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Abstract Differential evolution (DE) is a population-based evolutionary algorithm widely
used for solving multidimensional global optimization problems over continuous spaces, and
has been successfully used to solve several kinds of problems. In this paper, a novel expression
for the prediction of longitudinal dispersion coefficient in natural streams is proposed to
minimize the sum-square error using differential evolution algorithm. The new expression
considers the hydraulic and geometric characteristics of rivers. Datasets consisting 65 sets of
observations from 29 rivers in the unite states are used to test the proposed algorithm, and
results demonstrate the performance and applicability of the proposed differential evolution.
Compared with the previous methods, the new expression using differential evolution is
superior to other expressions. Moreover, 56.92 % of the prediction using the new expression
lie with the 0.5<Kpre/Kmeas<1.5 that is better than other expressions.

Keywords Longitudinal dispersion coefficients . Differential evolution . Genetic algorithm .

Meta-heuristic

1 Introduction

The longitudinal dispersion coefficients play an important role for predicting concentration
variation of dispersed pollutants in the flow direction and explanting on-dimensional
equations of motion (Fischer et al. 1979). Many researchers have proposed a number of
methods to the understanding of mechanisms of longitudinal dispersion in rivers. After that,
the idea of dispersion is used to the mixing in open channels and further to natural streams.
Different methods have been proposed to find the longitudinal dispersion coefficient.
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Accurate estimation of longitudinal dispersion coefficient is important in many
different hydraulic problems including environmental engineering, estuaries problems
and contaminants into river flows. In order to verify the quality of natural streams, the
streams need to use 1D mathematical model to find the best value of longitudinal
dispersion coefficient. There are several empirical equations for estimation of
longitudinal dispersion coefficient in streams. Estimation of longitudinal dispersion
coefficient in streams using the equation of Table 1 needs hydraulic and geometry of
data sets. According to the above analyses in Table 1, these techniques can be
categorized into two parts: exact methods and global search methods (Taylor 1953,
1954; Elder 1959; Fischer 1967; Liu 1977; Seo and Cheong 1998; Deng et al. 2001;
Kashefipour and Falconer 2002; Sahay and Dutta 2009). From the paper (Sahay and
Dutta 2009), we can find that the global search method can obtain better solutions than
other methods. Therefore, the global search method is a better choose for prediction of
longitudinal dispersion coefficient. However, this field of study is still in its early days, a
large number of future researches are necessary in order to develop new global search
methods for the prediction of longitudinal dispersion coefficient.

Recently, a differential evolution algorithm (Storn and Price 1997) is proposed as a
simple and powerful population-based stochastic optimization method, which is
originally motivated by the mechanism of natural selection. This algorithm searches
solutions using three basic operators: mutation, crossover and greedy selection.
Mutation is used to generate a mutant vector by adding differential vectors. After that,
crossover operator generates the trial vector by combining the parameters of the mutated
vector with the parameters of a parent vector selected from the population. Finally,
according to the fitness value, selection determines which of the vectors should be
chosen for the next generation by implementing one-to-one completion between the
generated trail vectors and the corresponding parent vectors. In order to accelerate the
convergence speed and avoid trapping in the local optima, several variations of DE have

Table 1 Empirical equation for
estimation of longitudinal
dispersion coefficient

Method Equation

Taylor (1953, 1954) ∂C
∂t þ U

∂C
∂x ¼ K

∂2C
∂t2

Elder (1959) K=5.93 HU∗

Fischer (1967) K ¼ − 1
A ∫
0

W

hu0 ∫
0

y
1
εt h

∫
0

y

hu0dydydy

Fischer et al. (1979) K ¼ 0:11 W
H

� �2 U
U�

� �2
HU�

Liu (1977) K
HU �

¼ β W
H

� �2 U
U�

� �2

Seo and Cheong (1998) K
HU �

¼ 5:915 W
H

� �0:62 U
U�

� �1:428

Deng et al. (2001) K
HU �

¼ 0:15
8εt

W
H

� �5=3 U
U�

� �2

Kashefipour and Falconer (2002) K
HU �

¼ 10:612 U
U�

� �2

GA model (2009) K
HU �

¼ 2 W
H

� �0:96 U
U�

� �1:25

5246 X. Li et al.



been proposed to enhance the performance of the standard DE recently. Moreover, DE
has been proved to be quite efficient when solving real-world problems (Brest et al.
2006; Rahnamayan et al. 2008; Qin et al. 2009; Li et al. 2011; Li and Yin 2012a, b,
2013, 2012a, b; Neri and Tirronen 2009; Zhang and Sanderson 2009; Qin et al. 2010;
Vasan and Raju 2007). Brest et al. (2006) proposed a self adaptive parameter setting in
differential evolution in order to avoid the manual parameter setting of F and CR. The
parameter control technique is based on the self adoption of two parameters associated
with the evolutionary process. Rahnamayan et al. (2008) proposed an opposition based
differential evolution, as called ODE. The ODE algorithm consisted of a DE framework
and two opposition based components: the former after the initial sampling and the
latter after the survivor selection scheme. Qin et al. (2009) proposed a self adaptive DE
algorithm (SaDE), in which both trail vector generation strategies and the associated
control parameter values were gradually self-adaptive by learning from their previous
experiences when generating promising solutions. Neri and Tirronen (2009) proposed
the scale factor local search differential evolution. This algorithm is a differential
evolution based memetic algorithm which employs, within a self adaptive scheme,
two local search algorithms. These local search algorithms aim at detecting a value of
the scale factor corresponding to an offspring with a high performance. A statistical
analysis of the optimization results has been included in order to compare the results in
terms of final solution detected and convergence speed.

In this paper, we will use the differential evolution for prediction of longitudinal
dispersion coefficient. We employ the mutation operator, crossover operator, selection
operator to generate the offspring. In the last part, the algorithm needs to input the
generated population into the longitudinal dispersion coefficient according to the
measure data and calculate the fitness function value. Data consisting of 65 sets of
observations from 29 rivers in the unite states are used to demonstrate the
performance and applicability of the proposed differential evolution. In order to
demonstrate the advantages of the proposed design, the results obtained are compared
with other state-of-the-art approaches. Experimental results demonstrate that the
proposed method is better or at least comparable with previous method from literature
when considering the quality of the solutions obtained.

2 Differential Evolution Algorithm and Application

2.1 Differential Evolution Algorithm

Differential Evolution (DE) is an algorithm proposed by Storn and Price (1997) based on
vector operations to generate potential candidates to solve continuous optimization
problems. The fundamental crucial idea behind DE is a scheme for producing trial parameter
vectors. If the trail vector’s fitness value is better than a predetermined population member,
the better individual will be retained and be compared in the following generation.

The algorithm begins with a randomly initiated population which generates NP*D matrix
with uniform probability distribution random values. We can generate the jth component of
the ith vector as

x j;i;0 ¼ x j;min þ randi; j 0; 1½ �⋅ x j;max − x j;min

� � ð1Þ
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Where randi, j[0,1] is a uniformly distribution random number between 0 and 1. i=1,…,
NP and j=1,…,D. xj,max, xj,min is the upper bound and lower bound of the jth column,
respectively.

After initialization, mutation vectors Vi,G are generated according to each population
member or target vector Xi,G in current population. In the standard DE algorithm, five
different mutation strategies can be used with one of two different crossover methods, which
are listed in the followings:

“DE/rand/1”

V i;G ¼ X r1;G þ F⋅ X r2;G −X r3;G

� �
“DE/best/1”

V i;G ¼ X best;G þ F⋅ X r1;G − X r2;G

� �
“DE/current-to-best/1”

V i;G ¼ X i;G þ F⋅ X best;G − X i;G

� �þ F⋅ X r1;G − X r2;G

� �
“DE/best/2”

V i;G ¼ Xbest;G þ F⋅ X r1;G − X r2;G

� �þ F⋅ X r3;G − X r4;G

� �
“DE/rand/2”

V i;G ¼ X r1;G þ F⋅ X r2;G − X r3;G

� �þ F⋅ X r4;G − X r5;G

� � ð2Þ

Where r1,r2,r3,r4,r5∈[1,⋯,NP] are randomly chosen integers, and r1≠r2≠r3≠r4≠r5≠ i. F
is a mutation control parameter which affects the disturbance added by the weight of
different vectors. Xbest,G is the best individual with the best fitness in the current population
at generation G. In this paper, we use the “DE/rand/1/bin” mutation method to generate the
offspring vector.

In the crossover operation, a recombination of the offspring vector Vi,G and the parent
vector Xi,G produce a trail vector Ui,G=[u1,i,G,u2,i,G,u3,i,G,⋯,uD,i,G]. Usually the binomial
crossover is accepted, which is defined as follows:

uj;i;G ¼ v j;i;G; rand j 0; 1½ �≤CR� �
or j ¼ jrandð Þ

x j;i;G; otherwise

�
ð3Þ

where j=[1,⋯,D]; randj∈[0,1] is a random number between [0,1]; jrand=[1,⋯,D] is the
randomly chosen index, CR is the crossover rate vj,i,G is the difference vector of the jth
particle in the ith dimension at the Gth iteration, and uj,i,G denotes the trail vector of the jth
particle in the ith dimension at the Gth iteration.

Selection operator is used to choose the next population (i.e. G=G+1) between
the trail population and the target population. The selection operation is described as:

X i;Gþ1 ¼ Ui;G; If f U i;G

� �
≤ f X i;G

� �
¼ X i;G; If f U i;G

� �
> f X i;G

� � ð4Þ

The standard differential evolution algorithm can be described as the followings:
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2.2 Formulation of the Problem and Application

Generally speaking, the expressions for estimation of longitudinal dispersion coefficient can
be described as follows:

K

HU�
¼ a

W

H

� �b U

U�

� �c

ð5Þ

The Eq. (5) can be converted as follows:

K ¼ aWbH1−bUcU1−c

For this problem, the objective for the prediction of some parameters a, b and c within a
DE model is to find the minimization of the sum-square error (SSE) between the actual and
predicted dispersion coefficients. The sum-square error can be defined as follows:

Min SSE ¼
X
i¼1

N

Kpre−Kmeas

� �2
Or Min SSE ¼

X
i¼1

N

aWbH1−bUcU1−c−Kmeas

� �2 ð6Þ
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where Kpre is the predicted longitudinal dispersion coefficient and Kmeas is the actual
longitudinal dispersion coefficient. The parameter N is the number of observations.

Obviously, this problem is a multi-dimension continuous optimization problem, where
the predicted vector is Kpre and the optimization objective is to minimize SSE.

The estimation of longitudinal dispersion coefficient is not easy to find the suitable values
of a, b and c to minimization of the sum-square error because of the unstable dynamic of the
estimation of longitudinal dispersion coefficient. Moreover, due to multiple variables in the
problem and multiple local search optima in the objective functions, traditional optimization
cannot easy to trap in local optima. Therefore, we aim to solve this problem by proposing a
differential evolution in this paper. The structure of DE for predicting longitudinal dispersion
coefficients in natural rivers is given in Fig. 1.

From Fig. 1, the algorithm starts from a random population within the three bounds.
An individual is consist of three parameters a, b, and c, which should be determined

Start

Initialization the
populationsize (NP),
the dimension (D),
mutation factor (F),
crossover rate (CR)

Set generation G=0
Random generate the

populations

Calculate the
objective function

(SSE)

The data consists 65
sets of observations

from 29 reviers

Mutation operationCrossover operationSelection operation

End

Calculate the
objective function

(SSE)

The data consists 65
sets of observations

from 29 reviers

G < max generation
numbers

Yes

G=G+1

No

Fig. 1 The structure of DE for predicting longitudinal dispersion coefficients in natural rivers
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in the expressions for estimation of longitudinal dispersion coefficient. Therefore the
length of an individual is three. Then it needs to input the generated population into
the longitudinal dispersion coefficient according to the measure data and calculate the
fitness function value. The fitness function value employs the value of SSE. Then, we
employ the mutation operator, crossover operator, selection operator to generate the
offspring. In the last part, the algorithm needs to input the generated population into
the longitudinal dispersion coefficient according to the measure data and calculate the
fitness function value. The fitness function value employs the value of SSE. These
operations are repeated until a stopping criterion is reached. In this paper, the criterion
is the number of generation. Finally, the best a, b, c will be found in the final
generation.

3 Experimental Results

In this paper, data consisting of 65 sets of observations from 29 rivers (Deng et al. 2001)
in the unite states are used to evaluate the performance and applicability of the proposed
differential evolution. The experiment data is shown in Table 2. As can be seen in
Table 2, W is the width of the rivers. H is the depth of the rivers. U is the mean
longitudinal velocity. U* denotes the bottom shear friction velocity. The variables W, H,
U, U* are the important input variables. The software is written in Matlab-7.9 language
and experiments are made on a Pentium 3.0 GHz Processor with 1.0 GB of memory.
Parameters in genetic algorithm are selected as follows: population size is 200, crossover
probability is 0.9 and the mutation probability of 0.002. The algorithm has a total string
length of 30 bits because the algorithm uses the binary string length of 10 for each
variable. The following parameters of differential evolution algorithm have been used
after a number of careful experimentation: The population size is 200, the number of
generation is 200, the scale factor F and crossover probability CR is 0.5, and 0.9,
respectively. The dimension is three because the representation of variables is real code.
In this paper, “DE/rand/1/bin” was used.

Parameter ranges must be determined before the differential evolution process. The
dimensions of the following ranges are used for the DE similar to the GA: the upper and
lower of the variable is 0, 1023, respectively.

3.1 DE for Longitudinal Dispersion Coefficient

In order to show the effective and efficient of the new expression for longitudinal dispersion
coefficient, we compared our new expression with other previous expression on the 65 sets of data.

After carrying out the DE algorithm, the best value of a, b, and c are: a=2.2820,
b=0.7613, c=1.4713. Therefore, with the results yielded by the DE algorithm, the
new expressions for estimation of longitudinal dispersion coefficient can be expressed
as follows:

K

HU�
¼ 2:2820 � W

H

� �0:7613 U

U�

� �1:4713

Or

K ¼ 2:2820�W 0:7613H1−0:7613U1:4713U1−1:4713

ð7Þ
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Table 2 Measured longitudinal dispersion coefficients (LDC)

S.N Stream Width Depth Velocity Sh.vel LDC

W(m) H(m) U(m/s) U* W/H U/U* Measure vale

1 Amita River 37.0 0.81 0.29 0.070 45.68 4.14 23.2

2 42.0 0.80 0.42 0.069 52.50 6.09 30.2

3 Antietam creek Md 12.8 0.30 0.42 0.057 42.67 7.37 17.5

4 24.1 0.98 0.59 0.098 24.59 6.02 101.5

5 11.9 0.66 0.43 0.085 18.03 5.06 20.9

6 21.0 0.48 0.62 0.069 43.75 8.99 25.9

7 Bayou Anacoco 20.0 0.42 0.29 0.045 47.62 6.44 13.9

8 17.5 0.45 0.32 0.024 38.89 13.33 5.8

9 25.9 0.94 0.34 0.067 27.55 5.07 32.5

10 36.6 0.91 0.40 0.067 40.22 5.97 39.5

11 Bayou Barthol. La 33.4 1.40 0.20 0.031 23.86 6.45 54.7

12 Bear creek, Colo 13.7 0.85 1.29 0.553 16.12 2.33 2.9

13 Cheattahoochee, Ga 75.6 1.95 0.74 0.138 38.77 5.36 88.9

14 91.9 2.44 0.52 0.094 37.66 5.53 166.9

15 Clinch River, Va 48.5 1.16 0.21 0.069 41.81 3.04 14.8

16 28.7 0.61 0.35 0.069 47.05 5.07 10.7

17 57.9 2.45 0.75 0.104 23.63 7.21 40.5

18 53.2 2.41 0.66 0.107 22.07 6.17 36.9

19 Comit River 13.0 0.26 0.31 0.044 50.00 7.05 7.0

20 16.0 0.43 0.37 0.056 37.21 6.61 13.9

21 15.7 0.23 0.36 0.039 68.26 9.23 69.0

22 Conoco. Creek, Md. 42.2 0.69 0.23 0.064 61.16 3.59 40.8

23 49.7 0.41 0.15 0.081 121.22 1.85 29.3

24 43.0 1.13 0.63 0.081 38.05 7.78 53.3

25 Copper Creep, Va 16.7 0.49 0.20 0.080 34.08 2.50 16.8

26 18.3 0.38 0.15 0.116 48.16 1.29 20.7

27 16.8 0.47 0.24 0.080 35.74 3.00 24.6

28 19.6 0.84 0.49 0.101 23.33 4.85 20.8

29 Difficult Run, Va 14.5 0.31 0.25 0.062 46.77 4.03 1.9

30 John Day River, Ore. 25.0 0.58 1.01 0.140 43.10 7.21 13.9

31 34.1 2.47 0.82 0.180 13.81 4.56 65.0

32 Little Pincy Creek 15.9 0.22 0.39 0.053 72.27 7.36 7.1

33 Minnesota River 80.0 2.74 0.03 0.002 29.20 14.17 22.3

34 80.0 2.74 0.14 0.010 29.20 14.43 34.9

35 Missouri River 183.0 2.33 0.89 0.066 78.54 13.48 465.0

36 201.0 3.56 1.28 0.084 56.46 15.24 837.0

37 Monocacy River, Md 48.7 0.55 0.26 0.052 88.55 5.00 37.8

38 93.0 0.71 0.16 0.046 130.99 3.48 41.4

39 51.2 0.65 0.62 0.044 78.77 14.09 29.6

40 97.5 1.15 0.32 0.058 84.78 5.52 119.8

41 40.5 0.41 0.23 0.040 98.78 5.75 66.5

42 Muddy River 13.0 0.81 0.37 0.081 16.05 4.57 13.9
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The best experimental results obtained from the DE are compared with those obtained by
using other expressions including Fischer et al. (1979), Liu (1977), Seo and Cheong (1998),
Deng et al. (2001), Kashefipour and Falconer (2002) and GA model (Sahay and Dutta 2009)
in terms of the value of SSE, in Tables 3 and 4, which shows that DE successes in finding the
best solutions for the test methods.

3.2 Model Validation

In this section, we will show the effective of the proposed algorithm using different
performance indices including root mean square errors (RMSE), coefficients of correlation
(CC), average relative error to the measure value (ARE) and accuracy. These performance
indices can be described as follows:

Table 2 (continued)

S.N Stream Width Depth Velocity Sh.vel LDC

W(m) H(m) U(m/s) U* W/H U/U* Measure vale

43 20.0 1.20 0.45 0.099 16.67 4.55 32.5

44 Nooksach River 86.0 2.93 1.20 0.530 29.35 2.26 153.0

45 64.0 0.76 0.67 0.268 84.21 2.50 34.8

46 Powell River, Tenn 36.8 0.87 0.13 0.054 42.30 2.41 15.5

47 Red River, La 161.5 3.96 0.29 0.060 40.78 4.83 130.5

48 152.4 3.66 0.45 0.057 41.64 7.89 227.6

49 155.1 1.74 0.47 0.036 89.14 13.06 177.7

50 Sabina River, La 116.4 1.65 0.58 0.054 70.55 10.74 131.3

51 Sabina River, La 14.2 0.50 0.13 0.037 28.40 3.51 12.8

52 12.2 0.51 0.23 0.030 23.92 7.67 14.7

53 21.3 0.93 0.36 0.035 22.90 10.29 24.2

54 Salt Creek, Nebr. 32.0 0.50 0.24 0.038 64.00 6.32 52.2

55 Susquehanna River 203.0 1.35 0.39 0.065 150.37 6.00 92.9

56 Tangipahoa River, La 31.4 0.81 0.48 0.072 38.77 6.67 45.1

57 29.9 0.40 0.34 0.020 74.75 17.00 44.0

58 Tickfau River, La 15.0 0.59 0.27 0.080 25.42 3.38 10.3

59 White River 67.0 0.59 0.35 0.044 113.56 7.95 30.2

60 Wind/big, Wyo 44.2 1.37 0.99 0.142 32.26 6.97 184.6

61 85.3 2.38 1.74 0.153 35.84 11.37 464.6

62 59.4 1.10 0.88 0.119 54.00 7.39 41.8

63 68.6 2.16 1.55 0.168 31.76 9.23 162.6

64 Yadkin River, N.C. 70.1 2.35 0.43 0.101 29.83 4.26 111.5

65 71.6 3.84 0.76 0.128 18.65 5.94 260.1

Max 203 3.96 1.74 0.550 150.37 17.00 837.0

Min 11.9 0.22 0.03 0.002 13.81 1.29 1.9

Avg 53.8 1.24 0.49 0.090 48.86 6.75 80.5
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Table 3 Predicted longitudinal dispersion coefficients (LDC)

S.N Longitudinal dispersion coefficients

Fisher
(1979)

Liu
(1977)

Seo and
Cheong (1998)

Deng
et al. (2001)

Kashefipour and
Falconer (2002)

GA model
(2009)

DE
model

1 22.3 43.3 27.3 10.3 28.5 26.3 19.2

2 62.0 67.6 50.2 21.7 51.0 47.3 36.7

3 18.6 15.2 18.0 9.9 17.6 15.2 12.8

4 23.2 25.7 53.7 36.9 47.3 39.2 35.2

5 5.1 7.4 20.2 15.2 15.0 13.7 12.6

6 56.3 34.2 46.9 28.4 44.4 38.8 34

7 19.6 19.6 17.6 8.3 17.6 15.8 12.7

8 31.9 10.7 25.0 20.4 21.8 18.5 18.1

9 13.5 19.4 29.6 17.2 26.8 23.2 19.5

10 38.7 43.4 45.7 23.1 45.6 39.5 32.1

11 11.3 11.3 26.3 19.2 23.0 18.8 17.2

12 7.3 33.6 52.3 27.1 28.1 39.1 30.9

13 127.9 168.6 169.3 82.1 168.8 147.1 117.6

14 109.5 137.7 148.2 74.5 146.7 126.8 102.6

15 14.3 43.9 23.5 7.9 23.8 23.2 16.1

16 26.4 37.8 27.6 11.5 28.5 25.8 19.6

17 81.4 68.8 180.0 140.6 158.2 125.4 118.1

18 52.6 56.2 139.7 104.1 118.3 97.8 90.3

19 15.6 13.7 12.4 6.0 12.3 11.2 9.1

20 16.0 15.4 19.9 11.2 19.4 16.4 13.9

21 39.2 22.9 17.4 8.1 15.8 16.6 13.4

22 23.5 56.4 20.8 6.1 22.9 22.7 15.1

23 18.4 119.5 9.3 1.2 11.8 14.4 7.2

24 88.2 66.5 96.8 58.8 93.2 78.2 68.2

25 3.1 13.0 7.7 2.6 6.9 7.3 5.1

26 1.9 20.9 4.2 0.8 4.0 5.0 2.8

27 4.8 15.0 9.8 3.6 9.3 9.2 6.6

28 12.0 18.3 33.8 21.2 28.4 25.1 21.7

29 7.5 15.2 9.0 3.3 9.5 8.8 6.4

30 86.4 72.9 83.3 44.8 81.8 71.2 59.5

31 19.3 32.6 116.8 97.9 71.1 73.6 69.8

32 36.3 29.7 17.0 6.7 16.3 17.2 13.1

33 12.4 3.8 13.9 14.0 12.1 9.2 8.1

34 51.9 15.5 57.7 58.8 49.9 38.1 41.4

35 1897.5 627.0 559.2 296.7 438.6 524.2 446.7

36 2434.9 669.8 1055.3 736.9 848.4 865.2 809.4

37 61.7 90.3 27.2 7.6 28.2 31.7 21.2

38 74.6 188.1 23.6 4.2 25.8 33.4 19.1

39 387.6 119.9 110.9 60.3 85.6 103.3 88.9

40 160.5 202.7 71.0 21.5 72.3 80.1 55.2

41 58.2 69.1 20.4 5.8 20.1 24.0 16.2
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RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1
Kpre−Kmeas

� �2
N

vuut

CC ¼

X N

1
KpreKmeas−

X N

1
Kpre

X N

1
Kmeas


 �

NSpreSmeas

ARE ¼

X N

i¼1

Kpre−Kmeas

Kmeas

� �

N
� 100 %

Accuracy ¼ 0:5 <
Kpre

Kmeas
< 1:5

ð8Þ

Table 3 (continued)

S.N Longitudinal dispersion coefficients

Fisher
(1979)

Liu
(1977)

Seo and
Cheong (1998)

Deng
et al. (2001)

Kashefipour and
Falconer (2002)

GA model
(2009)

DE
model

42 3.9 6.5 19.0 14.5 12.8 12.6 11.6

43 7.5 12.7 35.0 26.0 24.1 23.5 21.5

44 75.4 362.4 240.0 84.5 195.8 221.2 154.1

45 99.3 411.1 69.7 13.5 82.7 90.3 52.3

46 5.4 23.5 9.9 2.9 9.9 10.3 6.8

47 101.6 156.4 133.0 58.9 134.6 119.7 92.6

48 248.0 182.9 238.3 138.0 230.3 198.1 170

49 933.2 323.7 235.3 113.3 181.4 231.6 191.3

50 562.7 261.6 219.1 109.1 189.0 206.2 170.7

51 2.0 5.0 5.2 2.4 4.6 4.4 3.4

52 5.7 4.4 11.9 9.5 10.5 8.2 7.8

53 19.9 9.9 37.5 36.5 32.7 24.2 24.9

54 34.1 35.2 20.6 8.0 20.7 20.6 15.5

55 785.7 874.8 150.2 33.5 135.1 202.8 127

56 42.8 40.7 50.1 27.5 49.1 41.8 35.2

57 142.1 33.2 39.3 24.5 28.7 34.7 31.5

58 3.8 10.1 11.8 5.7 9.7 9.6 7.6

59 233.0 170.0 55.8 17.4 48.5 65.2 45.9

60 108.3 96.2 158.9 100.3 151.0 123.8 108.8

61 665.5 283.9 638.4 499.8 577.8 472.4 453.1

62 229.6 186.8 160.0 76.0 156.7 147.0 118.1

63 342.7 200.1 437.8 327.8 406.1 322.8 303.1

64 42.1 78.4 91.3 45.7 83.9 75.6 60.6

65 66.3 75.0 227.2 183.9 177.2 151.1 143.1

Max 2434.9 874.8 1055.3 736.9 848.4 865.2 809.4

Min 1.9 3.8 4.2 0.8 4.0 1.4 2.8000

Avg 169.1 110.6 104.5 63.0 91.5 89.0 75.6908

Bold entries are the values of the differential evolution
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Where Spre and Smeas denote standard deviations of the measured and predicted values. The
predicted value of longitudinal dispersion coefficient using the new expression and other

previous expression is shown in Table 3. Following the Accuracy ¼ 0:5 <
Kpre

Kmeas
< 1:5 , it

shows that Accuracy =1 denotes exact matching between measured values and predicted values.
While Accuracy >1, it denotes an overproduction value, otherwise, it represents an
underproduction (Accuracy <1). Figure 2 shows a comparison between the predicted coefficients

Table 4 Comparison of performance indices of models

Model Fitness value RMSE RMSE
(K >100
m2s-1

ignored)

CC Kpred/Kmeas range ARE Predicted
Accuracy
(%)

DE 9.8691e+004 38.9658 27.0216 0.9556 0.1350 to 10.6586 33.06 56.92

GA (2009) 1.3042e+005 44.7931 35.3009 0.9495 0.2406 to13.4828 37.81 53.85

Fisher (1979) 6.2241e+006 309.4445 120.2130 0.8661 0.0918 to13.0946 146.01 36.92

Liu (1977) 1.0880e+006 129.3777 131.0187 0.6589 0.1704 to 11.8132 79.38 41.54

Seo and Cheong
(1998)

2.7379e+005 64.9010 41.3366 0.9524 0.2029 to 18.0345 48.65 46.15

Dong et al.
(2001)

1.7139e+005 51.3492 29.1236 0.9298 0.0386 to 9.3448 44.01 49.32

Kashefipour and
Falconer
(2002)

1.5821e+005 49.3356 36.2527 0.9409 0.1932 to 9.6897 37.44 55.38

Bold results represent that our algorithm is better than other methods
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Fig. 2 Comparison of predicted dispersion coefficient from the new expression and the measure coefficient
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using the DE model and the actual values. The performance indices for different expressions are
shown in Table 4. As can be seen in Table 4, we can find that the new expression usingDEmodel
is better than other expressions as RSME and ARE the lower and CC is the highest. Figure 3
shows the regression of the predicted value using new expression and the actual values.

From the Table 4, we can find that the Fisher expression give the most unsatisfactory
relative to other expression. In the 4th column, when the measured value K value is larger
100 that are not included as the new data. We can find the RMSE of all models can be
enhanced. In this new data, the new expression using DE model can also produce better
solutions than other expressions. Table 4 also shows the average relative error to the measure
value (ARE). As can be seen in Table 4, the new expression can obtain the best value of
33.06 % than other expressions. The Kashefipour and Falconer can give the second ranking
of the ARE. Figure 4 show the average relative error to the measure value of different
expression. From this figure, it can demonstrate the DE model is the best expression. The
range of the Kpred/Kmeas also can be found in Table 4. Table 4 shows the Kpred/Kmeas value of
the DE model ranges from 0.1350 to 10.6586, which trend in the positive direction.
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However, the positive of Fischer and Seo & Cheong’s expressions are more satisfaction
whereas the Dong’s model trends the negative side. Figure 5 shows a comparison of the
percentage proportion of the predicted value with the different distribution. From the figure,
we can find that it shows a completed distribution for the value of the new expression.

In this paper, we defined the accuracy of a new expression is within the range

0:5 <
Kpre

Kmeas
< 1:5 . The experiment results of the accuracy are also shown in Table 4. As

can be seen in Table 4, we can find that the DE model obtains 56.92 % of the predicted
accuracy from the new expression which is the highest among all expressions. Figure 6
shows the variation dispersion coefficient according to the width of river. It demonstrates
that the predicted accuracy of DE enhances as the width increases.

4 Conclusions

This paper illustrated the application of differential evolution to produce a new expression
for prediction of the longitudinal dispersion coefficient in natural rivers. We employ the
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mutation operator, crossover operator, selection operator to generate the offspring. The
effectiveness of the proposed algorithm is demonstrated on data consisting of 65 sets of
observations from 29 rivers in the unite states. The DE algorithm has the ability to find the
least root mean square error, the highest coefficient of correlation, the least average relative
error to the measure value, and the highest accuracy, and has better convergence
characteristics and computational efficiency. The comparison of the results with other
methods reported in the literature show the superiority of the proposed method and its
potential for prediction of the longitudinal dispersion coefficient. From the results obtained,
it can be concluded DE algorithm is a promising technique for prediction of the longitudinal
dispersion coefficient. In the future work, we will use other enhance DE algorithms for
prediction of the longitudinal dispersion coefficient.
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