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Graphical Representation for DNA Sequences via
Joint Diagonalization of Matrix Pencil

Hong-Jie Yu and De-Shuang Huang, Senior Member, IEEE

Abstract—Graphical representations provide us with a tool al-
lowing visual inspection of the sequences. To visualize and compare
different DNA sequences, a novel alignment-free method is pro-
posed in this paper for both graphical representation and similarity
analysis of sequences. We introduce a transformation to represent
each DNA sequence with neighboring nucleotide matrix. Then,
based on approximate joint diagonalization theory, we transform
each DNA primary sequence into a corresponding eigenvalue vec-
tor (EVV), which can be considered as numerical characterization
of DNA sequence. Meanwhile, we get graphical representation for
DNA sequence via the plot of EVV in 2-D plane. Moreover, using
k-means, we cluster these feature curves of sequences into sev-
eral reasonable subclasses. In addition, similarity analyses are per-
formed by computing the distances among the obtained vectors.
This approach contains more sequence information, and it ana-
lyzes all the involved sequence information jointly rather than sep-
arately. A typical dendrogram constructed by this method demon-
strates the effectiveness of our approach.

Index Terms—Approximate joint diagonalization (AJD), den-
drogram, graphical representation, similarity analysis.

I. INTRODUCTION

GRAPHICAL representations of DNA offer visual inspec-
tion of DNA sequences [1]. However, in [2], the au-

thor investigated corrections that reveal some aspects of sim-
ilarity which could not be determined through the traditional
alignment-based methods. The space of similarity for complex
objects is multidimensional. Complex objects may be similar
in one aspect; however, it can be very different in another one.
Recently, many numerical characterizations for DNA or pro-
tein sequences have been introduced, where most of numerical
characterizations are extracted from the string representations
and graphical representations. The simpler and more important
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feature from string representations first used for comparison of
genome sequence [3] and later for alignment-free comparison of
regulatory sequences [4]. Various frequency-based algorithms
later have been introduced for sequence comparisons, as indi-
cated in [5] and [6]. Besides the representations based on single
nucleotide, the dinucleotide analysis has also been tried by sev-
eral authors. Randić [7] proposed a condensed representation of
DNA based on pairs of nucleotides. Wu et al. [8] proposed the
analysis approaches based on neighboring nucleotides of DNA
sequence, which reveal the biology information hidden between
dual nucleotides.

A recently introduced graphical representation of DNA se-
quences based on the neighboring dual nucleotides (dinu-
cleotides) [9], [10] is another example of a linear representation.
Dual nucleotides can also be divided into groups according to
their chemical properties [2] (for review of this topic up to 2011).

DNA sequences can be converted into numerical signals
through different transformations. Generally, one can use bi-
nary sequences to describe the position of each symbol [11].
The binary representation is certainly one of the earliest and the
most popular transformations of DNA. Also, several other dif-
ferent transformation methods have been proposed [12]–[19].
On the transformation methods used in DNA sequences, some
do not have a simple numerical interpretation, while others have
no biological motivation. Also, some of the representations are
irreversible and neglect the sequence structure. So far there has
not been an ideal transformation method that is able to analyze
every type of correlation among DNA sequences.

In this study, we propose a novel method for graphical rep-
resentation of DNA sequences and apply the method to se-
quences analyses. The application of the graphical representa-
tion of DNA sequence is illustrated by numerically examining
the relationship among different species. The validity of the pro-
posed approach is demonstrated via comparison of correlation
coefficients among the results from several methods.

II. DESCRIPTORS OF DNA SEQUENCES

Numerical characterization of a graphical representation can
also be performed directly from the coordinates or from the
properties of the graphs without transforming the graphs to
matrices. In this section, we will propose a novel method to
transform each DNA sequence into a symmetric sparse matrix,
from which feature vector can be extracted finally.

A. Related Works

Numerical characterizations of both 2-D and 3-D graphical
representations for DNA sequences through transforming the

2168-2194/$31.00 © 2013 IEEE
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TABLE I
SIXTEEN KINDS OF NEAREST NEIGHBOR NUCLEOTIDE

graphs into matrices and deriving the descriptors from these
matrices have been widely used by many authors. These de-
scriptors characterizing sequence can be used as the compo-
nents of similarity measures between a pair of sequences [2].
The examples of similarity analysis of DNA sequences using
this method may be found in [15] and [20]–[28].

B. Construction of Neighboring Matrix for Sequence

Considering a DNA sequence S = “S1S2 . . . SL ,” where
Si ∈ {A, T,G,C}, i = 1, 2, . . . , L, and L denotes the length
of sequence, there are 16 kinds of dinucleotides in total (as
listed in Table I).

Scanning every two adjacent sites successively, such as locus
pairs (S1 , S2), (S2 , S3), . . ., (SL−1 , SL ), we can obtain a 16
by (L − 1) adjacency matrix transformed from the primary
sequence via all the adjacent dinucleotides relationship, named
as m:

m = (aij )16×(L−1)

where

aij =
{

1, if SjSj+1 = the ith kind of dinucleotides

0, otherwise

i = 1, 2, . . . , 16; j = 1, 2, . . . , L − 1.

Obviously, the primary biological sequences can be regarded
as symbolic signals which may have a rich statistical struc-
ture that is the focus of many signal processing algorithms.
For example, stochastic symbolic signals are discrete random
processes with an unknown amplitude distribution (probabil-
ity mass function) and a correlation structure [29]. Optimal
symbolic-to-digital transformations of the linear, nucleic acid
strands into real or complex genomic signals are derived at
nucleotide, codon, and amino acid levels. By converting the se-
quences of nucleotides and polypeptides into digital genomic
signals, several approaches offer the possibility to use a large
variety of signal processing methods for handling and analyzing
the sequences [30]. From the viewpoint of signal processing, the
symmetric matrix M can be explained as observations upon 16
kinds of “sensors,” i.e., 16 dinucleotides (as depicted in Table I).
Thus, the matrix analysis approach in signal processing field can
be applied to multiple sequence similarity analysis.

Symmetric matrix has many merits [31]. Using the obtained
sparse matrix m16×(L−1) , which is mapped from the primary
sequence, we can get a symmetric neighboring matrix ML−1
= mT ∗ m for representing each sequence.

C. Approximate Joint Diagonalization

Given a matrix pencil, i.e., a set of matrices {M (1) ,
M (2) , . . . ,M (N )}, joint diagonalization (JD) refers to the
problem of seeking a matrix U , which will lead UH M (n)U
to be as diagonal as possible for all n, where U is a unitary
matrix. In engineering, it is ubiquitous for the use of matrix
pencil JD [32], [33]. JD can diagonalize more than two matrices
simultaneously. In general, a simple approach to the JD problem
is to consider matrix pencil {M (1) ,M (2) , . . . ,M (N )} consist-
ing of statistical information of the observations that are the
estimates of matrices with the form UH M (n)U . When more
than two matrices are to be diagonalized, exact diagonalization
may also be possible if the matrices possess a certain common
structure. Otherwise, one can only speak of approximate joint
diagonalization (AJD).

Considerable interest for AJD follows the discovery that it
yields a solution for independent component analysis [32] and
second-order blind source separation [33], [34].

Meanwhile, from the viewpoint of numerical analysis, the
“off” of an n × n matrix M with entries can be defined as

off(M)
def=

∑
1≤i �=j≤n

|mij |2 (1)

and the unitary diagonalization of a matrix M is equivalent to
zeroing off(V HMV ) by some unitary matrix V .

So far, several iterative algorithms have been developed to
solve the AJD problem. Generally, for any n × n matrix V ,
the AJD criterion can be defined as the following nonnegative
function of V :

J(V ,Λ(1) ,Λ(2) , . . . ,Λ(N )) def=
∑

i=1,...,N

‖Λ(i)−V HM (i)V ‖2

(2)
that is

J (V )
def=

∑
i=1,...,N

off
(
V HM (i)V

)
. (3)

A unitary matrix is said to be a joint diagonalizer of the set M,
if it minimizes the AJD criterion over the set of all unitary matri-
ces [see (2)]. First, let us consider the case that each matrix from
the set is in the form of M (i) = UΛ(i)UH , where Λ(i) is a diag-
onal matrix. Then, obviously J(V ,Λ(1) ,Λ(2) , . . . ,Λ(N )) = 0
holds, and this is the global minimum of the AJD criterion [see
(2)] since it holds for any matrix. Thus, if each matrix in the set
can be unitarily diagonalized by U , obviously, matrix U is a
joint diagonalizer of M.

Usually, AJD is not required that the involved matrix set M
can be exactly simultaneously diagonalized by a common uni-
tary matrix. As a matter of fact, it is even not required that the
matrices in the set should be individually unitarily diagonaliz-
able. This is because we do not require that the “off” function
values of all the matrices should be canceled by a unitary trans-
form, and an approximate joint diagonalizer need be just a min-
imizer of the AJD criterion. Mostly, the AJD criterion cannot
be zeroed, and the matrices can only be approximately jointly
diagonalized. Hence, an (approximate) joint diagonalizer de-
fines a kind of an “average eigenstructure.” This is particularly
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convenient for statistical inference where the structural infor-
mation is to be extracted from sample statistics.

Hence, rather than exactly diagonalizing a single matrix, the
AJD allows the information contained in a set of matrices to
be integrated in a single unitary matrix [33]. Another important
feature of the (possibly approximate) JD is the existence of a
numerically efficient algorithm for its computation [31].

D. Properties of Distance Preserving

In the following, we derive some properties for the proposed
AJD-NNM algorithm. Considering two transformations:

1) τ1 : Sequence(i) �→ M (i)

Sequence(i) denotes the ith sequence, where the length of se-
quence is L, and i = 1, 2, . . . , N , while M (i) ∈ R(L−1)×(L−1)

stands for the corresponding matrices mapped from each pri-
mary sequences, and M (i) is a (0, 1) type sparse symmetric
matrix, which can be determined by neighboring nucleotide
along the sequence(i) .

2) τ2 : M (i) �→ (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1)

The feature vector
⇀

F
(i)
L−1 = (λ(i)

1 , λ
(i)
2 , . . . , λ

(i)
L−1) is an (L −

1)-dimensional vector consisting of eigenvalues of M (i) via
AJD. So, we can obtain a compound transformation as follows:

τ2 ◦ τ1 : Sequence(i) �→ (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1) (4)

from which we can freely extract the features of the DNA
sequence.

From the viewpoint of algebra space, the transformation can
be also presented as

Ker f : S1×L τ−→F1×(L−1) (5)

where S1×L denotes the original sequence space comprising
primary DNA sequence with the length L, while F1×(L−1) indi-
cates the objective feature space that is mapped from the original
space. Also, the diagonal elements of Λ are just the eigenvalues
of the neighboring nucleotide matrix (NNM) via AJD. Fur-
thermore, the obtained data embody the essential property of
the primary DNA sequence, as can be seen from the following
proposition.

Definition 1: The distance D(s(i) , s(j )) [35] in the original
sequence space between two primary sequences, Sequence(i)

and Sequence(j ) , is defined as

D(s(i) , s(j ))
def= ‖M (i) − M (j )‖F (6)

where M (i) is the feature matrix of sequence(i) , i, j = 1,

2, . . . , N . Here, ‖A‖F =
√

tr(AHA) is Frobenius norm of
matrix A.

Definition 2: Let Rn×n be a real normed space with dimen-
sions n × n, and let f : Rn×n→R1×n be a function from Rn×n

to R1×n . A function f is α-distance preserving, if for any ele-
ment within the space Rn×n , such as M (i) and M (j ) , ‖M (i) −
M (j )‖F = α implies ‖f(M (i)) − f(M (j ))‖F = α.

Theorem 1: τ : Sequence(i) �→ (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1) is a

distance-preserving transformation.
Proof: Since M (i) and M (j ) are the feature matrices of

sequence(i) and sequence(j ) , respectively, i, j = 1, 2, . . . , N ,

let λ(M (i)) = V HM (i)V = Λ(i) be a function (see Section
II-C); thus, we have

λ(M (i)) = diag(λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1) ∈ R(L−1)×(L−1) ,

i = 1, 2, . . . , N.

And hence

f(M (i)) = (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1)

def=
⇀

F
(i)

∈ R1×(L−1) ,

i = 1, 2, . . . , N.

By Definition 1, we have

‖λ(M (i)) − λ(M (j ))‖F = ‖V H(M (i) − M (j ))V ‖F

=
√

tr[(V H(M (i)−M (j ))V )H ∗ (V H(M (i)− M (j ))V )]

=
√

tr[V H(M (i) − M (j ))H ∗ (M (i) − M (j ))V ]

=
√

tr[(M (i) − M (j ))H ∗ (M (i) − M (j ))V HV ]
= ‖M (i) − M (j )‖F = α.

By Definition 2, we know that the following equation hold:

‖f(M (i)) − f(M (j ))‖F = ‖λ(M (i)) − λ(M (j ))‖F = α.

For a given primary sequence, s(i)
L , there exists a unique

(L − 1)-dimensional eigenvalue vector (EVV) (λ(i)
1 , λ

(i)
2 , . . . ,

λ
(i)
L−1) =

⇀

F
(i)
L obtained via the proposed approach of AJD-

NNM. That is,
⇀

F
(i)
L depends only on the primary sequence

and its length, which can be written as

f(s(i)
L ) =

⇀

F
(i)

L , i = 1, 2, . . . , N.

Here, superscript i denotes the label of sequence, and L indi-
cates the length of sequence.

By Definition 2, it can be seen that the ensemble transforma-
tion τ is indeed a distance-preserving transformation. QED

Based on Definition 2 and Theorem 1, we can calculate all

the EVVs of each obtained NNM, such as
⇀

F
(i)
L−1 = (λ(i)

1 , λ
(i)
2 ,

. . . , λ
(i)
L−1), i = 1, 2, . . . , N , where L denotes the common least

length of N primary DNA or protein sequences. Then, we can
get N corresponding (L− 1)-dimensional vectors, which can be
regarded as features extracted from the original DNA sequence.
The steps of AJD-NNM algorithm can be summarized as follows
in the top of the next page.

III. GRAPHICAL REPRESENTATIONS

Alternative to the time-consuming alignment methods, graph-
ical representation approaches reveal different aspects of sim-
ilarity, offering numerical characterizations of both similarity
and visualization. However, almost all these methods can only
represent each sequence separately rather than jointly. In this
section, a novel method of graphical representation for DNA
sequences is presented, which can jointly consider the mutual
information among all the involved sequences.

We selected the dataset that comprises 11 sequences of the
first exon in the beta-globin gene, shown in Table II.
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A. Calculation of EVVs

In order to make multisequences be comparable, we truncated
each sequence from the 1st site to 86th site, since the common
least length of those eleven sequences is 86. According to the
procedure for AJD-NNM algorithm depicted in Section II-D,
all the 85-tuple EVVs are calculated via AJD upon all the 11
NNMs. These vectors were orderly connected head and tail
using the walk strategy. Thus, there are 11 curves plotted, as
shown in Fig. 1.

B. Convergence Analysis of the AJD Algorithm

Based on the Frobenius-norm formulation, Ziehe et al. [36]
investigated a fast algorithm for joint diagonalization problem
and provided a comparison to other leading diagonalization
methods, such as the extended Jacobi method as used in the
JADE algorithm of Cardoso and Souloumiac [32] (orthogonal
Frobenius norm formulation), Pham’s algorithm for positive-
definite matrices [34] and Yeredor’s AC–DC algorithm [37]
(nonorthogonal, subspace fitting formulation).

On the convergence analysis of AJD, there are two crite-
ria, i.e., the cost function and the convergence ratio. Based
on the cost function criterion, Yeredor [37] proposed an iter-
ative algorithm (AC–DC) for AJD of a given set of matrices
in the weighted least square (LS) sense with arbitrary positive

TABLE II
CONCISE INFORMATION OF Beta-GLOBIN GENE SEQUENCES

Fig. 1. Graphical representation of the first exon in the beta-globin gene from
eleven species based on 85-tuple EVVs via AJD upon all 11 NNMs. The y-axis
indicates the values of each element in feature vectors (λ1 , λ2 , . . . , λL−1 ).

weights. Convergence to a stationary point of the LS criterion
is guaranteed under mild conditions. The author has proved the
convergence of AC–DC algorithm in theory [37].

The diagonalizer matrix V of the objective function at the
optimum point depends on the least error, which is of course
unknown. Here, we selected the AC–DC optimization scheme,
for it can still work regardless of initialization. In the following,
let us consider a simplified expression of the least error:

Err(j)
def=

∑
i=1,···,N

‖Λ(i)
j − V H

j M (i)V j ‖2
F (7)

where j ranges from 2 to the largest number of iterations.
Let ε be the predefined error threshold. If |Err(j + 1) −

Err(j)| < ε, i.e., the error does not change strongly from the jth
iteration to the (j + 1)th one, then either the obtained diagonal-
izer V or the diagonalized Λ(i) is optimal just at the jth step.
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Fig. 2. Curve for the errors of the proposed algorithm (at AJD stage) versus
iterations.

This enables us to draw the conclusions about the convergence
behavior of gradient-based optimization algorithms. The exper-
imental results are shown in Fig. 2, from which we can find that
the AJD algorithm can fast converge just at the fifth iteration.

C. Clustering of Sequences Based on Their EVVs

The most well-known hierarchical algorithms are single-link
and complete-link; the most popular and the simplest parti-
tional algorithm is k-means. Even though k-means was first
proposed over 50 years ago, it is still one of the most widely
used algorithms for clustering. Ease of implementation, sim-
plicity, efficiency, and empirical success are the main reasons
for its popularity.

K-means starts with an initial partition with k clusters and
assign patterns to clusters so as to reduce the squared error.
Since the squared error always decreases with an increase in
the number of clusters k, it can be minimized only for a fixed
number of clusters.

The k-means algorithm requires three user-specified param-
eters: number of clusters k, cluster initialization, and distance
metric. The most critical choice is k. While no perfect math-
ematical criterion exists, a number of heuristics are available
for choosing k. Typically, k-means is run independently for
different values of k and the partition that appears the most
meaningful to the domain expert is selected. Different initial-
izations can lead to different final clustering because k-means
only converges to local minima. One way to overcome the local
minima is to run the k-means algorithm, for a given k, with
multiple different initial partitions and choose the partition with
the smallest squared error.

In this study, the dimension of EVVs is high, which is up to
L − 1, i.e., 85, in this dataset. As a result, k-means is used with
the “Correlation” metric for computing the distance between
points and cluster centers. Fig. 3 shows the changes of value of
costs with respect to k. When k is changed from 3 to 5, there
is a significant drop of the cost value at k = 4, which is also

Fig. 3. Curve for the costs of k-means clustering for the 11 sequences to
explore the optimal cluster numbers. The x-axis indicates the predefined cluster
numbers, and the y-axis denotes the corresponding costs based on squared
error. There is a minimum point at k = 4, which suggests that four should be
the number of clusters.

Fig. 4. Four clusters via k-means clustering for the 11 sequences according
to their curves shown in Fig. 1. The optimal cluster numbers is four, which is
explored by the costs index shown in Fig. 3.

a minimum point. This suggests that four subclasses should be
reasonable for this dataset. Thus, we can cluster these 11 feature
curves into four subclasses via k-means. From Fig. 4, it can be
seen that

1) Human, Gorilla, and Chimpanzee are close to each other;
2) Goat is the closest to Bovine, for their curves are almost

coinciding with each other;
3) the group (Opossum, Gallus and Lemur) is far away from

the other three groups;
4) Mouse, Rabbit, and Rat fall into the last category.
In a word, these phenomena are also in accordance with the

evolution fact from the viewpoint of evolutionary relationships
of organisms.

IV. SIMILARITY ANALYSIS

The comparison based on sequence descriptors is another
method, which has been routinely used in similarity analysis.
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Here, we use the aforementioned 11 EVVs for quantitatively
comparing different DNA sequences.

A. Calculation of Pairwise Distances

On the other hand, we applied the numerical characterization
to examine the similarity of sequences in the dataset. Just as de-
picted in Section II-D, as usual, we selected the “Euclidean”
metric to calculate the genetic distance in this study. By
Theorem 1, we need only to calculate the Euclidean distance
between every two EVVs:

⇀

F (i) and
⇀

F (j ) , which are obtained
by the aforementioned approach AJD-NNM. According to
Definitions 1 and 2, it can be found that the dissimilarity degree
can be determined through Euclidean distance between the ev-
ery two sequences (listed in Table I). The Euclidean distance
between the ith and the jth sequences can be calculated as

D(S(i) ,S(j ))
def= ‖M (i) − M (j )‖F = ‖

⇀

F (i) −
⇀

F (j )‖F (8)

where
⇀

F (i) = (λ(i)
1 , λ

(i)
2 , . . . , λ

(i)
L−1) denotes the feature vectors

through distance-preserving transformation from the primary
sequence with the length L = 86, while ‖•‖F indicates the
Frobenius norm of a matrix or vector. Obviously, the smaller
distance means the two sequences are more similar. The data
for the comparison of the similarity among the 11 coding se-
quences were obtained by calculating the Euclidean distance
D(S(i) ,S(j )).

B. Phylogeny of 11 Beta-Globin Genes

The alphabet representation of biological sequences is easily
handled with computer but difficult for us to observe their dif-
ferences [38]. Phylogenetic tree provides us with a simple way
to view various biological sequences and facilitates sequence
comparison with the intuitive pictures and pattern. The proposed
approach, i.e., AJD-NNM, was further tested on phylogenetic
analysis. Given a set of biological sequences, their phyloge-
netic relationship can be obtained through the following main
operations.

1) First, we calculated the (L− 1)-dimensional EVV of each
biological sequence through AJD-NNM.

2) Second, we got the similarity distance with the Euclidean
metric.

3) Third, by arranging all the similarity distance into a matrix,
we obtained a pairwise distance matrix.

4) Finally, based on the pairwise distance matrix, we plotted
the dendrogram with MATLAB code.

The experimental results are given in Fig. 5 and Table III.
From Fig. 5, we can find that the 11 species are separated clearly.

C. Comparison With Representative Works

Generally, the validation of a newly proposed alignment-free
algorithm can be implemented through the comparison with the
traditional alignment-based approach. We calculated the pair-
wise distances of these 11 sequences using MEGA software
based on alignment framework, so that we can make a compari-
son analysis subsequently. The evolutionary history was inferred

Fig. 5. Dendrogram for the 11 sequences according to the pairwise distance
listed in Table III.

using the neighbor-joining method [39]. The alignment-based
results of the pairwise distances are listed in Table IV.

To compare the results from our approach (see Table III) with
alignment-based approach (shown in Table IV) and other related
works, we listed the recently published results in Table V on
comparing the similarity among Human and other several rep-
resentative species, where each entry was extracted from the first
row (or column) in the specific tables from the corresponding
bibliography. Table V shows that the six selected representative
species can be categorized into three groups according to the
distances between itself and Human.

1) The closest one belonging to Human is the first group:
Chimpanzee and Gorilla (see the third and fourth columns
in Table V).

2) Next group includes the species (see columns 5 and 6 of
Table V).

3) The last group (Opossum and Gallus) is far away from
Human in the light of evolutionary relationship (see the
last two columns from Table V).

There is an overall agreement among the similarities obtained
by different approaches despite some variation among them. In
addition, the results obtained from most of these methods are
also consistent with the evolutionary fact.

For the purpose of intuitive analysis, we calculated the cor-
relation coefficients between the results via alignment-based
approach (the bottom of Table V) and each of the rest 17 results
(the rest rows of Table V), respectively. The experimental results
of correlation degree are given in Fig. 6. As can be seen from
Fig. 6, our result (No. 17) has the highest correlation degree
with that obtained by the traditional alignment-based method
using MEGA 4. However, there are two extreme cases among
the other 16 different representative methods, such as the tenth
and the fourteenth cases.

Case 1: As for the 14th work [40], the correlation coef-
ficient value is –0.048. The disagreements are appearing in
their results, where the distances have remarkable difference
between the similar species pairs such as Human–Chimpanzee
and Human–Gorilla. The distance of Human–Gorilla is 0.0424,
while the distance of Human–Chimpanzee is 0.0062. The former
is about 6.8387 times the latter, which are not consistent with the
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TABLE III
PAIRWISE DISTANCE MATRIX OF ELEVEN EXON 1 FROM Beta-GLOBIN GENE SEQUENCES WITH OUR MODEL VIA “EUCLIDEAN” METRIC

TABLE IV
PAIRWISE DISTANCE (NEIGHBOR JOINING) MATRIX OF11 EXON 1 SEQUENCES VIA ALIGNMENT-BASED APPROACH THROUGH MEGA 4

TABLE V
RESULTS COMPARISON WITH REPRESENTATIVE WORKS UPON THE SIMILARITY DEGREE HUMAN VERSUS OTHER SEVERAL SPECIES

evolutional facts. In addition, the results from most works
support the conclusion that both the distance of Human–
Chimpanzee and that of Human–Gorilla are far lower than the
others, because Human, Chimpanzee, and Gorilla are relatively
very close to each other.

Case 2: Concerning the 10th work [41], the correlation co-
efficient is the lowest (–0.2933). Similarly, the inconsistency is

also appearing in their results, where the Euclidean distance of
the species pairs of Human–Chimpanzee (957.2) is far greater
than that of Human–Gorilla (263.3), and is even far greater than
those of Human–Goat, Human–Mouse, and Human–Bovine.

Compared with the two related works mentioned previously
[40], [41], the results derived from our method are also closer
to the evolutional facts, as we have known.
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Fig. 6. Comparison of similarity degree with the alignment-based approach
via MEGA. The x-axis denotes the related works (No.1–No.16) and our work
(No. 17), respectively, while the y-axis indicates the correlation degrees (corre-
lation coefficients values) of the pairwise distances between Human and other
several species in Table II.

V. CONCLUSIONS

The proposed approach (AJD-NNM) has two stages: NNM
and AJD. NNM grasps the sequential property of biological
sequence, where the sequential property was considered at the
stage of transforming sequences into symmetric matrices. An-
other obvious advantage of our approach over others is that the
sequence comparison is based on the information lossless tech-
nique. Therefore, it has great improvement on the precision of
similarity analysis, which is illustrated through Fig. 6.

Particularly, at the second stage, AJD extracted the features
from multiple sequences jointly rather than separately, which
can simultaneously discover that some subgroups of organism
have common structure at molecular level while others have
not. In addition, we investigated the optimal cluster numbers
according to the changes of squared error with the increase of
cluster numbers, which is served as criterion. Thus, the results
are more objective rather than subjective. Then, we grouped the
curves into four subclasses via k-means. The grouped results
are consistent with the evolutionary fact, which demonstrate
that the proposed graphical representation is reasonable. Finally,
it is worth noting that our distance measures do not use any
evolutionary model, and our approach has the fine property of
distance preserving (see Theorem 1).

Therefore, based on the AJD from the NNM, it can be seen
that the proposed approach provides us with a reasonable way
to compare different biological sequences. In the future, we are
planning to enhance our algorithm to apply upon the dataset
with a longer sequence length from DNA or protein sequence.
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