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Unified Parametrization for the Solutions to the Polynomial Diophantine Matrix 

Equation and the Generalized Sylvester Matrix Equation 

Bin Zhou, Zhi-Bin Yan, and Guang-Ren Duan 

Abstract: The polynomial Diophantine matrix equation and the generalized Sylvester matrix equation 

are important for controller design in frequency domain linear system theory and time domain linear 

system theory, respectively. By using the so-called generalized Sylvester mapping, right coprime 

factorization and Bezout identity associated with certain polynomial matrices, we present in this note a 

unified parametrization for the solutions to both of these two classes of matrix equations. Moreover, it 

is shown that solutions to the generalized Sylvester matrix equation can be obtained if solutions to the 

Diophantine matrix equation are available. The results disclose a relationship between the polynomial 

Diophantine matrix equation and generalized Sylvester matrix equation that are respectively studied 

and used in frequency domain linear system theory and time domain linear system theory. 

Keywords: Coprime factorization and Bezout identity, Diophantine matrix equation, generalized 

Sylvester mapping, generalized Sylvester matrix equation, linear system theory, parametrization. 

1. INTRODUCTION 

The polynomial Diophantine matrix equation in the 

form of 

( ) ( ) ( ) ( ) ( )A s X s B s Y s E s+ = ,  (1) 

where A(s), B(s), and E(s) are some known polynomial 

matrices of appropriate dimensions and X(s), Y(s) are 

some polynomial matrices to be solved, plays important 

role in frequency domain analysis of linear systems, for 

example, multivariable stochastic optimal control [21], 

disturbance rejecting [27] and pole placement [28]. See 

[13,22,25] and [26] for detailed introduction. In the past 

several decades, a lot of methods has been developed to 

solve this class of equations (see [15] and the references 

therein). Some new techniques (for example, geometric 

method [16]) are also established to solve this old 

problem in the literature. Very recently, Tzekis has 

proposed a very interesting method to solve this problem 

[4]. A more restricted version of equation (1) by 

imposing symmetry on the coefficient matrices is also 

studied in [19]. 

On the other hand, the generalized Sylvester matrix 

equation 

0 0 0

i i i

i i i

i i i

A XF BYF E RF

φ ϕ ω

= = =

+ = ,∑ ∑ ∑  (2) 

where { } { } { }
0 0 0

h p

i i i
i i i

RA B E

φ ϕ ω
×

= = =

, , , ∈ ,R

p p

F

×

∈R  are 

known matrices and X, Y are matrices to be determined, 

also plays very important roles in time domain analysis 

of linear systems. Many control problems in time domain, 

such as pole/eigenstructure assignment [3], robust pole 

assignment [10] and fault detection [6] relay on solutions 

to this class of linear matrix equations. Due to its wide 

applications, many algorithms have been developed to 

search for both analytical and numerical solutions to this 

class of matrix equations. For analytical solutions, the 

reader may refer to [2,7-9]. For numerical solutions, see 

[11] and the references therein. 

Very recently, we show in [2] that all the solutions to 

the generalized Sylvester matrix equation (2) can be 

parameterized by using the right coprime factorization 

and Bezout identity for certain polynomial matrices. In 

this paper, we aim to show that both the solutions to the 

polynomial Diophantine matrix equation (1) and the 

generalized Sylvester matrix equation (2) can be 

parameterized in the same manner. In other words, both 

parametric solutions to the polynomial Diophantine 

matrix equation (1) and the generalized Sylvester matrix 

equation (2) can be obtained as soon as certain 

polynomial matrix pair is obtained. We accomplish this 

by using the so-called generalized Sylvester mapping 

which is properly defined and studied in this paper. Upon 

the proposed results, we can clearly see a relationship 

between frequency domain linear system theory and time 

domain linear system theory. We should point out that 

connection between frequency domain linear system 
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theory and time domain linear system theory has been 

well investigated in the past several decades (see, for 

example, [12]). However, to the best of our knowledge, 

no result concerning these two classes of linear equations 

is available in the literature. 

We have to emphasize that the aim of this paper is to 

show the relationship between solutions to the 

Diophantine equation (1) and the generalized Sylvester 

matrix equation (2), we don’t aim to discuss the 

algorithm and the numerical reliability of the algorithm 

for the solutions. To be more clear, the explicit solutions 

to the Diophantine equation (1) used in this paper is 

standard and can be found in any linear system theory 

textbook. Indeed, as pointed our by a reviewer, there are 

plenty of papers by some researchers in the past several 

decades on this topic and the subject is now mature. 

There is a Matlab toolbox implementing the better 

algorithms to solve polynomial equations and control 

problems, that led to the matlab toolbox POLYX for 

solving polynomial equations and control problems. 

At the end of this section, we would like point out that 

polynomial matrix and equations have many other 

applications and research topics in control community. 

The most important one may be the Youla-Kucera 

parameterization which has many important applications 

in robust and H� control (see, for example, [18]) and 

LQ optimization [20]. Research on polynomial matrix 

and its relating problems is revived recently. For 

example, a polynomial approach is proposed to handle 

input saturation in recently years (see [24] and the 

references therein) and LMI characterization for 

robustness conditions [23]. 

The remainder of this paper is organized as follows. 

The main results are given in Section 2 which contains 

two subsections. In Subsection 2, we introduce the 

generalized Sylvester mapping and some primary results 

regarding its properties are proposed. In Subsection 2.2, 

parametrizations of the solutions to both the polynomial 

Diophantine matrix equation and generalized Sylvester 

matrix equation are unified by using the generalized 

Sylvester mapping. Section 4 concludes the paper. 

Notations: Throughout this paper, we use 
T

( )A Aσ ,

and rank( )A  to denote the eigenvalue set, the transpose 

and the rank of matrix A, respectively. For two integers 

m  and n m n, ≤ ,  we used [ ]m n,I  to denote the set 

{ 1 }m m n, + , , .�  The Kronecker product of two matrices 

A  and B  is denoted by A B⊗ .  For a linear mapping 

S,  we use ker( )S  and dim( )S  to denote its kernel 

space and dimensions, respectively. For two arbitrary 

integers p  and q,  we define 

( )
[ ] ,

p q

p q i i

i

i

T

s T s

β

α β

α

α β

α β

×

×

,

=

⎧ ⎫∈ , ∈ , ∈ ,⎪ ⎪
= ⎨ ⎬

−∞ < ≤ < ∞,⎪ ⎪⎩ ⎭

∑

F Z Z

F

where =F R  or .C  If 0α β≥ , < ∞,  then 
( )

[ ]
p q

s
α β

×

,

F

which is the set of all p q×  polynomial matrices over F

of finite degree, will be denoted by [ ]
p q

s

×

F  for short. 

2. MAIN RESULTS 

2.1. Generalized Sylvester mapping and its properties 

Definition 1: Let ( )
( )

[ ]
n qi

i
i

T s T s s

β

α βα

×

,=

= ∈∑ F  and 

p p

F

×

∈F  be a fixed square matrix. 

For any 
q p

X

×

∈ ,F  we define the so-called right-

Sylvester mapping ( )
F

R
S X T s X: ,� �  where  

( )
i

i

i

T s X T XF

β

α=

= .∑�  (3) 

For any 
p n

X

×

∈ ,F  we define the so-called left-

Sylvester mapping ( )
F

L
S X X T s: ∗ ,�  where 

( )
i

i

i

X T s F XT

β

α=

∗ = .∑  (4) 

Obviously, if 0,α∞ < <  it follows from (3) and (4) 

that F must be nonsingular which is assumed to be true 

in that case.  

Remark 1: Definition 1 is a generalization of 

Definition 1 in [1]. Indeed, in Definition 1 of [1], only 

the right-generalized Sylvester mapping 3 is introduced. 

Moreover, it is assumed in [1] that α = −∞  and 

β = +∞  which may cause fundamental problem of 

convergence. Our definitions do not have such problem. 

Note also that our definitions also generate that in [5].  

By definition, the following simple properties of 
F

R
S

and
F

L
S  can be obtained. Part of the results in this 

lemma can be found in [1].  

Lemma 1: Let ( ) ( ) ( )
( )

[ ]
1 2

n q

T s T s T s s
α β

×

,

, , ∈ ,F
R

X ,

q p

R
Y

×

∈F  and .

p n

L L
X Y

×

, ∈F

1. The mappings ( )
F

R R R
S X T s X: � �  and 

F

L
S X:

� ( )X T s∗  are linear mappings, i.e., 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

RR R R

L L L L

T s X Y T s X T s Y

X Y T s X T s Y T s

+ = +

+ ∗ = ∗ + ∗ .

� � �

2. The mappings ( )
F

R R R
S X T s X: � �  and 

F

L L
S X:

( )
L

X T s∗�  satisfy 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 2 1 2

1 2 1 2

R R R

L L L

T s T s X T s X T s X

X T s T s X T s X T s

+ = +

∗ + = ∗ + ∗ .

� � �

3. Let ( )
( )

[ ]f s s
α β,

∈ .F  Then there holds 

( ) ( )

( ) ( )

R R

L L

f s I X X f F

X f s I f F X

=

∗ = .

�

We give some further properties of both the left-

Sylvester and right-Sylvester mappings. These results are 

generalizes of those given in [1]. For detailed proof, see 

[1]. 
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Lemma 2: Let ( )
( )

[ ] ( )
( )

[ ]
1 1 2 2

m qn m

T s s B s s
α β α β

××

, ,

∈ , ∈F F

and 
q p

R
X

×

∈ ,F

p n

L
X

×

∈ .F  Then 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( )

R R

L L

T s B s X T s B s X

X T s B s X T s B s

= ,

∗ = ∗ ∗ .

� � �

 (5) 

Lemma 3: Let ( )
( )

[ ] ( )
( )

1 1 2 2

1 2

n q m q

R R
T s s T s

α β α β

× ×

, ,

∈ , ∈F F

and 
q p

R
X

×

∈ .F  Then 

( )

( )

( )

( )

1 1

2 2

R R R

R

R R R

T s T s X

X

T s T s X

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥
⎣ ⎦

⎡ ⎤

= .⎢ ⎥

⎣ ⎦

�
�

�
 (6) 

Let ( )
( )

[ ]
1 1

1

q n

L
T s s

α β

×

,

∈ ,F ( )
( )

2 2

2

q m

L
T s

α β

×

,
∈F  and 

L
X ∈

p q×

.F  Then 

( ) ( ) ( ) ( )
1 2 1 2L L L L L L L

X T s T s X T s X T s∗ = ∗ ∗ .⎡ ⎤ ⎡ ⎤
⎣ ⎦ ⎣ ⎦

Lemma 4: Let ( )
( )

[ ]
1 1

1

q n

R
T s s

α β

×

,

∈ ,F ( )
( )

2 2

2

q m

R
T s

α β

×

,

∈F

and ( ) ( )
n p m p

R R
X Y

× ×

, ∈ × .F F  Then 

[ ] ( ) ( )
1 2 1 2
( ) ( )

R

R R R R R R

R

X

T s T s T s X T s Y

Y

⎡ ⎤

= + .
⎢ ⎥

⎣ ⎦

� � �

Let
( )

[ ]
1 1

1
( )

n q

L
T s s

α β

×

,

∈ ,F

( )
2 2

2
( )

m q

L
T s

α β

×

,

∈F  and ( )
L L

X Y,

( )
p n p m× ×

∈ × .F F  Then 

( )

( )

( ) ( )
1

1 2

2

L

L L L L L L

L

T s

X Y X T s Y T s

T s

⎡ ⎤

⎣ ⎦

⎡ ⎤

∗ = ∗ + ∗ .⎢ ⎥

⎣ ⎦

Remark 2: Roughly speaking, Lemmas 1-4 say that 

we can use the symbols �  and ∗  as the ordinary 

matrix product, though they are essentially different from 

the ordinary matrix product.  

We provide the following theorem regarding the 

properties of the mappings 
F

R
S  and 

F

L
S .  This result 

generalizes Theorem 1 in [1]. A more simple and elegant 

proof of this theorem than that proposed in [1] is given in 

appendix, which can make this subsection more legible.  

Theorem 1: Let ( ) [ ]
n m m p

R
T s s X

× ×

∈ , ∈F F  and 

.

p n

L
X

×

∈F

1) The mapping ( )
F

R R R
S X T s X: � �  is surjective 

(or the mapping ( )
F

L L L
S X X T s: ∗�  is injective) 

if and only if  

( )( ) ( )rank T n Fλ λ σ= ,∀ ∈ .

2) The mapping ( )
F

R R R
S X T s X: � �  is injective (or 

the mapping ( )
F

L L L
S X X T s: ∗�  is surjective) if 

and only if 

( )( ) ( )rank T m Fλ λ σ= ,∀ ∈ .

3) The mapping ( )
F

R R R
S X T s X: � �  is bijective (or 

the mapping ( )
F

L L L
S X X T s: ∗�  is bijective) if 

and only  

rank( ( )) ( )T n m Fλ λ σ= = ,∀ ∈ .

Definition 2: Let ( ) [ ]
n m

T s s

×

∈ ,F

m p

R
X

×

∈F  and 

.

p n

L
X

×

∈F  The mappings ( )
F

R R R
S X T s X: � �  and 

( )
F

L L L
S X X T s: ∗�  are said to be universal-surjec-

tive, universal-injective and universal-bijective if they 

are surjective, injective and bijective, respectively, for 

arbitrary matrix 
p p

F

×

∈ .F

Definition 3: For a polynomial matrix T(s) [ ]
n m

s

×

∈ .F

1) ( )T s  is said to be left-coprime if rank( ( ))T s n= ,

s∀ ∈ .C

2) ( )T s  is said to be right-coprime if rank(T(s)) m= ,

s∀ ∈ .C

3) T(s) is said to be coprime if it is both left-coprime and 

right-coprime. 

The coprimeness of one polynomial matrix can be 

extended to a pair of polynomial matrices case. For 

example, the polynomial matrix pair ( ( ) ( ))A s B s, ∈

( [ ] [ ])
n m n p

s s

× ×

×F F  is said to be left-coprime if  

rank([ ( ) ( )])A s B s n s= ,∀ ∈ .C

Obviously, ( ) [ ]
m m

T s s

×

∈F  is coprime if and only if 

T(s) is a unimodular matrix. By using this fact and the 

above two definitions, we can obtain the following 

corollary of Theorem 1.  

Corollary 1: Let ( ) [ ]
n m

T s s

×

∈ ,F

m p

R
X

×

∈F  and 

.

p n

L
X

×

∈F

1) The mapping ( )
F

R R R
S X T s X: � �  is universal-

surjective (or the mapping ( )
F

L L L
S X X T s: ∗�  is 

universal-injective) if and only if ( )T s  is left-

coprime.  

2) The mapping ( )
F

R R R
S X T s X: � �  is universal-

injective (or the mapping ( )
F

L L L
S X X T s: ∗�  is 

universal-surjective) if and only if T(s) is right-

coprime. 

3) The mappings ( )
F

R R R
S X T s X: � �  is universal-

bijective (or the mappings ( )
F

L L L
S X X T s: ∗�  is 

universal-bijective) if and only if T(s) is a unimodular 

matrix. 

2.2. Parametrization of the solutions to the polynomial 

Diophantine matrix equation and the generalized 

Sylvester matrix equation 

The polynomial Diophantine matrix equation takes the 

form 

( ) ( ) ( ) ( ) ( )
r r

A s X s B s Y s E s+ = ,  (7) 
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where ( ) [ ]
n n

A s s

×

∈ ,R ( ) [ ]
n m

B s s

×

∈R  and ( )E s ∈

[ ]
n h

s

×

R  are known polynomial matrices, and ( ( )
r

X s ,

[ ] [ ]( )( ))
n h m h

r
Y s s s

× ×

∈ ×R R  are polynomial matrices 

to be determined. Assume that the polynomial matrix 

pair ( ) ( )( )A s B s,  is left coprime. We recall the 

following well-known results.  

Theorem 2 [13]: Assume that ( )E s  is any known 

polynomial matrix. Let ( ) ( )( ) [ ](
m m

r r

D s N s s

×

, ∈ ×R

[ ])
n m

s

×

R  be a right coprime pair such that 

( ) ( ) ( ) ( ) 0
r r

A s N s B s D s+ = ,  (8) 

and [ ] [ ]( )0 0
( ( ) ( ))

n h m h

X s Y s s s

× ×

, ∈ ×R R  be any poly-

nomial matrix pair such that 

( ) ( ) ( ) ( ) ( )
0 0r r

A s X s B s Y s E s+ = .  (9) 

Then a global parametrization of the solutions to the 

polynomial Diophantine matrix equation (7) is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

r r r r

r r r r

X s X s N s T s

Y s Y s D s T s

⎧ = +⎪

⎨
= + ,⎪⎩

where ( ) [ ]
m h

r
T s s

×

∈R  is an arbitrary polynomial 

matrix.  

The following corollary can be immediately obtained.  

Corollary 2: Let ( ) ( )( )
r r

D s N s, ∈ [ ](
m m

s

×

×R

[ ])
n m

s

×

R  be a right coprime pair such that (8) holds 

and ( ) ( )( ) [ ] [ ]( )
n n m n

r r

U s V s s s

× ×

, ∈ ×R R  be a poly-

nomial matrix pair satisfying the following Bezout 

identity

( ) ( ) ( ) ( )
r r

A s U s B s V s I+ = .  (10) 

Then a global parametrization of the solutions to the 

polynomial Diophantine matrix equation (7) can be given 

by

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

r r r r

r r r r

X s U s E s N s T s

Y s V s E s D s T s

⎧ = +⎪

⎨
= + ,⎪⎩

where ( ) [ ]
m h

r
T s s

×

∈R  is an arbitrary polynomial 

matrix.  

The dual form of the polynomial Diophantine matrix 

equation (7) is 

( ) ( ) ( ) ( ) ( )
l l

X s A s Y s C s D s+ = ,  (11) 

where ( ) [ ]
n n

A s s

×

∈ ,R ( ) [ ]
q n

C s s

×

∈R  and ( )D s ∈

[ ]
h n

s

×

R  are known polynomial matrices, and ( ( )
l

X s ,

[ ] [ ]( )( ))
h n h q

l
Y s s s

× ×

∈ ×R R  are polynomial matrices to 

be determined. 

Corollary 3: Assume that the polynomial matrix pair 

( ) ( )( )A s C s,  is right coprime. Let ( ) ( )( )
l l

D s N s, ∈

[ ] [ ]( )
q q q n

s s

× ×

×R R  be a left coprime polynomial 

matrix pair such that 

( ) ( ) ( ) ( ) 0
l l

N s A s D s C s+ = ,  (12) 

and ( ) ( )( ) [ ] [ ]( )0 0

h n h q

l l
X s Y s s s

× ×

, ∈ ×R R  be any 

polynomial matrix pair such that 

( ) ( ) ( ) ( ) ( )
0 0l l

X s A s Y s B s D s+ = .  (13) 

Then a global parametrization of the solutions to the 

polynomial Diophantine matrix equation (11) is given by 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

l l l l

l l l l

X s X s T s N s

Y s Y s T s D s

⎧ = +⎪

⎨
= + ,⎪⎩

where ( ) [ ]
h q

l
T s s

×

∈R  is an arbitrary polynomial 

matrix.  

The generalized Sylvester matrix equation takes the 

form  

0 0 0

i i i

i r i r i

i i i

A X F BY F E RF

φ ϕ ω

= = =

+ = ,∑ ∑ ∑  (14) 

where 
n n

i
A

×

∈ ,R [ ]0i φ∈ , ,I

n m

i
B

×

∈ ,R [ ]0i ϕ∈ , ,I
i

E

n h×

∈ ,R [ ]0i ω∈ ,I  and 
h p

R

×

∈R  are known matrices 

and ( ) ( )
n p m p

r r
X Y

× ×

, ∈ ×R R  are unknown matrices. 

This class of equations includes many linear equations, 

for example, AX XF BY− = , AX EXF BY− =  and 

,AX BY EXF R+ = +  as special cases. All these 

mentioned equations play important role in state-space 

control system design (see the references cited in 

Introduction).  

By using the so-called right-Sylvester mapping 

defined before, the generalized Sylvester matrix equation 

(14) can be rewritten as 

( ) ( ) ( )
r r

A s X B s Y E s R+ = ,� � �  (15) 

where  

( ) [ ]

( ) [ ]

( ) [ ]

0

0

0

i n n

i

i

k n m

k

k

l n h

l

l

A s A s s

B s B s s

E s E s s

φ

ϕ

ω

×

=

×

=

×

=

⎧

= ∈⎪

⎪

⎪
⎪

= ∈⎨

⎪

⎪

⎪ = ∈ .

⎪
⎩

∑

∑

∑

R

R

R

 (16) 

Theorem 3: Assume that ( ) ( )( )A s B s,  is left 

coprime. Let ( ) ( )( ) [ ] [ ]( )
m m n m

r r

D s N s s s

× ×

, ∈ ×R R

be a right coprime pair such that (8) holds and 

[ ] [ ]
0 0

( ( ) ( )) ( )
n h m h

r r
X s Y s s s

× ×

, ∈ ×R R  be any poly-
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nomial matrix pair such that (9) holds. Then a global 

parametrization of the solutions to the generalized 

Sylvester matrix equation (14) for arbitrary 
p p

F

×

∈R

is given by 

( ) ( )

( ) ( )

0

0

r r r r

r r r r

X X s R N s Z

Y Y s R D s Z

⎧ = +⎪

⎨
= + ,⎪⎩

� �

� �
 (17) 

where [ ]
m p

r
Z s

×

∈R  is an arbitrary parameter matrix.  

Proof: We first show that ( )
r r

X Y,  given by (17) 

satisfies the generalized Sylvester matrix equation (14). 

Using the properties of right-Sylvester mapping and 

equations (8)-(9), we can obtain 

( ) ( ) ( )
r r

A s X B s Y E s R+ = ,� � �

which shows that ( )
r r

X Y,  is indeed a solution to (14).  

We next show that all the solutions to (14) can be 

parameterized as (17). Rewrite the equation (15) as 

( ) ( ) ( )0

r

r

X

A s B s T s W

Y

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥⎣ ⎦

= .⎡ ⎤
⎣ ⎦

� � �

Denote { ( ) 0}L W T s W= : = ,�  i.e., L  is the solution 

space of the generalized Sylvester matrix equation (14). 

Since T(s) is left-coprime, it follows from Corollary 1 

that ( )
F

R
S W T s W: � �  is universal-surjective. Then 

we have 

( ) ( )dim dim ker

F

R
L S n m p np rp

⎛ ⎞⎛ ⎞

⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= = + − = .

parameters denoted by Z  in the solution (17) is already 

rp.  Hence, it is sufficient to show that ( )
r r r

Z X Y,�

is universal-injective, or equivalently 

( )

( )

r

r r

r

N s

Z Z

D s

⎡ ⎤

,⎢ ⎥

⎣ ⎦

� �

is universal-injective. This is true as ( ) ( )( )
r r

N s D s,  is 

right coprime (Corollary 1). This completes the proof.

The following corollary can be obtained in accordance 

with Corollary 2.  

Corollary 4: Assume that ( ( ) ( ))A s B s,  is left 

coprime. Let ( ) ( )( ) [ ] [ ]( )
m m n m

r r

D s N s s s

× ×

, ∈ ×R R  be 

a right coprime pair such that (8) holds, and 

( ) ( )( ) [ ] [ ]( )
n n m n

r r

U s V s s s

× ×

, ∈ ×R R  be a polynomial 

matrix pair such that (10) holds. Then a global 

parametrization of the solutions to the generalized 

Sylvester matrix equation (14) for arbitrary 
p p

F

×

∈R

is given by 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

r r r r

r r r r

X s U s E s R N s Z

Y s V s E s R D s Z

⎧ = +⎪

⎨
= + ,

⎪⎩

� �

� �

where [ ]
m p

r
Z s

×

∈R  is an arbitrary parameter matrix.  

The dual form of the generalized Sylvester matrix 

equation (14) is  

0 0 0

i i i

l i l i i

i i i

F X A F Y C F RD

φ ϕ ω

= = =

+ = ,∑ ∑ ∑  (18) 

where 
l

X  and 
l
Y  are matrices to be determined. 

Equation (18) is known as the generalized Sylvester-

observer equation and plays important role in observer 

design problem. Let A(s) be defined as (16) and 

( )
0

i

ii

C s C s

ϕ

=

= Σ , ( )
0

i

i i
D s D s

ω

=

= Σ .

Corollary 5: Assume that ( ( ) ( ))A s C s,  is right 

coprime. Let ( ) ( )( ) [ ] [ ]( )
q q q n

l l
D s N s s s

× ×

, ∈ ×R R  be 

a right coprime pair satisfying (12) and 
0

( ( )
l

X s ,

( ) [ ] [ ]( )0
)

h n h q

l
Y s s s

× ×

∈ ×R R  be any polynomial matrix 

pair satisfying (13). Then a global parametrization of the 

solutions to the generalized Sylvester-observer matrix 

equation (18) for arbitrary 
p p

F

×

∈R  is given by 

( ) ( )

( ) ( )

0

0

l l l l

l l l l

X RX s Z N s

Y RY s Z D s

⎧ = +⎪

⎨
= + ,⎪⎩

where [ ]
p q

l
Z s

×

∈R  is an arbitrary parameter matrix.  

Theorems 2 and 3 (Corollaries 2 and 4) clearly imply a 

resemblance between the solutions to the polynomial 

Diophantine matrix equation (7) and solutions to the 

generalized Sylvester matrix equation (14). To the best 

of our knowledge, this resemblance has not yet been 

pointed out before. This result clearly shows an analogy 

and connection between the control theories developed 

respectively in frequency and time frameworks. Owning 

to these comments, one may ask the following question: 

Does one can immediately get solutions to one of the two 

equations as soon as solutions to the other one are 

obtained? The following theorem partly answers this 

question.  

Theorem 4: Let ( ( ) ( ))
r r

X s Y s,  be a solution to the 

polynomial Diophantine matrix equation (7). Then 

( ( ) ( ) )
r r

X s R Y s R,� �  is a solution to the generalized 

Sylvester matrix equation (14). Let ( ) ( )( )
l l

X s Y s,  be a 

solution to the polynomial Diophantine matrix equation 

(11). Then ( ) ( )( )
l l

R X s R Y s∗ , ∗  is a solution to the 

generalized Sylvester-observer matrix equation (14). 

Proof: We only prove the first statement. Since 

( ( ) ( ))
r r

X s Y s,  is a solution to the polynomial 

Diophantine matrix equation (7), then 

( ) ( ) ( ) ( ) ( )
r r

A s X s B s Y s E s+ = ,

which in turn implies 

( ) ( ) ( )( ) ( ) ( )( )
r r

E s R A s X s R B s Y s R= + .� � � � �

That is to say, ( ( ) ( ) )
r r

X s R Y s R,� �  is a solution to 

the generalized Sylvester matrix equation (14) in view of 

(15). The proof is completed.                     
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3. CONCLUSION 

In this note, we have considered the problem of 

parameterizing all solutions to the polynomial 

Diophantine matrix equation and the generalized 

Sylvester matrix equation. It is shown that solutions to 

both of them can be parameterized as soon as two pairs 

of polynomial matrices satisfying the right coprime 

factorization and Bezout identity are obtained. Our 

results show a nice connection between the polynomial 

Diophantine matrix equation appearing in frequency 

domain linear system theory and generalized Sylvester 

matrix equation encountered in time domain linear 

system theory. 

APPENDIX A 

A.1. Proof of Theorem 1 

For a matrix 
m n

A

×

∈ ,R  we define the column 

stretching function cs( )Y  as follows  

( )

1

1
cs

n

n

a

A A A a a

a

⎡ ⎤

⎢ ⎥

⎢ ⎥
⎡ ⎤

⎢ ⎥ ⎣ ⎦

⎢ ⎥

⎢ ⎥
⎣ ⎦

: , = .� � �

Then we have the following well-known formulation 

[17] 

T

cs( ) ( )cs( )AXB B A X= ⊗ .  (19) 

Denote deg( ( ))T sβ = .  Taking cs  on both sides of 

( )Y T s X= �  and using (19), gives  

0 0

cs( ) cs cs( )

cs( )

i T

i i

i i

Y T XF F T X

X

β β⎛ ⎞

⎜ ⎟

⎜ ⎟

⎜ ⎟
= =⎝ ⎠

⎛ ⎞

= = ⊗⎜ ⎟
⎜ ⎟

⎝ ⎠

Π .

∑ ∑

�

Since both cs( )Y Y�  and cs( )X X�  are bijective 

mappings, the mapping ( )X T s X� �  is surjective, 

injective and bijective if and only if Π  is of full row 

rank, of full column rank and nonsingular, respectively. 

Let V  be a nonsingular matrix such that 
T

F V VJ=

where 

1

1 0 0

0

0 1 0

0 1

0 0 0

i

i
r

i i

i

i

i

s

s

J J J

s

s

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥
=

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥⎣ ⎦

= , =
⊕

�

� � �

� �

� �

�

with [ ]1
i
s i r, ∈ ,I  being the eigenvalues of matrix F .

Then we have 

( ) ( )

T 1

0 0

1

0

i

i i

i i

i

n i m

i

F T VJ V T

V I J T V I

β β

β

−⎛ ⎞

⎜ ⎟

⎝ ⎠

= =

−

=

Π = ⊗ = ⊗

⎛ ⎞

= ⊗ ⊗ ⊗⎜ ⎟
⎜ ⎟

⎝ ⎠

∑ ∑

∑

( )

1

2 1

0

0 0

n m

r

V I V I

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥ −⎛ ⎞

⎜ ⎟⎢ ⎥
⎝ ⎠

⎢ ⎥

⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

Π ∗ ∗

Π ∗

= ⊗ ⊗ ,

∗

Π

�

�

� � �

�

where  

( )

( )

( )

[ ]

0

1

0 0

i

i

i

i

T s

T s

i r

T s

⎡ ⎤

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥

⎢ ⎥⎣ ⎦

∗ ∗

∗

Π = , ∈ , ,

∗

I

�

�

� � �

�

and the terms denoted by ∗  are not important here. We 

note that Π  is of full row rank, of full column rank and 

nonsingular, if and only if [ ]1
i
i rΠ , ∈ ,I  are of full row 

rank, full column rank and nonsingular, respectively, 

which are equivalent to that ( ) [ ]1
i

T s i r, ∈ ,I  are of full 

row rank, of full column rank and nonsingular, 

respectively. This completes the proof. 
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