states (which are in practice the ones always encountered). As demonstrated
initially by Werner [7], there exist bipartite mixed states which are entangled but do not violate any
Bell-type inequalities. Further studies also showed that themaximal violation of a Bell inequality does
not behave monotonously under LOCC [3,8].

The ability for transmitting information reveals also an important aspect of nonseparability of a
quantum state which is intimately related to entanglement and Bell-nonlocal correlations [3]. For
bipartite two-qubit systems, it has been demonstrated that all states that violate the CHSH form of
Bell inequality can be used for teleporting an arbitrary one-qubit state with nonclassical fidelity [4],
while there are entangled mixed states which do not violate any Bell-type inequalities, but still yield
nonclassical teleportation fidelity [3]. For the tripartite systems, as we know, there are two distinct
classes of multipartite entangled states, i.e., the Greenberger–Horne–Zeilinger (GHZ) class and theW
class, which bear incompatible multipartite correlations in the sense that they cannot be transformed
into each other under stochastic local operations and classical communication [9]. Particularly, it has
been demonstrated that besides the Bell states, the three-qubit GHZ and W class states in the form
of |ψGHZ⟩ = (|000⟩ + |111⟩)/

√
2 and |ψW ⟩ = (

√
2|001⟩ + |010⟩ + |100⟩)/2 can also be adopted

as quantum channels for perfect teleportation under ideal circumstance [10,11]. Since they both are
unavoidably disturbed by the surrounding environments, it is natural to ask for their robustness
against decoherence in termsof their teleportation capacity, and its possible relationswith the degrees
of entanglement and Bell-nonlocality violation.

From an application point of view, one may hope that quantum correlations which are crucial
for QIP can be maintained for sufficiently a long time to permit designed tasks to be fulfilled. But
in practice, every quantum system is open and susceptible to the unavoidable interaction with its
surroundings [12–14]. This may lead to decoherence and destruction of correlations. Particularly,
under certain circumstances, the entanglement of a bipartite state can even terminate abruptly in
a finite time, a phenomenon termed entanglement sudden death (ESD) by Yu and Eberly [13] and
has been recently confirmed experimentally [15]. Moreover, due to its practical applications in QIP
[16,17], the research interest in the decay dynamics of Bell-type correlations has been renewed.
Analogous to ESD, it has also been demonstrated that an initial nonlocal quantum state may lose its
nonlocal property in a finite timescale under the influence of external forces. This phenomenon has
been named Bell-nonlocality sudden death (BNSD) [18,19] and many theoretical efforts have been
devoted to it with different contexts [20–25]. For instance, Ann and Jaeger have demonstrated the
occurrence of BNSD for the initial three-qubitW class state as measured by its violation of the MABK
inequality [18], as well as for the initial generic class of tripartite state as measured by its violation of
the Svetlichny and WWZB inequalities [19].

2. Theoretical framework

In this paper, we would like to investigate the phenomena of disentanglement and BNSD for
tripartite states, and their relationwith fidelity of quantum teleportation. Our system consists of three
qubits (here labeled as K = A, B, C), each embedded in a thermal reservoir. To focus exclusively on
the decay of entanglement and Bell nonlocality as they arise from the influence of thermal noise,
we assume that the qubits are separated by spatial distances large enough and thus there are no
direct interactions between them, that is, every qubit interacts only and independently with its own
environment. Then under the condition of Markovian approximation, the reduced dynamics of the
system state ρ can be described by a general master equation of Lindblad form [12]

dρ
dt

=
1
2


K ,m

γK (2LK ,mρL
Ď
K ,m − L

Ď
K ,mLK ,mρ − ρL

Ď
K ,mLK ,m), (1)
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where γK (K = A, B, C) are the damping rates of the qubits due to their coupling to the reservoir. The
generators of decoherence are given by LK ,1 =

√
n̄ + 1σ−

K and LK ,2 =
√
n̄σ+

K , with σ±

K being the
raising and lowering operators. LK ,1 and LK ,2 describe, respectively, decay and excitation processes,
with rates which depend on the temperature, here parameterized by the average thermal photons n̄
in the reservoir. For the limiting case of vanishing temperature (i.e., n̄ = 0), only the spontaneous
decay term survives, leading to a purely dissipative process which drives all initial states to a unique
asymptotic pure state, in which the three qubits are in their ground states. For the opposite case of
infinite temperature (i.e., n̄ → ∞), decay and excitation occur at exactly the same rate, and the noise
induced by the transitions between the two levels brings the system into a stationary, maximally
mixed state. Physically, the above models can describe, e.g., three two-level atoms with interatomic
separations larger than the spatial correlation length of the reservoir such that the collective damping
and the collective shift of the atomic levels are negligible [12].

Solutions of the above master equation with arbitrary initial conditions can be derived exactly
in several different ways [26,27], and here we use the operator-sum representation [26]. In many
situations of physical interest, this representation allows a transparent analysis of system dynamics
without invoking the explicit forms of the initial conditions. In the standard basis expanded by the
eigenstates of the product Pauli spin operator σ z

A ⊗ σ z
B ⊗ σ z

C , the reduced density matrix for the three
qubits together is given by the following completely positive and trace preserving (CPTP) map [26]

ρ(t) = L[ρ(0)] =

4
i,j,k=1

Gijkρ(0)G
Ď
ijk, (2)

where the time-dependent tensor-product superoperator L = LA ⊗ LB ⊗ LC contains 64 terms.
The Kraus operator Gijk describes the interaction of the qubits with the thermal reservoir and satisfies
the CPTP relation


ijk G

Ď
ijkGijk = 1 for all t . Since the thermal noise operates locally on individual

subsystems,Gijk can be expressed in terms of the tensor products of EA
i , E

B
j and EC

k asGijk = EA
i ⊗EB

j ⊗EC
k .

Here EA
i , E

B
j and EC

k are the Kraus operators describing time evolution of each qubit alone, and
individually satisfy the usual completeness condition for the operator-sum decomposition of CPTP
maps [26]. Their explicit forms are as follows

EK
1 =


n̄ + 1
2n̄ + 1


pK 0
0 1


,

EK
2 =


n̄

2n̄ + 1


1 0
0 pK


,

EK
3 =


n̄

2n̄ + 1


0


1 − p2K

0 0


,

EK
4 =


n̄ + 1
2n̄ + 1


0 0

1 − p2K 0


, (3)

where the time-dependent factors pK (K = A, B, C) appearing in the above equations are given by
pK = e−(2n̄+1)γK t/2. Note that when n̄ = 0, only EK

1 and EK
4 survive, so solution (2) has simple analytical

form.Wewill apply solution (2) to analyze the effects of the thermal reservoir on the decay dynamics
of entanglement and Bell-inequality violation for the initial GHZ andW class states. For simplicity, we
will take the noise properties to be the same for the three qubits such that γA = γB = γC = γ and
pA = pB = pC = p = e−(2n̄+1)γ t/2.

After obtaining explicit forms of the reduced density matrix ρ(t), we can discuss dynamics of
disentanglement, Bell-nonlocality violation and the ability of ρ(t) for quantum teleportation. To
describe the disentanglement process, we need a concrete measure of entanglement contained in a
quantum state. The tripartite negativity N , which was introduced by Sabín and García-Alcaine [28] is
particularly convenient for the case of current interest. It can be calculated explicitly from the density
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matrix ρ(t) as

N = (NA−BCNB−CANC−AB)
1/3, (4)

where NA−BC = −


i µ
A
i , NB−CA = −


i µ

B
i and NC−AB = −


i µ

C
i are the negativities introduced

by Vidal and Werner [29], and the sums are taken over all the negative eigenvalues µK
i of the partial

transposeρTK (t)ofρ(t)with respect to the subsystemK . Note that for themixed states,N is not able to
quantify multipartite entanglement fully, but its positivity ensures that the state under consideration
is not separable [28]. Thus if the Bell nonlocality of a quantum state dies out before that of the tripartite
negativity, one can say that it dies out before that of entanglement.

Moreover, we will consider Bell-type nonlocality in different contexts and we use two classes
of multipartite Bell-type inequalities to detect the existence of nonlocal correlations as measured
by the extent of their violations. The first one we are interested in is the Svetlichny inequality
|⟨S⟩ρ(t)| 6 4 [30], which distinguishes genuinely tripartite Bell nonlocality associated with ρ(t). Here
⟨S⟩ρ(t) = tr[Sρ(t)] is the expectation value of the Svetlichny operator given by

S = MAMBMC + MAMBM ′

C + MAM ′

BMC + M ′

AMBMC

−M ′

AM
′

BM
′

C − M ′

AM
′

BMC − M ′

AMBM ′

C − MAM ′

BM
′

C , (5)

where the measurement operators MK and M ′

K correspond to the measurements on each of the
subsystems K , while the primed and unprimed terms denote the two different directions in which the
corresponding party measures (the same applies also to the WWZB operators). A quantum state ρ(t)
violates the Svetlichny inequality whenever |⟨S⟩ρ(t)| > 4, and in quantum mechanics the Svetlichny
inequality is violated up to |⟨S⟩ρ(t)| = 4

√
2, which is achieved only when the system is prepared in

the maximally entangled GHZ state [9].
The second inequality convenient for our purpose is the WWZB Bell-type inequalities [31,32]. For

the three-qubit system, there are 256-element sets of such inequalities, which belong to five distinct
classes due to some basic symmetries, and the behavior of a single class is identical to that of all
members of that class, i.e., the violation of even a single element of each class is sufficient for Bell
nonlocality of that class [31]. Thus we only need to consider one inequality from each of the five
distinct classes:

BP1 = 2MAMBMC ,

BP2 =
1
2
(−MAMBMC + MAMBM ′

C + MAM ′

BMC + M ′

AMBMC

+MAM ′

BM
′

C + M ′

AMBM ′

C + M ′

AM
′

BMC + M ′

AM
′

BM
′

C ),

BP3 = [MA(MB + M ′

B)+ M ′

A(MB − M ′

B)]MC ,

BP4 = MAMB(MC + M ′

C )− M ′

AM
′

B(MC − M ′

C ),

BP5 = MAMBM ′

C + MAM ′

BMC + M ′

AMBMC − M ′

AM
′

BM
′

C . (6)

For nonlocal quantum states, there should be at least one of the |⟨BPI⟩ρ(t)| > 2(I = 1, 2, 3, 4, 5),
where ⟨BPI⟩ρ(t) = tr[BPIρ(t)]. For the behavior of a system to be describable by a fully local hidden
variable model, all of the WWZB set of inequalities must be satisfied jointly.

To characterize the quality of the teleported output state ρout under the influence of thermal
reservoir, we calculate the average fidelity (the fidelity F(θ, φ) = ⟨ϕin|ρout|ϕin⟩ averaged over all
pure input states on the Bloch sphere) [1], defined as

Fav =
1
4π

 2π

0
dφ
 π

0
dθ sin θF(θ, φ), (7)

where |ϕin⟩ = cos(θ/2)|0⟩ + eiφ sin(θ/2)|1⟩ is the input state needs to be teleported, with
0 6 θ 6 π and 0 6 φ 6 2π being the polar and azimuthal angles, respectively. When the
aforementioned initial GHZ class state |ψGHZ⟩ = (|000⟩ + |111⟩)/

√
2 or the initial W class state

|ψW ⟩ = (
√
2|001⟩+|010⟩+|100⟩)/2 is used as a quantum channel, by following themethodology of
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Ref. [14], the average teleportation fidelity at an arbitrary time t can be derived readily as Fav(ρGHZ) =

(1 + ρ11+44+55+88
GHZ + 2ρ18

GHZ)/3 and Fav(ρW ) = (1 + ρ22+33+44+88+35−46
W + 2

√
2ρ23

W )/3, where the
abbreviations ρ ij±kl±mn±...

5 = ρ
ij
5(t) ± ρkl

5(t) ± ρmn
5 (t) ± . . . , with ρ ij

5(t) (Π = GHZ or W ) being the
elements of the densitymatrix ρ5(t). Since the noise imposed by the thermal reservoir gives rise both
to decoherence and to entanglement losses, unit fidelity cannot be achieved for this case.

3. Entanglement, Bell-inequality violation and teleportation dynamics

Now we begin our discussion about disentanglement dynamics and teleportation capacity for the
system prepared initially in the GHZ class state |ψGHZ⟩. The densitymatrix at an arbitrary time t can be
obtained directly from Eqs. (2) and (3), and the nonvanishing elements are ρ11−88

GHZ (t) (i.e., the diagonal
elements) and ρ18,81

GHZ (t). Combining this with Eqs. (4) and (7), one can derive the tripartite negativity
N(ρGHZ) and the average fidelity Fav(ρGHZ) analytically as

N(ρGHZ) =
1
2
max{0,


α2 + p6 − β},

Fav(ρGHZ) =
1
2

+
p3

3
+

p4

6
+

(1 − p2)2

6(2n̄ + 1)2
, (8)

where the corresponding parameters α and β appeared in the above equations are given by

α =
(1 − p2)[2n̄(n̄ + 1)(3p4 − 1)+ 2p4 − p2]

2(2n̄ + 1)3
,

β =
(1 − p2)[2n̄(n̄ + 1)(p2 + 1)+ p2]

2(2n̄ + 1)2
, (9)

with the factor p being defined below Eq. (3).
Plots of the tripartite negativity N(ρGHZ) and average fidelity Fav(ρGHZ) versus the rescaled time

γ t are displayed in Fig. 1 with different n̄. One can observe that the evolution of N(ρGHZ) shows an
exponentially decaying behavior, and it is very sensitive to the variations of the reservoir temperature.
From Eq. (8) one can see that the entanglement measured by the tripartite negativity disappears if
α2

+ p6 6 β2. When n̄ = 0, this simplifies to 1 − p2 > 1. Since for all finite values of γ , the factor
p approaches zero exponentially only in the infinite time limit, the sudden death of N(ρGHZ) does
not happen for this special case. This behavior is clearly illustrated by the black solid curve shown in
Fig. 1. When n̄ ≠ 0, however, N(ρGHZ) behaves very differently. As can be seen from Fig. 1, it ceases to
exist in a finite timescale τE which is shortened gradually by increasing the values of n̄. This implies
that the devastating effects of the thermal reservoir on entanglement of the system becomes severe
and severe with increasing temperature. Furthermore, it should be noted that for the initial GHZ state
|ψGHZ⟩, N(ρGHZ) = NA−BC = NB−CA = NC−AB; thus the sudden death of N(ρGHZ) indicates the sudden
death of NA−BC , NB−CA and NC−AB.

When considering robustness of the initial GHZ state as a quantum channel for teleportation,
as can be seen from the dashed curves shown in Fig. 1, Fav(ρGHZ) decays to the classical limiting
value of 2/3 after a critical time τT, which decreases with increasing n̄, and when n̄ = 0 one can
obtain γ τT = ln[(3 +

√
5)/2]. Moreover, one can note that the critical time τT is earlier than the

death time τE of tripartite negativity for any fixed n̄. Since a non-zero tripartite negativity signals
the entanglement of the system, this phenomenon indicates that not all the three-qubit entangled
states generated from the initial GHZ class state are useful for nonclassical teleportation. In fact, a
minimum tripartite negativity (at the critical time τT) is always necessary for the achievement of
nonclassical fidelity for the situations considered here. As displayed evidently in Fig. 2, the critical
tripartite negativity Nc(ρGHZ) after which the teleportation protocol fails to achieve a nonclassical
fidelity is increased by increasing the reservoir temperature. This phenomenon is mainly caused by
the competition between the increased temperature n̄ and the decreased critical time τT. Because
the increase of n̄ always decrease τT and N(ρGHZ), but meanwhile the decrease of τT always increase
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Fig. 1. (Color online) Tripartite negativity N(ρGHZ) (solid curves) and average fidelity Fav(ρGHZ) (dashed curves) versus γ t . For
every line style, the curves from top to bottom correspond to the cases of n̄ = 0, n̄ = 0.1, n̄ = 0.2 and n̄ = 0.3.

Fig. 2. (Color online) Critical tripartite negativities Nc(ρGHZ) (solid curves) and Nc(ρW ) (dashed curves) versus n̄.

N(ρGHZ). Due to the complexity of Eqs. (8) and (9), it is difficult to obtain an analytic form of Nc(ρGHZ);
however, we can make a heuristic analysis for two limiting cases, i.e., n̄ = 0 and n̄ → ∞. For n̄ = 0,
since γ τT = ln[(3 +

√
5)/2], we obtain Nc(ρGHZ) = (2 −

√
5 +


197 − 88

√
5)/4 ≃ 0.0598, while

for n̄ → ∞, γ τT can only be solved numerically from the nonlinear equation p4 + 2p3 = 1, which
gives rise to p ≃ 0.7166 and Nc(ρGHZ) ≃ 0.0920. This analysis corroborates our finding presented in
Fig. 2.

As mentioned before, Bell-inequality violations may act as an indicator of the usefulness of
entanglement. Let us discuss now this issue by quantum states evolving in time. Our aim is to
individuate the Svetlichny inequality violation regions characterized by |⟨S⟩ρGHZ(t)| > 4 and the
WWZB inequality violation regions characterized by |⟨BPI⟩ρGHZ(t)| > 2(I = 1, 2, 3, 4, 5), and to
compare their possible relations with disentanglement and average teleportation fidelity. For this
purpose, we calculate the expectation values of the Svetlichny operator S and the WWZB operator
BPI. For the initial GHZ state, the measurement operators for the first qubit (i.e., qubit A) are defined
as MA ≡ σy and M ′

A ≡ σx [19], while the measurement operators for the second and the third qubits
are defined with respect to the first one by a rotation

MK
M ′

K


=


cos θK − sin θK
sin θK cos θK


MA
M ′

A


, (10)

where θK (K = B, C) are the rotation angles. Combining this with Eq. (5), one can obtain

⟨S⟩ρGHZ(t) = 4p3(sin θBC − cos θBC ), (11)
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Fig. 3. (Color online) Bell-nonlocality violation of ρGHZ(t). Here the black, red, blue and green curves show respectively
dynamics of S(ρGHZ), BP2(ρGHZ), BP3(ρGHZ) and BP5(ρGHZ). For every line color, the curves from right to left correspond to the
cases of n̄ = 0, n̄ = 0.1, n̄ = 0.2 and n̄ = 0.3.

where θBC = θB + θC , and the same notation will be used throughout this paper. Recall that if
|⟨S⟩ρGHZ(t)| > 4, the state ρGHZ(t) is genuinely tripartite Bell nonlocal [19]. Since p = e−(2n̄+1)γ t/2

and the modulus of the trigonometric term takes its maximum
√
2 whenever θBC = −π/4 or 3π/4,

the maximum expectation value of the Svetlichny operator S evolves according to |⟨S⟩ρGHZ(t)| =

4
√
2e−3(2n̄+1)γ t/2, and approaches the classical threshold value 4 in a finite timescale τS =

ln 2/[3(2n̄+ 1)γ ]. As can be seen from the dynamics of S(ρGHZ) = max{|⟨S⟩ρGHZ(t)| − 4, 0} presented
in Fig. 3, the temperature of the thermal reservoir can influence S(ρGHZ) to a great extent, and the
time regions for genuinely tripartite nonlocality shrink with increasing temperature. Particularly,
in the small γ t region we find |⟨S⟩ρGHZ(t)| decays up to quadratic terms in time as |⟨S⟩ρGHZ(t)| =

2
√
2(a2 − 2a + 2) + O(t3), where a = 3(2n̄ + 1)γ t/2. The relative difference between the actual

and the approximate results, is in practice negligible when both are above the classical threshold
|⟨S⟩ρGHZ(τS)| = 4.

Next we extend the analysis of Bell-type nonlocal correlations in tripartite states addressed by
the violation of the WWZB inequalities. The expectation values for the five distinct classes of the BPI
operators for the state ρGHZ(t) can also be calculated analytically, which are given by

⟨BP1⟩ρGHZ(t) = ⟨BP4⟩ρGHZ(t) = 2p3 sin θBC ,

⟨BP2⟩ρGHZ(t) = −p3(2 sin θBC + cos θBC ),

⟨BP3⟩ρGHZ(t) = 2p3(sin θBC − cos θBC ),

⟨BP5⟩ρGHZ(t) = −4p3 cos θBC . (12)

Recalling that p = e−(2n̄+1)γ t/2, one sees immediately that the state ρGHZ(t) does not violate the
WWZB-type inequalities with respect to the operators BP1 and BP4 in the full time region. For the
remaining three classes, plots of BPI(ρGHZ) = max{|⟨BPI⟩ρGHZ(t)| − 2, 0}(I = 2, 3, 5) versus the
rescaled time γ t are displayed in Fig. 3 as red, blue and green curves with different n̄. Clearly, they
show qualitatively similar dynamical behaviors, the most pronounced difference is the time regions
during which the corresponding inequalities are violated. For the inequality of form P2, since the
trigonometric term is strictly bounded by

√
5, the maximum expectation value of BP2 evolves as

|⟨BP2⟩ρGHZ(t)| =
√
5e−3(2n̄+1)γ t/2, and approaches the critical value 2 in a short timescale τBP2 =

ln(5/4)/[3(2n̄ + 1)γ ], which decreases gradually with increasing temperature (cf. the red curves
shown in Fig. 3). Second, for the inequality of form P3, the trigonometric term is strictly limited by
√
2, and the maximum expectation value of BP3 is |⟨BP3⟩ρGHZ(t)| = 2

√
2e−3(2n̄+1)γ t/2, which becomes

smaller than 2 in precisely the same timescale as that of the Svetlichny inequality, i.e., τBP3 = τS.
Finally, for the inequality of form P5, themaximum |⟨BP5⟩ρGHZ(t)| = 4e−3(2n̄+1)γ t/2 decays to its critical
value 2 in a finite time τBP5 = ln 4/[3(2n̄ + 1)γ ]. Note that after time τBP5 all the five sets of the
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Fig. 4. (Color online) Tripartite negativity N(ρW ) (solid curves) and average fidelity Fav(ρW ) (dashed curves) versus γ t . For
every line style, the curves from top to bottom correspond to the cases of n̄ = 0, n̄ = 0.1, n̄ = 0.2 and n̄ = 0.3.

WWZB inequalities are satisfied, and the state ρGHZ(t) becomes Bell local, i.e., its correlations can be
reproduced by a classical local model [1]. This implies that under the influence of thermal reservoir,
the phenomenon of BNSD occurs for definitive times for the initial GHZ class state preparation.

Moreover, by comparing Fig. 3 with Fig. 1, one can also note that the lifetime for the tripartite
negativity is longer than the time region during which the teleportation protocol outperforms those
of classical ones or the lifetime of Bell nonlocality addressed by the violation of the Svetlichny as
well as the full set of WWZB inequalities. Since a non-zero tripartite negativity signals the fact that
the system is entangled, this phenomenon indicates that for the initial GHZ state preparation, all the
Bell-nonlocal (not necessary the genuinely tripartite Bell nonlocal) states are entangled and can be
used for nonclassical teleportation, while there are still some tripartite states (i.e., the states locating
between the time region τT and τE) which are entangled but fail to achieve a nonclassical teleportation
fidelity. This conclusion is very similar to that of the two-qubit case [3–5], for which the subset of the
entangled X-type states that violate the Bell–CHSH inequality can always be used for nonclassical
teleportation.

We now turn our attention to an analysis of disentanglement, Bell nonlocality and teleportation
capacity for the initial W state preparation. The density matrix ρW (t) can also be obtained directly
from Eqs. (2) and (3), from which the complete analytical forms of the tripartite negativity and the
average fidelity can be derived exactly; however, we do not list them here explicitly because their
expressions are quite involved. Instead,we plot numerically in Fig. 4 the time behaviors of bothN(ρW )
and Fav(ρW ) for the same values of the system parameters.

The solid curves in Fig. 4 show the numerical results for N(ρW ) versus γ t with different n̄,
from which one can note a pronounced difference between the dynamical behaviors for the zero
and nonzero temperature cases. Similar to that for the initial GHZ state preparation, the tripartite
negativity N(ρW ) decays exponentially and disappears only in the infinite time limit for the zero
temperature reservoir; thus no ESD happens for this special case. For the situations of nonzero
temperature reservoir, however, the tripartite negativity terminates abruptly in a finite time τE, which
decreaseswith increasing temperature and is shorter than that for the initial GHZ state preparation (cf.
Figs. 1 and 4). Thus one can say that the tripartite negativity of the initialW state is fragile compared
with that of the initial GHZ state in the sense that it decays in a faster rate. But it should be noted that
this does not mean the fragility of the entanglement for the initial W state, for the disappearance of
the tripartite negativity cannot guarantee that the state is always separable. Moreover, we would like
to mention here that for the special case of infinite temperature reservoir (i.e., n̄ → ∞), Carvalho
et al. [33] have shown that the entanglement measured by themultipartite concurrence for the initial
standardW state preparation also dies faster than that for the initial GHZ state preparation.

From the dashed curves shown in Fig. 4 one can see that in the whole temperature region, the
teleportation protocol loses its quantum advantage over purely classical communication in a finite
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Fig. 5. (Color online) Bell-nonlocality violation of ρW (t). Here the black, blue and green curves show respectively dynamics
of S(ρW ), BP3(ρW ) and BP5(ρW ). For every line color, the curves from right to left correspond to the cases of n̄ = 0, n̄ = 0.1,
n̄ = 0.2 and n̄ = 0.3.

timescale τT, which is significantly shorter than that for the initial GHZ state preparation, and Fav(ρW )
is always smaller than Fav(ρGHZ)when t > 0. Thus although they both ensure unit fidelity under ideal
circumstance [10,11], the quantum channel with the initial GHZ class state preparation outperforms
that of the initial W class state preparation in terms of their teleportation capacity. Moreover, from
Fig. 4 one can also observe that a non-vanishing tripartite negativity Nc(ρW ) is always necessary for
Fav(ρW ) > 2/3; however, as can be seen from the blue dashed curve shown in Fig. 2,Nc(ρW ) decreases
exponentially with increasing n̄ and thus behaves in a markedly different way compared to Nc(ρGHZ),
which can also be understood from the competitivemechanism between the increased temperature n̄
and the decreased critical time τT. Although the complexity of ρW (t) prevents us to derive an analytic
form of Nc(ρW ) versus n̄ for general case, we have Fav(ρW ) = 5p4/6 − p2/2 + 2/3 for n̄ = 0, which
yields γ τT = ln(5/3) and Nc(ρW ) ≃ 0.0891, while for very large n̄ we have n̄γ τT ≃ 0.3257 and
Nc(ρW ) ≃ 0.0404.

Nowwe discuss Bell-nonlocal behaviors of ρW (t). Themeasurement operators associatedwith the
first qubit of the initial W state are MA ≡ σz and M ′

A ≡ σx [18], while for the second and the third
qubits they are still defined as those in Eq. (10). Then the expectation value of the Svetlichny operator
S can be readily obtained as

⟨S⟩ρW (t) = (2ρ11+44+66+77+46+47+67−23−25−35
W − 1)(sin θBC + cos θBC ). (13)

For the zero temperature reservoir (i.e., n̄ = 0), the maximum value of ⟨S⟩ρW (t) simplifies to
|⟨S⟩ρW (t)| = (4+5

√
2)p4−(2+9

√
2/2)p2+

√
2, which decayswith time and becomes smaller than 4

in a finite timescale γ τS = ln[(16+20
√
2)/(4+9

√
2+


274 + 328

√
2)] ≃ 0.00891. For the nonzero

temperature reservoirs (i.e., n̄ ≠ 0), since the density matrix elements of ρW (t) are so complicated,
we define S(ρW ) = max{|⟨S⟩ρW (t)| − 4, 0} and present its dynamical behaviors numerically in
Fig. 5 as black curves. Clearly, S(ρW ) decays monotonically with increasing γ t and becomes zero in a
finite time τS, after which the genuinely tripartite Bell-nonlocal correlation disappears. τS decreases
with increasing temperature, and as can be found obviously from Fig. 5, its magnitude is very small
(γ τS < 0.00891), i.e., the genuinely tripartite Bell nonlocality for the initial W state preparation is
fragile and the thermal reservoir destroys it in a very short timescale.

The expectation values for the five WWZB operators BPI(I = 1, 2, 3, 4, 5) can also be obtained in
terms of the density matrix elements of ρW (t) as

⟨BP1⟩ρW (t) = (4ρ11+44+66+77
W − 2) cos θB cos θC + 4ρ23−47

W sin θB sin θC ,

⟨BP2⟩ρW (t) = ρ25+35−46−47
W cos θBC + ρ25−35+46−47

W sin(θB − θC )

+ (ρ23−67−11−44−66−77
W + 1/2)(cos θBC − sin θBC ),
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⟨BP3⟩ρW (t) = (2ρ11+44+66+77−35+46
W − 1)x+ + 4ρ23−47

W x−,

⟨BP4⟩ρW (t) = (2ρ11+44+66+77
W − 1)y+ + 2ρ35−46

W y− + 4ρ23−47
W sin θB sin θC ,

⟨BP5⟩ρW (t) = (2ρ11+44+66+77+46+47+67−23−25−35
W − 1) sin θBC (14)

where x+ =
√
2 sin(θB + π/4) cos θC , x− =

√
2 sin(θB − π/4) sin θC , y± =

√
2 sin(θC ±

π/4) cos θB, and in deriving the above equations,we have used the hermiticity condition of the density
matrix.

We define BPI(ρW ) = max{|⟨BPI⟩ρW (t)| − 2, 0}(I = 1, 2, 3, 4, 5) to evaluate the extent to which
the WWZB-type inequalities are violated. Still due to the fact that the elements of ρW (t) are so
complicated, it is difficult to express BPI(ρW ) compactly with respect to the parameters γ t and n̄.
Thus we resort to numerical calculations. The results show that the inequalities of forms P1, P2 and
P4 are satisfied in the whole time region (i.e., BPI(ρW ) ≡ 0 for I = 1, 2, 4). For the remaining
two classes of forms P3 and P5, examples of decays of BP3(ρW ) and BP5(ρW ) with different n̄ are
presented graphically in Fig. 5 as blue and green curves, respectively. It is obvious that they decay
monotonously with increasing γ t and become zero after finite times τBP3 and τBP5 (when n̄ = 0 we

have γ τBP5 = ln[(20 + 8
√
2)/(9 + 2

√
2 +


169 + 68

√
2)] ≃ 0.10785), both of which decrease

with increasing n̄. The time τBP5 demonstrates the time of sudden death of all species of Bell-nonlocal
correlations for ρW (t) under the influence of thermal noise. Particularly, by comparing the present
results with those of ρGHZ(t), one can note that τBP5 here is very small, i.e., the Bell nonlocality for
ρW (t) is very fragile compared with that of ρGHZ(t).

Furthermore, one can note that the death time for Bell nonlocality is much earlier than that for
the tripartite negativity or the critical time after which the teleportation fidelity Fav(ρW ) < 2/3.
This reveals several common features. First, as mentioned before, the positivity of N(ρW ) ensures
the entanglement of the state ρW (t); thus there exist time regions during which ρW (t) possesses
local correlations even in regard to high values of entanglement. Second, only partial of the tripartite
entangled states are useful for nonclassical teleportation. But all the Bell-nonlocal states yield
Fav(ρW ) > 2/3.

Finally, we would like to emphasize that even when one or two of the participating qubits can
be well preserved, e.g., γA = 0 or γA = γB = 0, the tripartite negativity and the Bell nonlocality
still experience sudden death, although in a comparatively longer time. This shows that the effects
of thermal reservoir on entanglement and coherence of a qubit is indeed very different. Since they
change in a similar manner as that of γA = γB = γC = γ and no other new results can be drawn, we
will not have any more discussions about them here.

4. Summary

In summary, we have investigated behaviors of disentanglement and Bell-nonlocality violation for
various decaying states and analyzed their relations with the capacity of these states when being used
as quantum channels for teleportation. Our system consists of three qubits prepared initially in the
GHZ or W class state and coupled to a thermal reservoir, under the influence of which irreversible
coherence decay will be unavoidable. Depending on the temperature of the reservoir, the tripartite
negativity can reach a value equal to zero asymptotically (if n̄ = 0) or at a finite time (if n̄ ≠ 0).
But the sudden death of tripartite correlations associated with the Svetlichny inequality and nonlocal
correlations associatedwith theWWZB inequalities are irreversible in thewhole temperature regions.
Moreover, the tripartite negativity and Bell nonlocality for ρGHZ(t) aremore robust than that for ρW (t)
in the sense that they survive in a significantly longer times under the influence of thermal reservoir.
Particularly, ρGHZ(t) gives a wider time region for nonclassical teleportation. Finally, by comparing
the survival time for Bell nonlocality with the time region during which Fav(ρ5) > 2/3 (Π = GHZ or
W ), we showed that all the Bell-nonlocal states considered in this work can be used for quantum
teleportation, while there also exist a family of entangled mixed states which do not violate any
multipartite Bell-type inequalities, but still yield nonclassical teleportation fidelity.
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