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In order to explore the kinetic characteristics of planktonic microorganisms and nanometer
biological motors, a mathematical model is developed to estimate the hydrodynamic force in
the migration of micro- and nano-swimmers by using the Laplace transformation and linear
superposition. Based on the model, it is found that a micro- and nano-swimmer will enjoy a
positive propulsive force by improving frequencies or generating traveling waves along its body
if it is not time reversible. The results obtained in this study provide a physical insight into the
behaviors of the micro- and nano-swimmer at low Reynolds numbers, and the corresponding
quantitative basis can also be potentially used in the design of nanorobot and nanosized
biomaterials.

Keywords: Mathematical model; micro- and nano-swimmers; nanosized; biomaterials.

1991 Mathematics Subject Classification: 22E46, 53C35, 57520

1. Introduction

In the micro/nano scale, an ultra micro-swimmer such as bacteria, flagellated
nanorobot and molecular motor etc experiences an environment quite different
from that with big size and high velocity in low viscosity fluid.""? Specifically,
because of their small size (of the order of micro/nano meters) and the low velocity
(of the order of micro/nano meters per second), the Reynolds number, defined by
their size and velocity of them, is much less than 1, and hence, the fluid inertia
is essentially irrelevant to them.!'** Childress* showed that a neutrally buoyant
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Fig. 1. Two types of bio-locomotion: (a) Flapping fin propulsion of large aquatic animal; (b) traveling
helical wave propulsion of a micro- or nano-swimmer.

organism exhibiting time-reversal symmetry is a non-swimmer in the Stokesian
realm. More recently, Lowe® argued that the irrelevant-inertia for microorganisms
makes it difficult for them to move. Therefore, the microorganisms must improve
their frequencies (so as to make oRe = wL?/v = O(1)) or perform a new propulsive
method other than flapping fin (see Fig. 1(a)) to break the time-reversal symmetry
to swim, such as by traveling helical wave down the filament (see Fig. 1(b)).*°

In the last few decades, there has been considerable interest in understand-
ing the dynamics of animal swimming. Numerical approaches, such as the finite
element method,®” the immersed boundary — finite difference method,*'? and the
immersed boundary — lattice Boltzmann method,'*™" have been applied to
simulate the animal swimming. Taylor,?*?? Hancock,? Lighthill>* and Wu?® stu-
died the microorganism swimming by solving the Stokes and Navier—Stokes
equations under the assumptions of very low viscosity of water, plane wave pro-
pagating, negligible inertial forces and small amplitude of the waves. Machin?®
showed a theoretical approach by considering the types of wave propagation which
may occur along an elastic filament immersed in a viscous medium. A semi-
empirical approach was introduced by Azuma.?” Some experimental and theoretical
models are also found in the works of Kim et al.,?® Srigiriraju and Powers,? Avron
et al.>’ and Yu et al.*! Elasticity or semi-elasticity theory was employed in this
realm and numbers of high quality works were reported by Wiggins and Goldstein,*?
Camalet et al.,*® Wolgemuth et al.>* and Powers.?” But few studies tried to work on
the analytical solution of linearized Navier—Stokes equations in this realm.

The exact solutions to the flow field and hydrodynamic force on a micro- or
nano-swimmer performing traveling wave down along the filament or rigid flap
are presented in the present work. Assuming that the amplitude of the traveling
wave or flap is small, Navier—Stokes equations are linearized by ignoring the
convective term. The linearized equation can be transformed to the form that just
contains spacial variables, by using the Laplace transformation. Thus, the
eigenvalues and eigenfunctions of this equation can be obtained and then the
solution of the reduced Navier—Stokes equations on the half plane with surface
executing traveling wave or rigid flap of arbitrary frequency can be derived by
employing the principle of linear superposition based on these eigenfunctions.

1340013-2



J. Mech. Med. Biol. Downloaded from www.worldscientific.com

by WSPC on 01/08/14. For personal use only.

A Mathematical Model for Micro- and Nano-Swimmers

Consequently, the other information of the flow field and hydrodynamic force on
the micro- or nano-swimmer is obtained. The numerical results indicate that our
model can simulate the micro/nano swimming principle effectively, it also can be
potentially used for the design of nanorobot and molecular motor which are
driven by a flagellum in the fluid.

2. Problem Formulation and Theory

As shown schematically in Fig. 2, a micro- or nano-swimmer immersed in low
viscous and quiescent fluid undergoing a traveling wave motion or rigid flap is
considered. The fluid motion is governed by the incompressible Navier—Stokes
equations.

V-u=0, (1)
ou 9
P E—i—u-Vu = —Vp+ uV-u, (2)

where u is the velocity, p is the pressure, p and p are the density and viscosity of the
fluid, respectively. Assuming that the amplitude of the traveling wave or flap is
much smaller than the characteristic scale of the flow (the length of the micro- or
nano-swimmer especially) and p is very high so that the Reynolds number is low,
the nonlinear term in Eq. (2) is ignored and the incompressible Navier—Stokes
equations can be rewritten as

V-u=0, (3)

u
pgr=—Vr+ V. (4)

Therefore, the principle of linear superposition can be applied to the simplified
system. The boundary conditions are described as follows
uls = f(r(s)vt)» (5)
ul,, =0, (6)

where s is the arc length of the micro- or nano-swimmer, which is approximately
equal to x considering the small amplitude assumption.

y=f(x)Sin(20ux-ct))

X= —L/2 X=L/2

Fig. 2. Sketch of the physical problem.
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For any motion of the micro- or nano-swimmer, it can be described as y = g(x, t).
Under the small amplitude assumption, y can be expanded as

o0

y= D apur" sinfw,(t +1,)], (7)

m=0,n=0

where a,,,x™ sinfw,(t +t,,)] (m,n € N) is the basic movement of the micro- or
nano-swimmer.

The movement of the micro- or nano-swimmer and the flow field before ¢ = ¢, are
not important for us. From Eq. (7), two characteristics of the movement are drawn:
(1) the micro- or nano-swimmer keeps still before ¢ < ¢, and the movement starts
when t > t, (we take ¢, = 0 for simplicity in this article); (2) the basic movement is
to be oscillating periodically. It is convenient to introduce the Laplace transform-
ation before solving the Egs. (3)—(6). The Laplace transformation of f(t) is denoted
as F(s) = L[f(t)], which is defined as®°

F(s) = /0 ~ f()e . (8)

If there exists a real constant ¢, and A such that |f(¢)] < Ae® : ¢ > t,, we may say
that f(t) is of exponential order «. Similarly, if f(fo f(t)dt exists and f(t) is of
exponential order «, then the Laplace transform F(s) exists for Re[s] > a.?"

The inverse Laplace transformation is denoted as f(t) = L'[F(s)] and defined
as

1 "t o100

10 =5 [ Feas )
where « is a real constant to the right of all singularities of F(s), namely, there is
no singularity of F(s) except Re(s) < a. Equation (9) is calculated by employing
the theory of residues®®

ft) = Z Res[F(s)e™, s;], (10)
k=1
where sy, Sq,...,s, are the poles of F(s), which is analytic except for these poles.

From physical view, the velocity and pressure of the fluid field are of exponential
order 0. Thus from the analysis above, the Laplace transformations of velocity and
pressure of the fluid field exists when Re[s] > 0. Using the Laplace transformation,
the transformed control equations are obtained

V-U=0, (11)
spU — pu|i_g, = =V P + VU, (12)
where s = a — iq with & — 0 and « > 0, namely, for any € >0, € > a > 0. The

initial velocity ul,—g+ is taken to be zero because the influence of the boundary
condition has not diffused into the field yet.
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Taking the curl of the momentum equation (Eq. (12)) twice and using the
incompressible condition, we obtain

V2 (VQU - %U) —0, (13)

where v is the kinematic viscosity of the fluid (v = u/p).
Because the surface is executing normal harmonic motion, the velocity field can
be expanded as

U(z,yls) = Us(yls)e™, (14)
where ¢ = v/—1. Substituting Eq. (14) into Eq. (13), we get
o'y, 9 0?U, LS o
S (2m? +2) S o (' +2m?)U, =o. (15)

The eigenvalues of Eq. (15) are —vm? and —y/m? + s/v for the upper half plane
y > 0, and vVm? and \/m? + s/v for the other plane y < 0. Here we just consider the

upper half plane because of the symmetry of V' and the antisymmetry of U and P
about y = 0, the last leads to P|,_y =0 at |z| > L/2. The flow field is the linear

combination of the eigenfunctions e~V?y and e~ VMW ag
+ = 7, s
Uulyls) = isy—= VQ_ eV emVmR), (16)
m

_syo —v/mZ 2_\/m2_+33/
Vi) = <= m? + 2oV BT )
/m ( v

and
m +— . —
Ulayls) = sy = <F P eTVTE) L (18)
m m?2 — /m? +
—s )
Vi, yls) = D___eime

m? — \/m*+ =
( m2 + ;efmy —Vm2Ze V 7"’2+'%y), (19)

2 / 5
P(x,y|s) _ PS5 Yo m’ +3 e*\/ﬁyeimz. (20)
Vm?(y/m? + £ — vm?)

The transformed boundary conditions are

y=yz": meN, |z|<L/2, (21)
v(z,0]s) = sypz™ : meN, |z| < L/2, (22)
p(z,0ls) =0: |z|> L/2, (23)

where yy = ae*l'w,, /(% + w?).
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The solution of the linear Navier—Stokes equations can be deduced using the
boundary conditions given by Egs. (22) and (23). We normalize the equations by
& =ua/L, j=y/L, Re= psL?/p and k = mL. It should be pointed out that the
definition of Re in the present work is different from that in Ref. 37. In the present
work, Re is a complex number with an infinitesimal real part while it is a real
number in Ref. 37. Inspired by the work of Van Eysden and Sader,®” we will discuss
the conditions of m being an odd and even number.

First situation that m is odd is discussed. The boundary condition can be
described as follows

o0 Nl
/<;,Re\//i—E 1————|sinkadk = 22n+l1: neN, |2|<1/2, (24
/OX( ) ( Vi 1 Re 2] <172, (24)

/mx(fi,Re) sinkzdk = 0: |2 > 1/2. (25)
0
From the book by Lavrent’ev and Shabat,® we have the following relation
/OOJQH,l(t/Q) sin(tz)dt
0
m[ /2" — | |7 <1/2,

V1/4 —22(\/1/4 — 22 +ix)™"
F(x,n)sin(nn): |z| > 1/2,

where n € Z. It is expected that the pressure contains a square root singularly near
the edges of the micro- or nano-swimmer at |g| = 1/2. Using the principle of
superposition, x is obtained

M
X(Hv Re) = Z am,J2mfl(H/2)' (26)

m=1

The sin(x&) can be expanded into a series around & = 0, which is given as

sin(kz) = i&(nﬁ)%ﬁ. (27)

—~(2n+1)!
Substituting Egs. (26) and (27) into Eq. (24) and using the result of Eq. (25), we get
M (2n — 1)1 g=n
Aqtmam = (_1)n—1 ’ (28)
m=1 0: q # n,

where

0 \/;2'
A(m:/ RQq_l\/—’f_i 1 ———— o 1(k/2)dk.
= ) 5/2)

The stress tensor of the Newton fluid field is 0;; = —pd;; + pu(u; ; +u;;) (4,5 = 1,2;
6;; =1if i =j, else 6;; = 0; 1 denotes a-direction, 2 denotes y-direction). For the
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small amplitude motion, the micro- nano-swimmer normal n = k x dr/ds ~ (0, 1),
where k is the unit vector perpendicular to x — y plane. Then the force acting on
the upper surface of the filament is f; = —pdy; + p(ug; +u;o). For j=1,
Jils = m(ugy + Uy 2)|y—o- Considering that u; and uy are antisymmetric and sym-
metric about y = 0, respectively, u, o and uy ; are both symmetric about y = 0. Thus,
the x-direction of the force acting on per unit length of the filament is zero. For j = 2,
the uy 5|, is zero from Eq. (19) and f5|, = —pl,—. The hydrodynamic force in the
z-direction per unit length is

AP = P(&,07|s) — P(2,0"

)

M 50
= —ps’Ly, Z Zam/ Jom—1(K/2) sin(kz)dk
0

m=1

M

8a,, T
2 m ~

= —ps°L 7Um, V1—4:L‘2, 29

P yong . 1= a2 am—1( ) (29)

where U,,,_; are the Chebyshev polynomials of the second kind of order 2m — 1.

Now we consider the situation in which m is even. The boundary condition can be
rewritten analogous to that of odd m

. N

/{,Re\/EE 1l —————=|coskadk = 227 mneN, |z|<1/2, 30

A x(r, Re) ( V#Z 1 Re ] <1/2, (30)
/\ Xx(k,Re)coskidr = 0:  |Z] > 1/2. (31)
0

Also, we can get the analogous result from the book of Lavrent’ev and Shabat®® we
get(neZ)

o R (/2™ @] < 1/2
c e : X )
/ Jon (t/2) cos(tz)dt = V1/4 — 22(\/1/4 — 22 +iz) ™
0
F(x,n)sin(nm): |z] > 1/2.
Using the similar process, we get
M
X(’i? Re) = am']‘lm(’i/Q)v (32)
m=1
" (277,72)!: g=n
Aq,mam = (_1)n—1 (33)
m=1 0: q 7& n,

where

~ NP
Ay :/ k2221 - ———— | JL m—2(Kk/2)dK
q,m 0 \/m 2m 2( / )
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and

AP = P(2,07|s) — P(2,0%]s)
M 4a \/_—_
= —ps’L — Ty, o(V1—422), 34
P yU’mZ::l m 2m 2( ) ( )

where T5,,_» is the Chebyshev polynomials of the first kind of order 2m — 2.

The coefficient a,,(0 > m < M) calculated from Eqgs. (28) and (33) is substituted
into Egs. (26) and (32), then x(k, Re) is obtained.

Comparing the present method with that in Ref. 37, it is found that the present
work utilizes the Laplace transformation rather than the Fourier transformation
used in Ref. 37. This is because we are just interested in the flow field and hydro-
dynamical characteristics when ¢ > ¢, while long time occurred motion is required
in the Fourier transformation in Ref. 37. The results are consistent with that in the
Ref. 37 by using “—iw” to displace “s”, which can be taken as a validation of the
present method.

To further validate the present result, we take the curl of the momentum
equation once and obtain

sW = vV?W, (35)

where W is the Laplace transformation of the vorticity w. It is easy to get the
general solution of this equation

W; _ Ae*\/7r12+3/1/ye17'm,x. (36)

Taking the curl of the velocity in Eqgs. (18) and (19), the vorticity also can be
obtained

W — i5°Yo e~ Vmits/vy gime (37)

m? + s/v)

W' derived from V x U is the same as W, derived from the vorticity dynamic
equation. This fact further validates the method in the present work.

3. Two Applications: Traveling Wave and Rigid Flap

We have emphasized several times that the amplitude of motion is small enough so
that the boundary condition and the Navier—Stokes equations can be linearized, and
the principle of linear superposition can be applied. Here, two applications,
including traveling wave and rigid flap, are discussed.

3.1. Traveling wave

A traveling wave with constant amplitude, described as § = qgsinfw(z — ct)], is
considered. In order to make the problem simpler, the parameters w and ¢ are taken
as w =2 and ¢ =1, respectively. The traveling wave can be expanded as the
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superposition of basic motions.
U= agsin2w(z — t)]
= ag[cos(27E) sin(27ty ) + sin(272) sin(27ty)], (38)

where ty =t + 1/4 and t; = t + 1/2. The trigonometric functions sin(27z) and cos
(2mz) are expanded around & = 0 as

. . x —1)" .
sin(27z) = 7?:0 (2(71—_‘_)1)!(27@)27&1’
. = (=" .
cos(2rz) = ;20 ((Qngl (2mi)2n,

It is sufficient to take the first six terms of the series, M in Egs. (28) and (33) is 12.
Taking the integral of the hydrodynamic force along the micro- nano-swimmer and
using the inverse Laplace transformation, we get the whole force acting on it, as
shown in Fig. 3. We find that it is periodic except at the time ¢t = 0, where the force
is infinity, because the motion occurs at this time suddenly and the acceleration at
the boundary is infinity. The amplitude of side force (C}) is much lager than that of
thrust (Cp) and the average Cp, is zero. The average Cp is less than zero, which
means that the micro- nano-swimmer performing this type of motion could generate
an efficient thrust to push it forward.

3.2. Rigid flap

A pitching and plunging rigid plate (as a special model of micro- or nano-swimmer)
in flow is considered. The motion of the plate can be described as § = agsin(wt) +
0oZ sin(wt + 1/27). In order to make the problem simpler, we take w =27 and

40

-20 Y ] v J y J v v
_ RIS RIS R S S
400 ) 1 6 8
t
Fig. 3. Cp and C}, for the traveling wave case.
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C,and C,

-100} ' ' '

Fig. 4. Cp and C}, for the rigid flap case.

0y = agy. Thus, the motion is rewritten as
§ = ag{sin(2mt) + I sin[27(t + 1/4)]}. (39)

Then a similar process as Sec. 3.1 is performed and the Cp and C7, of the plate are
obtained, as shown in Fig. 4. It is found that a very small thrust can be generated in
this type of motion and it is in contrast with that derived from the Stokes equations
which ignore all the inertia terms. In the Stokes flow regime, a swimmer performing
flap motion cannot generate thrust.’

It is obvious that the thrust of the plate is proportional to the amplitude and
frequency of the flap. The frequency reveals the unsteady characteristics of the
motion and can be any real value. If the frequency is small, the thrust on the plate is
very small and the swimming distance is microscopic. It is found that the micro- or
nano-swimmer may go ahead several percents of its body length after hundreds or
thousands of years. In this sense, it is regarded that the micro- or nano-swimmer at
low Reynolds number with rigid flap motion is the same as that in the Stokes flow. In
contrast, if the frequency is large and the corresponding thrust is larger, we can see a
considerable swimming distance of the micro- or nano-swimmer in several minutes.

4. Conclusions

The Laplace transformation and the principle of linear superposition based on
eigenfunctions are used to solve the linearized Navier—Stokes equations analytically.
The solutions are applied on two types of motion, traveling wave and rigid flap. The
results show that the micro- or nano-swimmer can swim forward at low Reyholds
numbers by improving their frequencies or performing the traveling wave down
along its body. This study presents a mathematical model, which can direct the
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behaviors of the micro- and nano-swimmers at low Reynolds numbers. The model is

significant for the understanding of motion of the nanorobot and molecular motor

which are driven by a flagellum in a fluid, it is also an efficient analysis model for the

design of artificial nanosized biomaterial for directional transport in the micro/nano

scale, such as the drug transport.
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