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Abstract: An extension of the classical thermodynamics to nanometer scale has been conducted to elucidate information regarding size 

dependence of phase transition functions and binary phase diagrams. The theoretical basis of the extension is Lindemann s criterion for 
solid melting, Mott s expression for vibrational melting entropy, and Shi s model for size dependent melting temperature. These models 

are combined into a unified one without adjustable parameters for melting temperatures of nanocrystals. It is shown that the melting tem-
perature of nanocrystals may drop or rise depending on interface conditions and dimensions. The model has been applied to size de-

pendences of melting enthalpy and atomic cohesive energy, critical temperatures for glass transition, ferromagnetic transition, ferroelec-
tric transition, superconductor transition and ferromagnetic-antiferromagnetic transition. Moreover, the above modeling has been utilized 

to determine the size-dependent continuous binary solution phase diagrams, bi-layer transition diagrams of metallic multilayers, and solid 
transition phase diagrams after modeling the transition entropy and atomic interaction energy functions of nanocrystals. Moreover, the 

model has been used to predict size dependence of diffusion activation energy and diffusion coefficient. These thermodynamic approachs 
have extended the capability of the classical thermodynamics to the thermodynamic phenomena in the nanometer regime. 
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1. INTRODUCTION 

1.1. Scope 

The contribution starts with a brief overview on essential ther-
modynamic properties of nanomaterials, especially on the phase 
transition. Deeper and consistent insight into the mechanism behind 
the observations and finding factors dominate the general trends of 
the size-induced property change, which are of fundamentally great 
importance for advancing technological applications. The typical 
phase transition, melting, is taken as the starting point to consider 
size dependence of phase transition. Lindemann s criterion and 
several recent models for undercooling and superheating of nanoc-
rystals under different interface conditions are comparatively dis-
cussed. In Section 2, a new approach for the melting temperature of 
nanocrystals is developed based on Lindemann s criterion for the 
melting, Mott s expression for the vibrational melting entropy, and 
Shi s model for the size-dependent melting temperature with con-
siderations of interface conditions and dimensions. In section 3, the 
model has been extended to predict size dependences of the cohe-
sive energy, of glass transition temperature, ferromagnetic transi-
tion temperature, ferroelectric transition temperature, ferromag-
netic-antiferromagnetic transition temperature, superconductor 
transition transition temperature, and solid structural transition tem-
perature. In Section 4, three kinds of phase diagrams of nanocrys-
tals are developed under the help of modelings of size dependences 
of melting entropy of crystals, of atomic interaction energy, of in-
terface energy, and interface stress. Section 5 compares the current 
model predictions with available measurements and other theoreti-
cal results on the cohesive energy, the phase transition tempera-
tures, the melting enthalpy, the phase diagrams, the diffusion acti-
vation energy, and diffusion coefficient of nanomaterials. Section 6 
summarizes the main contributions and limitations of this work 
with suggestions for future directions in extending the developed 
knowledge and the associated approaches. 

1.2. Overview 

1.2.1. Thermodynamics of Macroscopic Systems 

The classical thermodynamics on macroscopic systems has long 
been well established [1,2],

 
which describes adequately macr- 

scopic behaviors of bulk systems with changes of macroscopic 
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parameters where the astrophysical objects and small systems at 
nanometer scale are excluded [3]. The basic thermodynamic rela-
tionship for a macroscopic system at equilibrium is [4], 

PdVTdSdU =        (1) 

where U denotes the internal energy, T the absolute temperature, S 
the entropy, P the pressure, and V the volume. This equation con-
nects incremental changes of internal energy, heat, and work. 

In 1878, the monumental work of Gibbs first formulated a de-

tailed thermodynamic phase equilibrium theory [1] where he trans-

formed the previous complicated thermodynamics of cycles into the 

simpler thermodynamics of potentials and introduced chemical 

potentials [2]. Gibbs generalized Eq. (1) by allowing, explicitly, 

variations in the number of molecules Ni of the different compo-

nents in a system [4]. As a result, Eq. (1) became dU = TdS-
PdV+ μidNi

i

, or in a more general and modernized form, 

+++=
i

iidNdAVdPSdTdG μ     (2) 

where G and μi denote Gibbs free energy and the chemical potential 
of the component i, A denotes surface(interface) area and  shows 
surface(interface) energy. Eq. (2) thus could treat various equilibria 
(chemical, phase, osmotic, surface, etc.) and examine many other 
topics, such as the equilibrium condition of a solid and a surround-
ing medium [2]. Eq. (2) is much easier to use than to understand 
although it is very simple mathematically. Although Eq. (2) has 
wide application ranges, it is essentially used to treat phase equilib-
rium and related phenomena, such as phase diagrams. 

Later, the thermodynamic definitions of surface energy sv and 
surface stress fsv (subscripts s, l, v denote solid, liquid, and vapor, 
respectively, while two sybscripts together show the corresponding 
interface between the two states) are clarified to formulate surface 
thermodynamics [2]. This theme becomes more and more important 
due to the appearance of nanotechnology. However, due to the con-
tent limitation of this review, size dependences of surface thermo-
dynamic functions are considered elsewhere. 

Note that Eq. (2) with a statistic basis is only valid for materials 
being at least larger than submicron size while the parameter size  
in Eq. (2) is actually a constant of bulk. Since nanomaterials and 
nanotechnology go into the scientific and technical worlds now, 
extending the validity of thermodynamics into nanometer size range 
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thus becomes an urgent task. Namely, a further term or variant of 
size must be introduced into Eq. (2). 

The above task can be reached by analyzing the size depend-
ence of a typical known process of thermodynamic phase equilibri-
ums, such as melting, which is so obvious in nature that even the 
ancient speculative physicists might expect to discuss it and have 
stimulated the development of classical thermodynamics in the 
nineteenth century [5]. Before the detailed consideration on size 
dependence, the most general bulk melting should be firstly intro-
duced. In fact, the first and the second laws of thermodynamics 
expressed in Eqs. (1) and (2) can give a compact mathematical 
expression for melting thermodynamics with the bulk volume melt-
ing change Vm and the bulk melting enthalpy Hm( ) where  de-
notes the bulk size. 

An alternative for studying the melting transition was carried 
out in 1910 by Lindemann for single component crystals with a 
kinetic consideration [6], which is much simpler than the usual 
phase equilibrium consideration based on the thermodynamics and 
will be used as the base of the present model. This quantitative 
model was based on Einstein s explanation of the low-temperature 
specific heats of crystals Cp( ) where the corresponding bulk char-
acteristic Einstein temperature E( ) is proportional to the Einstein 
frequency E( ), by  h E( ) = k E( ) where  h  is Planck s con-
stant and k Boltzmann s constant. This, as the first application of 
quantum theory to condensed matter physics, suggests that the at-
oms vibrate as quantized harmonic oscillators. At the melting for a 
given bulk crystal, the typical vibrational displacement ( ), or the 
root-mean-square (rms) average amplitude of atomic thermal vibra-
tion, should be some fixed fraction of the atomic or molecular di-
ameter (the nearest atomic or molecular spacing) h, or ( )/h = c = 
1/2. This implies that direct collisions between the atoms constitut-
ing the lattice would become possible, leading to the lattice demise. 
Lindemann s argument accounts for anharmonicities in the problem 
but in a very generic fashion, through the existence of collisions. 
The theory relates the average thermal vibrational energy to T by 
the equipartition relation [5],  

ma 2 vE ( )
2

( )
2

= kT       (3) 

where ma is the atomic mass. Combining Eq. (3) and the above 
equation in the text, an expression in its modern form is present [5], 

D ( ) = c Tm ( ) / MVs
2 /3( )

1/2       (4) 

where M is the atomic or molecular molar weight, Vs denotes the 
molar volume of solids, Tm( ) is the bulk melting temperature. 

Now it is known that c varies slightly with crystal structures: It 
is 0.13 for an fcc crystal and 0.18 for a bcc crystal [7]. This differ-
ence is partly due to the change of h, which depends on the coordi-
nation number (CN) of the specific structure [8]. h reduces with CN 
[9]. In order to eliminate or reduce this difference among distinct 
lattices or CNs, h can be determined not by the nearest atomic spac-
ing, but by atomic volume that depends little on the lattice structure 
[8], and hence c is almost lattice-independent [10].  

There are also other classic kinetic models for melting. 
Grüneisen correlates Tm( ) with the reciprocal of the linear thermal 
expansion coefficient [11], while Born relates Tm( ) to the absence 
of elastic resistance against shearing stress [12]. Both of the models 
share a similar physical nature of Lindemann s one [13] and thus 
will not be further discussed. 

Most of the melting experiments, such as calorimetric meas-
urements, indicated that there are gradual changes of melting peak 
near Tm [5]. The broad melting transition peaks can be induced by 
dissolved impurities, by surfaces, and by polycrystallinity. The first 
produces a progressive lowering of Tm as the atomic concentrations 
in the liquid and solid change along the phase boundary. The sec-

ond and the third bring a combination of surface/grain-boundary 
energy and size effects. Both contribute to the dropping of Tm. 
Since surface-melting is more evident, which is in nature a second 
order transition and occurs below Tm, this phenomenon has been 
specially studied [5]. The related model will be shown and dis-
cussed later. 

However, the Lindamann s model has its limitation. The model 
is based on harmonic forces, whereas melting must involve bond 
breaking or loosening [9,14]. The model, which depends on proper-
ties of the solid phase alone, cannot predict Tm convincingly. In 
fact, Lindemann did not intend to provide a "melting criterion" at 
all in his original paper, but rather pointed out the possibility to 
estimate the frequency of oscillators to support Einstein s model for 
explaining Cp drop of solids at low temperatures [14]. 

Melting may be due to the intrinsic disorder created by thermal 
excitations, such as vibrational modes, point defects such as vacan-
cies and interstitials, dislocations, and, in the case of molecular 
crystals, orientational defects [15,16]. Each type has a characteristic 
excitation energy dictating an exponential increase of the energy of 
solid with temperature. This leads also to lowering of Tm, where 
soild and liquid has the same G value. In addition, as we now un-
derstand, a proper analysis of dynamical melting should proceed 
with reference to process at the solid-liquid interface.  

Despite the unsolved problems for the modeling of melting, 
Lindemann s criterion has provided the most bases for predicting 
the melting behavior as it has been experimentally confirmed [10]. 
In the following, the criterion will be used to model the size de-
pendence of the melting. 

There are many models for other types of phase transition tem-
peratures, such as magnetic transition temperatures [17]. The length 
limitation of this review however does not allow us to discuss them. 
Therefore, these phase transition models are omitted in this work. 

1.2.2. Nanothermodynamics 

One of the very basic concerns in mechanics, physics, chemis-
try and biomedical engineering of solids is the microstructure of a 

solid, which is determined by the chemical composition, the ar-
rangement of the atoms and electrons (the atomic and electronic 

structures), and the size of a solid in one, two or three dimensions 
[18]. It is well-known that thermodynamic properties of nanometer-

sized systems largely differ from those of single molecules as well 
as bulk materials. The reasons lie in the so-called specific and 

smooth size effects. The former is responsible for the existence of 
magic numbers  and related irregular variation of properties in 

clusters, whereas the latter pertains to nanostructures in the size 
domain between clusters and bulk systems. Within this broad size 

range, mechanical, physical and chemical properties are often seen 
to change according to relatively simple scaling equations involving 

a power-law dependence on the system size due to the energy con-
tributions of  to the total G of the system with a high ratio of the 

surface volume to the entire volume  = V/V [19]. These proper-
ties changes lead to, on one hand, an emerging interdisciplinary 

field involving solid state physics, chemistry, biology and materials 
science to synthesize materials and/or devices with new properties 

by controlling their microstructures on the atomic level. On the 
other hand, understanding the physical and chemical natures behind 

the new properties may provide guides for the design and fabrica-
tion of new materials and their possible industrial applications [18]. 

Among the above properties of solids, thermal stability of mate-

rials and devices are especially important, which is related to the 
corresponding Tm where Gm = Gl - Gs = 0 under a certain P. The 

melting, as a first order phase transition, requires Hm  0 and Vm  
0. Since the value of Hm << Hb with Hb being the vaporization en-

thalpy, the values of cohesive energy Ec and Cp of liquid and solid 
phases should be similar [5]. 
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The melting entropy Sm and Hm are also essential thermody-
namic parameters for melting. Hm is mainly produced by the inter-
nal energy change of atoms while Sm is induced by a structural 
change. Since Tm = Hm/Sm, only two among these three quantities 
are independent where the variation of Sm of different matters is 
much smaller than that of Hm and Tm, especially when the matters 
undergo atomic arrangement change without electronic transport. 
Note that all three quantities equal to zero or greater. When Sm = 
Hm = 0 at T  0, the melting now deteriorates into a second order 
transition or a glass transition where there are no dramatic energy 
and structure changes. 

As a variable for the melting thermodynamics, the size effect 
has only been studied in recent years due to the rapid progress in 
nanoscience and nanotechnology [5,14]. It is now known that Tm(r) 
of metallic [20,21], semiconductor [22,23], and organic [24,25], 
nanocrystals are size-dependent where r denotes the size of the 
materials. While Tm of a free nanocrystal is known to decrease as r 
decreases [26], nanocrystals embedded in a matrix can melt below 
or above the corresponding Tm( ) depending on interface structure 
between embedded nanocrystals and the matrix [27,28,29]. If the 
interfaces are coherent or semi-coherent, an enhancement of Tm(r) 
occurs. Otherwise, there is a depression of Tm(r) [30]. Some mo-
lecular dynamics (MD) simulations have also shown the same ten-
dency [31,32,33].

 
To address these findings, the corresponding 

nanoscale thermodynamics, or nanothermodyanmics is needed 
where a larger  value with decreasing r leads to increasing of G of 
both solid and liquid but in different speeds [34]. 

There are recently three kinds of fundamental approaches to 
open up the nanothermodynamics, which are based on fluctuations 
of temperature, the Tsallis  entropy, and the Laplace-Young equa-
tion in small systems [3]. The first one is a generalized thermody-
namic model dealing with nanosystems, as it starts with only the 
first law of thermodynamics and does not consider other thermody-
namic relations [35,36]. The second one is on the basis of the Tsal-
lis generalization of the ordinary Boltzmann-Gibbs thermostatistics 
by relaxing the additive properties of the thermodynamic quantities 
(the entropy, in particular) to include non-extensivity of nanosys-
tems [37,38].

 
The last one considers the size-induced internal pres-

sure Pin = 2fsv/r, which may also be extended to a general case for 
the pressure effect on properties of bulk materials since any pres-
sure source should have the same effect on materials properties 
[39]. These approaches developed from various perspectives can 
contribute significantly to understand properties of nanosystems. 
However, a consistent insight and a quantitative and unified model 
on nanothermodyanmics are still highly desirable. Since melting of 
nanocrystals has been widely studied, it will be firstly introduced to 
develop a basis of a unified model for nanothermodynamics on 
phase transitions. 

1.2.3. Existing Models 

Tm(r) functions have been experimentally measured since 1954 

by Takagi [26]. A linear relationship of Tm(r)  1/r is usually mod-

eled, which is simply deduced in terms of  being a function of 

dimension d. Both depression and enhancement of Tm(r), which are 

named as undercooling and superheating where the thermodynamic 

melting points are lower or higher than the corresponding bulk one, 
have been found [13,27,29,30,40-45]. In addition, since 1940 s, 

surface melting below Tm( ) with a thickness of several atomic 

layers of a solid is widely studied, which is a process proceeding 

under the condition of sv > sl+ lv [6,47,48,49]. The physical nature 

of the surface melting is that although G(T<Tm) = Gl(T<Tm)-

Gs(T<Tm) > 0, the condition of sv > sl+ lv leads to formation of a 

liquid surface layer, which neutralizes the positive G(T<Tm). This 

effect has naturally been enhanced due to the increase of  [47,48]. 

The earliest thermodynamic consideration for Tm(r) function 
was derived by Pawlow in 1909 where only the relative change 

from Tm( ) was taken into account [49], which was even one year 
earlier than the modeling of Tm( ) by Lindemann in 1910 [6] and 
much early than the experimental result in 1954 [26], which has the 
follow form, 

Tm (r) / Tm ( ) =1 2Vs[ sv lv( s / l )
2 /3 ] / (rHm ) ,  (5) 

where  denotes mass density. For the most cubic metals [50,51], 

sv  lv  sl.       (6) 

With s  l and thus ( s/ l)
2/3

  1 and in terms of Eq. (6), Eq. 
(5) can be expressed as, 

)/(21)(/)( mslsmm rHVTrT .    (7) 

Actually, Eq. (7) is identical to the Gibbs-Thomson equation 
[52], 

msls21mm /)/1/1(1)(/)( HVrrTrT +=    (8) 

where r1 and r2 are principal radii of curvature of the interface that 
bound a solid. For a spherical particle, 1/r1 = 1/r2 =1/r, Eq. (8) = 
Eq. (7). 

Before the most experimental results were present in 1990 s, 
Couchman and Jesser

 
[53] have quantitatively modeled Tm(r) in 

1977, 

 
mlMsMsmm /]2/))((3[1)(/)( HUrVVTrT l+=  , (9) 

where subscript M denotes matrix, U shows energy density differ-
ence between the nanocrystal and the nanoliquid. If U is negligi-
ble, Tm(r) can either higher or lower than Tm( ), depending on the 
sign of sM lM, which is closely related to the nature of the inter-
face. Generally, lM sM = slcos , where  is the contact angle be-
tween a particle and the matrix ranged from 0° to 180° [54]. For a 
particle wetted by the matrix, 0°   < 90° and 0 < lM sM  sl 
where the matrix/particle interface should be coherent or semi-
coherent. Consequently, superheating happens and Tm(r) increases 
with the decreasing of r. For a nanocrystal with   90°, lM sM  0 
and undercooling occurs. 

Superheating has also been interpreted through various pressure 
effects, such as a capillary effect due to the decreasing r, the differ-
ential thermal expansion between the matrix and the nanocrystals, 
and the effect due to volume change during the melting [27]. How-
ever, these models underestimate experimental observations since 
they can only predict a very small superheating up to 6 K [27]. The 
reason is that they have only considered mechanical effects while 
the dominant chemical interfacial effect is neglected. 

If the surface-melting phenomenon is taken into account, Tm(r) 
function has different expressions [46,47,48,51], 

)/()]/1()/1/([21)(/)( mlslvslsmm rHrVTrT = ,(10) 

2

2

)/1(

)/exp(])/1()[(

)/1(

)]/exp(1[2
1

)(

)(

rH

rV

rrH

V

T

rT

m

sllvsvs

m

sls

m

m =
,(11) 

)]/1(/[21)(/)( mslsmm rrHVTrT = ,   (12) 

where  is layer thickness of surface liquid,  in Eq. (11) shows 
correlation length of solid/liquid interface. Note that when  << r,  
<<  [46,47], s  l, and in terms of Eq. (6), Eqs. (10), (11), and 
(12) have essentially predicted the same trend as given by Eq. (7). 
This result implies that when r is large enough, the surface-melting 
phenomenon does not change the melting behavior of the nanocrys-
tals although it indeed exists. However, when r < 5 nm (  > 10%),  
Eqs. (10), (11), and (12) indicate a stronger melting point depres-
sion than Eq. (7) does. Note that once Eq. (7) comes into play, the 
surface-melting phenomenon disappears. 
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Another way to calculate Tm(r) was made by Semenchenko
 
[55] 

who has considered melting of a small solid particle embedded in 
the corresponding liquid, which has an exponential form, 

)]/(2exp[)(/)( mslsmm rHVTrT = .    (13) 

Eq. (13) almost gives the same Tm(r) value of Eqs. (10), (11), 
and (12) in the full size range of nanocrystals. As r increases, with a 
mathematical relation of exp(-x)  1-x is valid where x is small, Eq. 
(13)  Eq. (7). Since some variables in Eqs. (10), (11), and (12) 
come from fitting experimental results [46,47,50], Eq. (13) is more 
convenient to predict Tm(r) when r < 5 nm with the same level of 
accuracy. 

In the above equations, sl value, as an important thermody-
namic amount to determine Tm(r) function, has been deduced re-
cently according to Gibbs-Thomson equation [52], 

)3/()(2 smvibsl RVHhS=      (14) 

where Svib( ) denotes vibrational melting entropy of bulk crystals 
and R is the ideal gas constant. Eq. (14) is capable of predicting sl 
values quite accurately for element and compound crystals when 
the crystalline anisotropy is negligible [52,56]. Substituting Eq. (14) 
into Eq. (7), 

rrRrhSTrT /)1(1)3/()(41)(/)( 0vibmm == ,  (15) 

where  = 2Svib( )/(3R)+1 and r0 = 2h. The exact meanings of them 
will be discussed later.  

Note that although any surface reconstruction decreases sv, 
such as roughing and surface melting, which seems to be neglected 
in Eq. (15), Svib( ) itself indeed has included the surface relaxation 
phenomenon. This is because Svib( ) value measured denotes the 
vibrational entropy difference at Tm( ) between the solid and liquid 
where various surface relaxations of the solid have occurred. How-
ever, Eq. (15), or Eq. (7) still fails for correct description of Tm(r) 
function of smaller nanocrystals where  > 20%. 

In Eq. (15), there is a size limit of r = ( 1)r0, at which Tm(r) = 
0 K. If r  ( 1)r0, Tm(r)  0, which is strictly forbidden in physics. 
As indicated above, when r < 5 10 r0, Eq. (7) or (15) is no longer 
valid. In contrast, Eqs. (10) (11), (12), and (13) can be applied to 
( 1)r0 < r < 5 10 r0 due to the non-linear parts between Tm(r) and 
1/r in these equations. 

It is interesting that although Hm function appears in above 
equations, it disappears in Eq. (15) since it is included in Svib( ). 
Thus, the detailed form of Hm is not of immediate concern. 

Based on an analogy with the liquid-drop model
 
[57,58] and 

empirical relations among Ec( ), , and Tm( ), Tm(r) functions are 
determined as [59], 

)/1)(/(1)(/)( 2 svMsmm rcTrT =    (16) 

where c2 is a constant relating to atomic volume, Tm( ) and sv. Eq. 
(16) is very similar to Eq. (9) and could describe both undercooling 
and superheating of nanocrystals. For the case of undercooling, Ms 
= 0. When superheating occurs, Ms/ sv > 1. 

Sun et al.
 

[60] connects Tm(r) function directly to the CN-
imperfection effect on atomic cohesive energy of the lower coordi-
nated atoms near the surface. It is suggested that the CN-
imperfection causes the remaining bonds of the lower-coordinated 
atoms to contract spontaneously with an association of magnitude 
increase of the bond energy, i.e., bond-order-length-strength 
(BOLS) correlation [61], which contributes to Ec (the sum of bond 
energy  over all coordinates of a specific atom with the coordina-
tion z, Ec = zNa /2 with Na being the Avogadro number), and hence 
to G that determines the thermodynamic behavior of a system. The 

thermal energy required to loosen the bonds of the specific atom is 
a portion of Ec. Thus, Tm(r)  Ec(r), which leads to [62], 

+=
3

)1(1)(/)(
i

m

iibijmm czTrT    (17) 

where ij is the volume or number ratio of the ith atomic layer to 
that of the entire crystal, zib = zi/zb where zi and zb are the coordi-
nates with and without CN imperfection, ci shows CN-dependent 
reduction of bond length, and m is a parameter varying with the 
bond nature. The model indicates that the melting point change 
arises from the change of atomic cohesion of the under-coordinated 
atoms in the superfacial skins yet atoms in the core interior remain 
as they are in the bulk. 

Moreover, the surface-phonon instability model
 

[63,64] sug-

gests that Tm(r) is a function of two bulk parameters: Tm( ) and the 

energy of formation of intrinsic defects. The shape effect on Tm(r) 

for polyhedral nanocrystals, which is in nature also related to , is 

also considered and the corresponding shape factor is introduced 

[65,66]. 

In summary, all above models developed from various perspec-

tives can contribute significantly to understanding the mechanism 

of Tm(r) function. These models predict the same linear relationship 

between Tm(r) and 1/r due to the surface effect when r is large 

enough. However, as  > 10%, the dramatic drop of Tm(r) is present 

because the energetic state of internal atoms also changes, which 

has been considered by Eqs. (10), (11), (12), and (13) in different 

approaches although their considerations are not directly related to 
energetic state of atoms, but . Since the superheating phenomenon 

was realized later than the undercooling one, the later models of 

Eqs. (9), (16), (17) attempted to determine both undercooling and 

superheating with also a similar linear relationship of Tm(r)  1/r. 

The sign of the 1/r term is negative for undercooling but positive 

for superheating. Note that if the CN imperfection of the second 

surface layer is considered, Eq. (17) becomes a nonlinear function 

and could describe the melting behavior of smaller size of nanoc-

rystals. 

1.3. Challenge and Objectives 

Although there are relatively extensive investigations on Tm(r) 

as shown in the above, the studies for other nanothermodynamic 

functions are yet not so comprehensive, such as Sm(r) and Hm(r), 

which together with Tm(r) function would compose the full thermo-

dynamic functions of melting. Note that the solid-vapor transition 

enthalpy function Ec(r) should be more directly related to the nature 

of the thermal stability of nanocrystals than Hm(r) function [67], 

and should be considered. 

Since the glass transition of nanoliquids and several magnetic 

transitions of nanocrystals, such as ferromagnetic, ferroelectric and 

superconductive transitions, have similar transition natures of the 

melting, the corresponding glass transition temperature Tg(r) and 

the critical temperatures Tc(r) may be determined by an extension 

of Tm(r) function. 

The above works usually are related to a single component 

(elements or compounds) while alloys are the most widely used in 

industry. To solve the nanothermodynamics problem in alloy sys-

tems, nanophase diagrams are necessary [68]. Since the nanophase 

equilibrium is metastable in nature and is difficult to measure, a 

theoretical work may be an alternative. In addition, metastable 

nanophases of a substance could not be exclusive where several 

metastable phases are present in different size ranges, which could 

be even absent in bulk [69]. Thus, the size-dependent phase dia-

grams also draw great interest of researchers and the related nan-

othermodynamic problems need to be solved [70]. 
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Size dependences of kinetics, such as diffusion activation en-
ergy E(r) and diffusion coefficient D(r), are closely related to nan-
othermodynamics. It is well known that E(r) < E( ) and thus D(r) 
>> D( ) [71,72,73]. The potential of this phenomenon for indus-
trial application is an evident drop of the working temperature for 
diffusion process. The theoretical understanding of this problem 
becomes more urgent due to not only the rapid developments in the 
industrial fields of Integrated Circuit (IC) and Micro Electronic 
Mechanical System (MEMS), but also recent progress in the 
nanotechnology, especially in pharmacy. 

Based on the experimental observations, numerous models have 
been developed to understand mechanisms and changes of nano-
phase transitions. All these models developed from various perspec-
tives can significantly improve our understanding of the mecha-
nisms. However, it is often that a single phenomenon corresponds 
to numerous models. A unified model dealing with not one, but all 
related phenomena is thus useful. This unification certainly brings 
out comprehenion of interdependence of among different phase 
transitions. 

The main objective of this contribution is to present a review 
firstly for the melting of nanocrystals and give a systematical analy-
sis on both modeling considerations and experimental observations 
in order to discover the mechanism for the melting transition in a 
thermodynamic approach. This general model is extended into dif-
ferent fields and dealt with distinct phase transitions and phase 
diagrams. The physical relationship among these phase transitions 
is discussed. In nature, all transition temperature changes are de-
termined by their size dependences of internal energies of phases 
where their change rates with size are different.  

2. PRINCIPLE: ATOMIC VIBRATIONAL INSTABILITY 

2.1. Mean Amplititude of Atomic Thermal Vibration of 

Nanocrystals 

According to Shi s model for Tm(r), the mean-square displace-
ment of a nanoparticle 

2
(r) is shown as [21,74], 

vasa

2

va

2

sa

2

va

2 /)]()([)()( nnrrrr +=    (18) 

where the subscripts sa and va denote atoms/molecules at the sur-
face and located within the particle, respectively. nsa/nva =  = 
(4 r

2
h/V)/[(4/3) r

3
/V-4 r

2
h/V] = r0/(r-r0) with r0 = 3h for a spheri-

cal or a quasi-spherical particle. Since both va
2
(r) and sa

2
(r) are 

larger than the corresponding va
2
( ) and sa

2
( ), it is assumed that 

va
2
(r)/ sa

2
(r) = sa

2
( )/ va

2
( ) =  is size-independent although 

sa
2
(r) and va

2
(r) are size-dependent. Moreover, since the coopera-

tive coupling between the surface and the interior atoms/molecules 
of small particles may be important, it is phenomenologically con-
sidered that the variation of 

2
(r) is dependent on the value of 

2
(r) 

itself. Thus, a change in 
2 

with  can be given by 
2
( +d )

2
( )=( 1)

2
( )d  [21]. Integrating this equation 

yields, 

]}1)//[()1exp{(])1exp[()(/)( 0

22
== rrxr  (19) 

where r0, at which all atoms/molecules are located on the surface, 
can be extended for different dimensions d with d = 0 for nano-
spheres, d = 1 for nanowires and d = 2 for thin films. For a nano-
sphere and a nanowire, r has the usual meaning of radius. For a thin 
film, r denotes its half thickness. r0 is given by (1) r0 = 3h for d = 0 
since 4 r0

2
h = 4 r0

3
/3; (2) r0 = 2h for d = 1 since 2 r0h = r0

2
; and 

(3) r0 = h for d = 2 since 2h = 2r0. Note that for disk-like nanoparti-
cles, its quasi-dimension has been defined as d = 1 since its  is 
between that of particles and that of thin films [75]. In short, 

r0 = c1(3-d)h.         (20) 

In Eq. (20), c1 is added as an additional condition for different 
surface states. c1 = 1 for nanocrystals with free surface where the 

potential of surface atoms of the nanocrystals differs from that of 
the interior of the nanocrystals. When the interface interaction be-
tween the nanocrystals and the corresponding substrate is weak, 
such as thin films deposited on inert substrates, the film/substrate 
interaction is weak van der Waals forces while the inner interac-
tions within the thin films are strong chemical bonds, c1 = 1 too. If 
this strength on the interface is compariable with that within films, 
c1 varies somewhat [76]. When these are similar, which is equal to 
the case that one of the two surfaces of the films disappears and c1 
= 1/2 is thus got (the side surfaces of the thin films are neglected 
due to the low thickness). For more complicated interfaces, c1 may 
be considered case by case between 1/2 and 1. 

2.2. Solid-Liquid Transition 

Since usually Tm(r) > D( ), the high temperature approxima-
tion can be utilized [21,74], 

2
(r,T) = F(r)T, where F(r) is a size-

dependent function. Thus, at any T, 
2
(r,T)/

2
( ,T) = F(r)/F( ). 

Moreover, when T = Tm, F(r)/F( ) = {
2
[r,Tm(r)]/h

2
} 

/{
2
[ ,Tm( )]/h

2
}[Tm( )/Tm(r)] = Tm( )/Tm(r) in terms of Linde-

mann s criterion if the size dependence of h is neglected. In sum-
mary [21], 

]}1)//[()1(exp{)(/)()(/)( 0

22

mm == rrrTrT . (21) 

In Eq. (21), if  > 1, which is determined solely by Svib( ) [see 
Eq. (23)], Tm(r) decreases with decreasing r; When  < 1, which is 
related to the relative size of h and Tm( ) between the nanocrystals 
and the matrix [see Eq. (25)], Tm(r) increases with decreasing r. 

In Eq. (21), the smallest size of crystals is assumed to be 2r0 
where a half of atoms of a crystal is located on the surface with  = 
1. Tm(2r0) = Tm( )exp(1- ) where the both have almost the same 
short range order and the structure difference between crystal and 
liquid is little. As results, melting disappears. When  > 1, Tm(2r0) 
is the lowest melting temperature and vise verse. Since Svib( ) > 0, 

  1 [see Eq. (23)] and thus Tm(r)  Tm( ) for the undercooling 
case. For the superheating case, when Tm( )/TM( ) = (h/hM)

2
,  = 1 

[see Eq. (24)]. However, this is physically impossible since Tm( ) 
 1/h [8]. 

 in Eq. (21) has been determined by considering Svib(r) de-
duced by Mott s expression for Svib( ) [10,77], 

]1)//[()1)(2/3()()( 0vibvib = rrRSrS . (22) 

For a free-standing or a quasi-free-standing nanocrystal, Sm(2r0) 
= Svib(2r0) = 0 is assumed for the smallest nanocrystal as stated 
above, which leads to, 

1)3/()(2 vib += RS .     (23) 

For nanocrystals embedded in a matrix with coherent or semi-
coherent interfaces, under the assumption that  of the interfacial 
atoms of the nanocrystals has an algebraic average value between 
that of interior atoms of the nanocrystals and that of the matrix,  is 
determined as [78], 

2/}1)/)]((/)({[ 2

MMm += hhTT .   (24) 

The surface melting as a continuous melting can be considered 
as a second-order transition [79]. Tsm(r) function can be achieved 
from Eq. (21) when Svib( ) in Eq. (23) is substituted by Cpm( ), 
which is the heat capacity difference between the liquid and the 
crystal at Tm( ). The corresponding  value is shown as [79], 

1)]3/()(2[ += RCpm
.     (25) 

Substituting Eqs. (23) or (24) or (25) into Eq. (21) in terms of 
Eq. (20), undercooling, superheating, and surface melting of nanoc-
rystals can be quantitatively determined when the related materials 
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constants of h, Tm( ), Svib( ), or Cpm( ) are known. For elements 
and compounds, h, Tm( ), and Cpm( ) can be found from refer-
ences while Svib( ) needs to be considered in details. 

Since Sm( ) consists, at least, of three components: configura-
tional Sconf( ), vibrational Svib( ) and electronic Sel( ) [80], Sm( ) 
= Svib( )+Sconf( )+Sel( ) is assumed. Sconf( ) = -R(yAlnyA+yBlnyB) 
[81], where yA and yB are the molar fractions of the crystals and 
vacancies, respectively, with an assumption that the melting of a 
crystal brings out solely formation of additional vacancies in the 
corresponding liquid where the structure of liquid remains a quasi-
crystalline one. For the melting process, yA = 1/(1+ Vm/Vs) and yB 
= 1-yA where Vm = Vl-Vs. For metallic and organic crystals, the 
type of chemical connection does not vary during the melting [10]. 
Thus, Sel( )  0 [80], and Svib( ) = Sm( )-Sconf( ), or 

)lnln()()( BBAAmvib yyyyRSS ++=    (26) 

However, for semiconductor crystals and semi-metals, melting 
is accompanied by a semiconductor-to-metal transition and Sel( ) 
strongly contributes Sm( ). In this case, Svib( ) is determined by 
Mott s equation in the following form [77,82], 

Svib( ) = (3R/2)ln( cs/ cl) = 3Rln( fs/ fl)    (27) 

where c and vf are the electronic conductivities and the vibrational 
frequencies, respectively. When above data are unavailable, the 
following equation can be roughly utilized [82,83], 

Svib( ) = Sm( )-R.       (28) 

Note that the contribution from Sconf( ) in Eq. (28) has been 
neglected due to its relative small size. 

The other two thermodynamic functions of melting besides 
Tm(r) are Sm(r) and Hm(r). From the general thermodynamics, 

)()()( mmm rSrTrH = .      (29) 

If Sm(r) has the same size-dependence of Svib(r), it reads in 
terms of Eq. (22)  [10],  

]1)//[()1)(2/3()()( 0mm = rrRSrS .   (30) 

Thus, for free nanocrystals, in terms of Eqs. (23) and (30), there 
is [84], 

]1)//[(11)(/)( 0mm = rrSrS .    (31) 

Based on Eqs. (21)  and (31), Hm(r) function is determined, 
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The physical nature for depression and enhancement of Tm(r) 
may essentially be induced by different surface/interface condi-
tions. For crystals with free-standing surface, the increase of the 
coherent energy of surface atoms of crystals is stronger than that of 
the corresponding liquid, which renders that Tm(r) and Sm(r) drop. 
For crystals embedded in a more stable matrix with coherent inter-
faces, the chemical bonds of the atoms on the coherent nanocrys-
tals/matrix interface have more or less ionic characteristic, which 
leads to the enhancement of the bond strength on the interface and 
the lowering of Gs. Thus, Tm(r) and Sm(r) increase. 

When r/r0 > 5-10, exp(-x)  1-x. Eq. (21)  is simplified as Eq. 
(15)  with d = 1. Since Tm(r,d=0) < Tm(r,d=1) < Tm(r,d=2), Eq. (15)  
is a good approximation of Eq. (21)  when the dimension effect on 
Tm(r) is neglected. This is true when r is large enough. 

The non-linear relationship between Tm(r) and 1/r in Eq. (21) 
implies that besides , the interior atoms of nanocrystals have addi-

tional contribution on Tm(r). This result shows good evidence that 
the macroscopic rules cannot simply be extended to microscopic 
size range with a linear relationship of 1/r when  is large. 

An emphasis should be carried out again that although the sur-
face melting phenomena

 
have not been directly considered in Eq. 

(21), it has been included in Svib( ) value since Svib( ) is experi-
mentally determined with the existence of surface melting. Conse-
quentially, Eq. (21) correlates to Eqs. (10), (11), and (12) well but 
without fitting parameters. Hence, Eq. (21) is more convenient to 
predict Tm(r) function. 

2.3. Solid-Vapor Transition: Cohesive Energy 

As a natural consideration, Hm(r) function of Eq. (32) should be 
applicable for Ec(r) function if Svib( ) is substituted by the bulk 
evaporation entropy or the bulk liquid-vapor transition entropy Sb = 
Eb/Tb with Eb and Tb being the bulk evaporation enthalpy and the 
evaporation temperature, respectively. Note that although the solid-
vapor transition entropy should be used here, which is difficult to 
find in literatures, Sb as a first order approximation is acceptable 
since the structural difference between solid and liquid is much 
smaller than the correspondence with vapor. In light of this consid-
eration, Ec(r) function in terms of Eq. (32) is given as [85], 
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rrR
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In Eq. (33), Ec(2r0) = 0 where the structure of the solid and the 
vapor is indistinguishable. Since a single atom/molecule cannot be 
identified whether it is in a solid or a vapor state, 2r0 = h, or, r0 = 
c1h/4. This equation differs from Eq. (20) with a factor of 1/12 
where d = 0 has been taken, which is induced by the structural 
characteristic of vapor. To add the dimension effect, a similar con-
sideration of Eq. (20) must be given, which leads to the following 
result, 

r0 = c1(3-d)h/12.      (34) 

This relationship brings out that Eq. (33) and Eq. (21) in nature 
show the same function at least for metals (their Svib  Sm) since Sb 

 12Sm  12 ~ 13R obtained by letting Eq. (34) = Eq. (20) or 
2Svib( )h/(Rr) = Sbh/(6Rr). Thus Ec  Tm, as expected. Extending 
this relationship into the range of nanometer size, Ec(r)/Ec( ) = 
Tm(r)/Tm( ). This relationship agrees with the general understand-
ing [59,86]. 

3. OTHER PHASE TRANSITION TEMPERATURES OF 
NANOCRYSTALS 

3.1. Glass Transition 

According to Lindemann s criterion for melting, as long as  of 
atoms or molecules reaches a critical fraction of interatomic dis-
tance, a crystal will melt. During the transition, the viscosity of the 
crystal will drop sharply. In fact, this is also the transition character-
istic of a glass transition. Since glasses and crystals as solids have 
the same structural feature of the short-range order, they should 
have the same vibrational characteristics at their melting tempera-
tures of Tg and Tm. As a phenomenological observation, it is as-
sumed that g

2
( )  

2
( ) where the subscript g denotes at Tg al-

though there is no rigorous justification for this [87,88,89]. Substi-
tuting this relationship into Eq. (21), namely letting Tg(r), Tg( ), 

g
2
(r) and g

2
( ) replace Tm(r), Tm( ), 

2
(r) and 

2
( ), it reads, 

]}1)//[()1(exp{)(/)()(/)( 0

2

g

2
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In Eq. (35), for free-standing films or those supported by a pas-
sivated substrate where there is a weak chemical film/substrate 
interaction of van der Waals force, the corresponding  ( s) has 
been determined by [87], 
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1)]3/()(2[ pgs += RC       (36) 

where Cpg( ) is the heat-capacity difference between the bulk glass 
and the bulk liquid at Tg( ). s > 1 in Eq. (36) since Cpg( ) is posi-
tive. Thus, Tg(r) decreases as r decreases in light of Eq. (35). 

For interfaces with hydrogen bonding, which is stronger than 
van der Waals bonding within the polymer, i = i

2
(r)/ v

2
(r), 

where the subscript i denotes the interface. Since s = s
2
(r)/ v

2
(r), 

i = s i
2
(r)/ s

2
(r). It is assumed that the bond strength is inversely 

proportional to 
2
, namely s

2
(r)  1/ s and i

2
(r)  1/ i. Thus, 

i
2
(r)/ s

2
(r) = s/ i, or, 

issi /= .       (37) 

If s = i, this is possible when nanoparticles are embedded into 
a certain liquid, i = s = 1 and Tg(r) = Tg( ). When s and i have 
comparable size, assuming that the total effect of both surfaces and 
the film/substrate interface on Tg(r) is additive, there is, 
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To apply Eqs. (35) and (38) for polymer glasses, h in Eq. (20)  
is defined as the correlation length for intermolecular cooperative 
rearrangement, 1, which is temperature-dependent [90,91]. It is 
known that the molecular weight of polymers Mw affects Tg(r), 
possibly through 1 [90,91,92,93]. However, when Mw is not special 
large, this effect is not evident and therefore is neglected for sim-
plicity [87,92]. 

When a blend as a compatible system consists of two polymers 
where their interaction is essentially van der Waals force, the blend 
could be considered as a mixture and their properties may be addi-
tive. Let w be the weight fraction of the second polymer compo-
nent, the corresponding Tg(w,r) function of thin films may be de-
termined by the Fox equation [94,95], 

( ) ( ) ( )rTwrTwrwT ggg ,1/,0/)1(,/1 += .   (39) 

Eq. (39) supplies an easy way to determine Tg(w,r) function of 
polymer alloys when Tg(0,r) and Tg(1,r) are known from Eq. (35)  
or Eq. (38)  where w = 0 or w = 1 is considered for components. 
Note that Eq. (39) for bulk is simply extended for thin films due to 
their interaction of two polymer components. This differs from 
metallic alloys with strong interactions among different atoms, 
which will be considered later. 

3.2. Néel, Ferromagnetic, Ferroelectric, and Superconductive 

Phase Transition 

Eq. (35) is also suitable for ferromagnetic-antiferromagnetic 
transition temperature or the Néel temperature TN(r), 

]}1)//[()1(exp{)(/)( 0= rrTrT NN
   (40) 

In Eq. (40),  (or s) can be obtained by Eq. (23) for nanocrys-
tals with free surfaces. When there exists the film/substrate effect 
on , the simplest case is that only the surface and interface cou-
pling constants (Js and Ji) differ from that within the film based on 
Ising model [96] while the effect induced by the exchange interface 
thickness is neglected. It is assumed that Ji = Js+Jsub as a first ap-
proximation where subscript sub denotes the corresponding sub-
strate. Since J   [17,97,98], in terms of Eq. (37), there is, 

issi JJ /= .        (41) 

If the effects induced by surface and interface on TN(r) are addi-
tive, TN(r)/TN( ) has the same form of Eq. (38) although their  
values are different. Note that Eq. (38) is used for thin films. For 

nanoparticles and nanorods, the contribution of the substrate on 
TN(r) is neglected due to its little interface area and thus little inter-
action. In this case, Eq. (40) is directly used. 

Although Tc(r) of ferromagnetic, ferroelectric, and supercon-
ductor nanocrystals should have similar form of TN(r) function, an 
alternative for such kinds of transitions can also be direcltly deter-
mined by introducing Ec(r) function since in the final analysis all 
transitions come from change of their potential of atoms [99]. 
Based on the Ising premise and BOLS correlation mechanism, Tc is 
determined by the spin-spin exchange interaction Eexc(T) [17,100]. 
The latter is the sum of a portion of Ec and the thermal vibration 
energy Ev(T), e.g. Eexc(T) = c2Ec + Ev(T) with c2 (0 < c2 < 1) being a 
coefficient. According to the mean field approximation and Ein-
stein s relation, Ev(T) = kT [17,100]. At Tc, Eexc(T)  0 and Ev(T) 
required for disordering the exchange interaction is a portion of Ec 
at T = 0 [17,100]. Thus, Tc  Ec. If Tc(r) is assumed to have the 
same size dependence of Ec(r) as a first order approximation while 
Ec(r) function has been obtained in Eq. (33), 

)(/)()(/)( cccc = ErETrT .      (42) 

4. PHASE DIAGRAM OF NANOCRYSTALS 

4.1. Continuous Binary Solution Phase Diagram 

The nanophase diagram is a very important theoretical tool for 
nanoalloys studies [101,102], which can be carried out by using the 
above models. Although the above consideration on polymer blends 
belongs to also the category of phase diagram, a little more compli-
cated case, the continuous binary solution phase diagram of nanoal-
loys is considered here. 

When the liquid and solid of a binary system are in equilibrium, 
the chemical potentials μ of component A in the both phases are 
equal, or  

S

A

L

A μμ =         (43) 

where the superscripts L and S denote liquid and solid, and the 
subscripts A and B denote the components (for the component B, 
there is the same equation but with subscript B). It is known that, 

L

A

L

A

L

A lnaRTG +=μ , 

S

A

S

A

S

A lnaRTG +=μ ,     (44) 

where a is the activity. In Eq. (44), 
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A /TTHHTSHGGG === . (45) 

Combining Eqs. (43), (44) and (45), 

ln(aA
S / aA

L ) = HmA(TmA T ) / (TmART ) .    (46) 

Similarly, for component B, 

)/()()/ln( mBmBmB

L

B

S

B RTTTTHaa = .    (47) 

Let aA = AxA and aB = BxB with activity coefficient  and 
atomic percentage x of a component where xA + xB = 1. For a regu-
lar solution, ln A = ( /RT)xB

2
 and ln B = ( /RT)xA

2
 in a quasi-

chemical approach where  is atomic interaction energy [103]. 
Substituting the above relations into Eqs. (46) and (47), 
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When T is certain, both xB
L
 and xB

S
 in a bulk phase diagram are 

unique and can be determined through Eqs. (48) and (49) when 
other quantities are known. Eqs. (48) and (49) can in return be util-
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ized to determine 
S
 and 

L
 when T, xB

L
 and xB

S
 are available be-

sides Hm and Tm. Since 
S
( ) and 

L
( ) are weak functions of 

composition for alloys whose components consisting of continious 
solution, as a first-order approximation, 

S
( ) and 

L
( ) will be 

determined at T  (TmA+TmB)/2 with the corresponding xB
L
 and xB

S
 

in the bulk phase diagrams. 

The above discussion has introduced how to determine the 
solidus and liquidus curves in a phase diagram of binary regular 
continious solution and the method to determine 

S
( ) and 

L
( ) 

through the known bulk phase diagrams.  

It is well known that  = Naz[ AB-( AA+ BB)/2]. All  values, 
which are negative, decrease with reducing r [85,104]. If rates of 
decrease of  are different,  is size-dependent. Since all thermo-
dynamic quantities are roughly linear function of 1/r   according 
to the general quantum chemistry consideration [105],  is as-
sumed to have the same relationship. Because Hm(2r0) = 0, (r) 
should have the same limit and thus is assumed to have the follow-
ing form, 

rrr /21)(/)( 0= .       (50) 

Since 2r0 = 6h in terms of Eq. (20) where h is component-
dependent, different components have distinct r0 values. To avoid 
physically unreasonable negative Hm(r) in terms of Eq. (32), a 
larger h value between two components will be taken to determine 
2r0, which does not lead to evident error since the difference be-
tween two h values is usually smaller than 8% when the compo-
nents could form continuous phase diagram. In light of Eq. (50), 

S
(r) and 

L
(r) have the same size-dependence and are composi-

tion-independent as a first order approximation. h value can also be 
more accurately determined by an algebra sum of h values of the 
both components. Now (r) is a weak function of the component. 

Tm(r) and Hm(r) of each component can be deduced in terms of 
Eqs. (21) and (32) where the corresponding Tm( ) and Hm( ) are 
known values. Taking Tm(r), Hm(r) and (r) functions into Eqs. 
(48) and (49), binary continuous solution nanophase diagrams can 
be calculated. 

4.2. Bi-phase Transition 

Lindemann s criterion in terms of Eq. (2) determines the phase 
transition temperature by a single phase instability consideration. 
When there exist several phases in a system, the above criterion 
fails. Thus, the thermodynamic method as the most general one is 
needed. Now we use this technique to treat the size dependence of 
phase transition and phase diagram. 

It is known that metastable crystalline structures that differ 
from their bulk equilibrium phases can stabilize as r is reduced to 
the nanoscale regime although these changes in crystalline struc-
tures are often serendipitously discovered, and the corresponding 
understanding is rather limited [106,107].  

The above mentioned case can be found in a generic B/A multi-
layer film where the phase stability of the film is a balance between 
volumetric and interfacial components of total free energy of a unit 
bi-layer consisting of one A layer, one B layer, and two B/A inter-
faces with change G [108], 

μμ ++= 2])1([ BBBA VVG     (51) 

where μi (i = A or B) denotes chemical potential difference per 
unit volume between the metastable and bulk phases,  is the bi-
layer thickness where A = (1-VB)  and B = VB  are the thickness 
of A and B, respectively, with VB being the volume fraction of ele-
ment B in the multilayer.  is the corresponding difference of the 
interfacial energies between A and B with certain structures. 

Phase stability zone of B/A multilayer system can be described 
by a bi-phase diagram with independent variables of VB and 1/ . 

Fig. (1) is such a bi-phase diagram where the both layers are thin in 
a size of several nanometers. When one is thinner than another, the 
thinner layer prefers to take a structure of the thicker layer to form 
coherent or semi-coherent interface, which results in the drop of the 
total free energy of the system since the corresponding interface 
energy is much lower. 

As shown in Fig. (1), three bi-phase zones of B/A, B /A and 
B/A  appear. The zones meet at a triple point where all phases coex-
ist. On the three lines G = 0. To determine these lines, three points 
and three line slopes are needed. Since the coordinates of two 
points located on lines (1) and (3) are (1,0) and (0,0), and the triple 
point is the common point, which adds an additional equilibrium 
condition, only three equations for the slopes of lines (1), (2) and 
(3) of m1, m2 and m3 are needed. Let G = 0, 

)2/( 1B1 μ=m , 

)2/()( 2AB2 μμ=m , 

)2/( 3A3 μ=m ,       (52) 

where 1 and 3 denote the interface energy difference between 
B /A and B/A interfaces, and that between B/A  and B/A interfaces, 
respectively. 2= 1- 3. 

Although μ values can be found in literatures,  values are 
unknown, which need to be determined theoretically. Since a liquid 
may be regarded as a solid with such a high concentration of vacan-
cies that these are in contact everywhere, ss is considered to be 
approximately twice that of sl [109], namely, 

slss 2 .       (53) 

An incoherent interface as above consists of different elements. 
As a first order approximation, the corresponding incoherent inter-
face energy in is assumed as a mean value of ss of the both ele-
ments. In terms of Eqs. (14) and (53), there is, 

)3/()(4 mmvibin RVHSh ,      (54) 

where h , 
mH , )(vibS  and 

mV  are the mean values of corre-

sponding elements consisting of interfaces. 

When the interface concerned is coherent or semi-coherent, 
which corresponds to bilayers having the same structure and small 
interface misfit, the related interface energy c is defined as, 
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Fig. (1). The bi-phase diagram of B/A multilayers where the dashed lines 

are phase boundaries, the superscript  shows the element with a metastable 

structure. 
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AuNd /dc = ,       (55) 

where Nd = A/(l ) is the total dislocation number on the interface, A 

denotes the corresponding interface area, l is the length of the dislo-

cation, / h = hA/(2 hA hB
) is a half of the distance of two adja-

cent dislocations, ud is the misfit dislocation energy of a single dis-

location. The dislocation is assumed to be an edge one that is paral-

lel to x-axis or y-axis, ud ]1[ln
)1)((2 BA

2

BA +
++ bgg

lbgg  with ne-

glecting of dislocation core energy
 
[110] where b = h  shows the 

Burgers vector, g and  denote the shear modulus and the Poisson 

ratio, Substituting these quantities into Eq. (55), it reads, 

+
++

= 1
2

ln
)1)((

)2/(

BA

BA

c

BA

ABAA

hh

h

gg

hhhhgg .   (56) 

Note that according to the Goldschmidt premise for lattice con-
traction [111], atomic diameter contracts 3%, 4%, and 12% if CN of 
the atom reduces from 12 to 8, 6, and 4, respectively. Thus, when a 
body-centered cubic (bcc) phase transits to a hexagonal close 
packed (hcp) or face-centered cubic (fcc) phase, the corresponding 
h value contracts 3%, and vice versa. This lattice contraction has to 
be considered since h and thus c values in Eq. (56) change consid-
erably. 

Let  = in - c and bear in mind the Goldschmidt premise for 
the h value, there is, 

+
++

= 1
2

ln
)1)((

)2/(
)3/()(4

BA

BA
mmvib

BA

ABAA

hh

h

gg

hhhhgg
RVHSh

.(57) 

When different structures with corresponding parameters are 
substituted into Eq. (57), 1 and 3, and thus 2 can be deter-
mined. 

In Eq. (57), calculated  values account for only the structural 
component of the interfacial energy, where the related chemical 
component chem is neglected. chem is induced by consistance of 
different substances on the interface. If chem for both are of a simi-
lar size, the neglect of chem from the both hardly changes . In 
addition, chem is associated with the bonding of atoms across the 
interface and is proportional to binary solution thermodynamic 
interaction energy  = /z [112]. Since  is size-dependent and 
reduces to zero when  is equal to about four atomic layers

 
[113] 

and this size range is of interest in the current study, the discounting 
of the effect of chem on the contribution of in and c does not lead 
to big errors. 

4.3. Solid Phase Transition 

Crystalline carbon is polymorphic in three structures of graphite 
(G), diamond (D) and fullerenes (F) [114]. The carbon bonding of 
D is sp

3
 (tetrahedral) hybridization while that of G is sp

2
 (trigonal) 

one. As results, D has a three-dimensional structure while G con-
sists of two dimensional carbon layers stacked in an AB sequence. 
The layer interaction of G is linked by a weak van der Waals inter-
action produced by a delocalized -orbital. G is the stable bulk 
allotrope of carbon at atmospheric pressures, and G D transition 
occurs at high temperature and high pressure according to the equi-
librium phase diagram of bulk carbon or when r is in nanometer 
size at low temperature and low pressure [114,115]. Furthermore, 
as r further decreases to 1 nm, F or carbon onions (O) could be the 
most stable form of carbon [116,117,118,119,120,121,122]. Note 
that F and O, which are not true graphitic phases, share many struc-
tural characteristics with G, e.g. sp

2
 hybridization and six mem-

bered rings. Between D and F or O, an intermediary bucky dia-

mond (B) phase with a D-like core and a G-like outer shell is often 
found. 

The above transition phenomena could be thermodynamically 

determined by considering contributions of molar surface free en-

ergy Gs induced by sv, molar elastic free energy Ge induced by 

surface stress fs, and molar volume Gibbs free energy Gv, sepa-

rately. Since they are functions of T and r, the free energy differ-

ence function between i and j phases G
i j 

(T,r) can not be easil-

ized to determine by distinguishing separately the effects of T and r. 

To realize this, the roughly definings that G
i j

(T,r) function is 

contributed by the sum of the temperature-dependent bulk value 

Gv
i j (T ) , the size-dependent )(rG ji

s
, and the size-dependent 

)(rG ji

e
. Although two latter also have temperature effect on 

G
i j

(T,r), the effect is a higher order one since it has been partly 

countervailed since the related two phases have a similar tempera-

ture dependence. Thus, this error does not evidently affect the ulti-

mate estimation about the phase stabilities of different nanocarbon 
polymorphs.

 

For a spherical and quasi-isotropic nanocrystal having a molar 
volume Vm under a constant pressure, G

i j
(T,r) function reads, 

)()()(),( rGrGTGrTG ji

e

ji

s

ji

v

ji
++= .   (58) 

)(rG ji

s
 in Eq. (58) can be expressed as, 

i

sv

i

m

j

sv

j

m

ji

s AAG =      (59) 

where Am = 3Vm/r is the molar surface area. In Eq. (59), sv is 
roughly defined to be isotropic. However, this approximation is 
wrong for strong anisotropic G where 

G

svb = 0.13 J m
-2

 and 
G

svh = 
4.80 J m

-2
 with subscripts b and h denoting the basal and high-index 

planes, respectively [123]. Thus, 
G

sv  is defined as, 

G

h

G

b

G

h

G

sh

G

b

G

sbG

sv
AA

AA

+

+
= ,       (60) 

where A with the corresponding subscript shows the corresponding 

area. The former is induced by van der Waals force while the latter 

is present due to the presence of the dangling bonds. The latest 

measured sv values for single-walled and multi-walled nanotubes 

are 0.040 J m
-2

 and 0.045 J m
-2

 [124], which are about two orders 

smaller than D

sv
 or G

svh
. Since the structures of F and O are similar 

to nanotubes, as a first order approximation, it is assumed that, 

0G

svb

O

sv

F

sv
.       (61) 

)(rG ji

e
 is expressed as, 

j

m

j

in

i

m

i

in

ji

e VPVPG = .       (62) 

In concerned nanocarbon structure, )(rV F

m
 is size-dependent 

and =)(rV F

m
 [V

F
(r)/N

F
]Na where V

F
(r)= 4 r

3
/3 is the total volume 

of F, N
F
 = 4 r

2
/A0 is the corresponding number of carbon atoms 

with A0 being surface atom density. Thus, 

3/)( 0rANrV a

F

m = .       (63) 

As noted above, according to Laplace-Young equation [125], 

rfP sin /2=         (64) 

where fs is determined by [126],
 

2/1]2/)([ RVHShf mmvibs = .    (65) 
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At equilibrium, G
i j 

(T,r) = 0. The corresponding critical size 

)(Tr ji

c
 in terms of Eq. (58) is obtained as, 

)(

)(3)(2
)(

TG

VVVfVf
Tr

ji

v

i

m

i

s

j

m

j

s

j

m

j

s

i

m

i

sji

c

+
= .   (66) 

)(TG ji

v
 functions of G, D, F and O in Eq. (66) are sepa-

rately determined one by one. )(TG DG

v
 functions of G and D 

can be found in terms of the bulk T-P phase diagram of carbon 
[114] and is expressed as, 

DG

m

DG

v VTPTG = )()( ,      (67) 

where DG

mV = GD

mV  is approximately a temperature-

independent constant [127], which implies that the dilatability dif-

ference between G and D within the considered temperature range 

has a secondary effect on DG

mV  [128]. 

Since F can be considered as finite two-dimensional analogues 

of G without interlayer attraction and dangling edge bonds, 

)(TG FD

v
  FG

c

GD

v ETG +)(  where FG

cE  is the differ-

ence of cohesive energy between G and F. Note that a lot of iso-

lated pentagon rule structures of F deviate from the sphere shape 

while related thermodynamic parameters are unavailable. Since 

C60 data can be found in literatures, as an example, C60 is used as 

the typical model molecule of F here. Other types of F can also be 

calculated when necessary parameters are known in a similar way. 

Note also that the corresponding formation entropy difference has 

been neglected as a first order approximation since the both phases 

have the same CN, i.e. the sp
2
 bonding. Thus, substituting Eq. (67) 

into above )(TG FD

v
 expression, there is, 

FG

c

GD

m

FD

v EVTPTG += )()( .    (68) 

Since there are no interlayer attractions and dangling edge 
bonds for F, it has no molar van der Waals interlayer attraction Ev. 
If O is treated as nested F with Ev [120], 

v

OF

v ETG =)( ,      (69) 

which can be supported by the fact that as the shell number of O 

goes up, its stability increases due to the appearance of Ev. Since 

present known experimental and theoretical results consider more 

about D O transition [123,129], D is used as a standard state for 

comparison and )()()( TGTGTG OF

v

FD

v

OD

v +=  function 

is thus considered in comparison with other known results. The 

)(TG OD

v
 function reads, 

v

FG

c

GD

m

OD

v EEVTPTG += )()( .   (70) 

4.4. Diffusion Activity and Diffusion Coefficient 

Although the title of this paper concerns with the thermody-
namics, kinetics is often accompanied with thermodynamic phe-
nomena and cannot be neglected. Since the energetic levels of at-
oms/molecules are size-dependent, the corresponding kinetics must 
be size-dependent. 

The well-known Arrhenius dependence for self-diffusion or in-
trinsic diffusion coefficient of interdiffusion D(r,T) has the follow-
ing form [72], 

)]/()(exp[)(),( 0 RTrErDTrD =       (71) 

where D0(r) denotes a pre-exponential constant, E(r) is the activa-
tion enthalpy. 

To establish an E(r) function, D[r,Tm(r)] = D[ ,Tm( )] is as-
sumed. This is because that at melting temperature, any solid state 
has the same vibrational characteristic in terms of Lindemann s 
criterion. Thus, D[r,Tm(r)] = D0(r)exp{-E(r)/[RTm(r)]} = 
D0( )exp{-E( )/[RTm( )]} in terms of Eq. (71). According to a 
point defect mechanism, D0 is proportional to exp(Sa/R) where Sa is 
the activation entropy. In light of a general thermodynamic rela-
tionship, T[ Sa(r)/ T]Pin = [ E(r)/ T]Pin where Pin = 2fs/r denotes the 
pressure induced by surface stress. Thus, Sa(r) is a function of E(r). 
However, the change of Sa(r) induced by vibrational frequency 
change due to the activation process is less than 5% even if r varies 
from bulk to 2-3 nm [130]. Thus, E(r) is almost temperature-
independent. Because the effect of the exponential term of exp[-
E(r)/(RT)] on D(r,T) is much stronger than D0(r), the latter is a 
weak function of r. As a first order approximation, D0(r)  D0( ) is 
assumed (in the following, D0 is used as abbreviation). Therefore, 

)(/)()(/)( = mm TrTErE ,     (72) 

where Tm(r)/Tm( ) function has been deduced in Eq. (21). Substi-
tuting Eq. (21) into Eq. (72), 

=
1)/(

1

3

)(2
exp

)(
exp),(

0

0
rrR

S

RT

E
DTrD vib .  (73) 

5. APPLICATIONS: CASE STUDIES 

5.1. Cohesive Energy 

Comparisons between model predictions in terms of Eq. (33) 
and experimental results for Ec(r) functions of free Mo and W 
nanoparticles is shown in Fig. (2). 
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Fig. (2). Ec(r) functions of Mo and W nanoparticles in terms of Eq. (33) 

shown as the solid lines and the symbols  and  denote the corresponding 

experimental results of Mo and W, respectively [67]. For Mo, Ec( ) = 659 

KJ mol-1 [131], Sb = 122.15 J mol-1 K-1 with Eb = 600 KJ mol-1 and Tb = 

4912 K [131], and h = 0.2745 nm [8]. For W, Ec( ) = 860 KJ mol-1 [131], Sb 

= 137.27 J mol-1 K-1 with Eb = 800 KJ mol-1 and Tb = 5828 K [131], and h = 

0.2741 nm [8]. 

 

As shown in Fig. (2), except Ec(r = 0.5 nm) value of W 
nanoparticles, Eq. (33) is consistent with the experimental observa-
tions. Ec(r) increases with a drop in size, which reflects the instabil-
ity of nanocrystals in comparison with the corresponding bulk ones 
due to the increase of  and thus higher energetic state on average 
[85]. When r < 1-1.5 nm where the particles consist of only several 
ten to hundred atoms, a cluster structure is formed, which differs 
from the corresponding bulk structure, while Eq. (33) is valid only 
when the particle has the same structure of the bulk. This is the 
reason why the experimental Ec(r = 0.5 nm) value of W nanoparti-
cles differs from the model prediction of Eq. (33). 
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5.2. Phase Transition Temperature 

5.2.1. Melting Temperature  

Fig. (3) shows Tm(r) functions of Au and Ag with free-standing 
or quasi-free-standing surfaces based on Eq. (21) and the corre-
sponding experimental results. As shown in Fig. (3), the model 
predictions are in good agreements with the both experimental and 
computer simulation evidences where dimension difference could 
also lead to distinct drops of Tm(r). This is because at the same r, 
different d values have different . 
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Fig. (3). Tm(r) functions of noble metals nanocrystals in terms of Eqs. (20), 

(21) and (23) shown as the solid lines. For Au, Tm( ) = 1337.33 K [131], 

Svib( ) = 7.74 J mol-1 K-1 in terms of Eq. (26) where Vm/Vs = 5.1% [112] 

and Sm( ) = 9.35 J mol-1 K-1 determined by Sm( ) = Hm( )/Tm( ) with 

Hm( ) = 12.5 KJ mol-1 [131], and h = 0.2884 nm [8]. The symbols ,  

denote experimental and computer simulation results with d = 1 and d = 0, 

respectively [133]. For Ag, Tm( ) = 1234.93 K [131], Svib( ) = 7.98 J mol-

1 K-1 where Vm/Vs = 3.3% [132] and Sm( ) = 9.15 J mol-1 K-1 with Hm( ) = 

11.3 KJ mol-1 [131], and h = 0.2889 nm [8]. The symbol  denotes experi-

mental results with d = 0 [133]. 

 

Fig. (4) presents Tm(r) and Tsm(r) of semimetal In nanocrystals 
in different dimensions and different surroundings. Tm(r) is indeed a 
function of d especially when r is small. Eq. (15) is thus a good 
approximation of Eq. (21) for mesoscopic particles of which r > 5-
10r0 and contributions from the interior atoms and from d are no 
longer prominent. In addition, according to Eq. (24),  decreases as 

TM( )/Tm( ) and h/hM increases, both are essential and determine 
the superheating tendency of nanocrystals [78,134,135].

 
Note also 

that the size dependence of Tsm(r) function is evidently weaker than 
that of Tm(r) function even its r0 is only a half of Tm(r). This differ-
ence is induced by the fact that Sm( )/Cpm( )  11, which implies 
that the driving force for the surface melting is much smaller than 
that for the melting [82]. 

Tm(r) functions of molecular nanocrystals are shown in Fig. (5). 
Since the chemical bond among molecules is van der Waals type, 
all thermodynamic amounts of melting, namely Tm( ), Sm( ) and 
Hm( ), are smaller than those of metallic, ionic and covalent bond 
nature. Thus, the corresponding dropping tendency of Tm(r) is 
weak, which reacts through Svib( ) value in Eq. (21) and is intro-
duced from Eq. (23). Thus, Eq. (21) can distinguish and describe 
Tm(r) functions of all chemical combinations in a unique equation. 

Fig. (6) presents Tm(r) function of H2O embedded in MCM-41 
in terms of Eq. (21). The value of  is different from the above 
since the interaction between surface molecules and the molecules 
on the pore wall must be considered. 

As shown in the above, our model can predict Tm(r) functions 
of low-dimensional crystals with different chemical bonds, different 
dimensions, and different surface or interface conditions since it 
covers all essential considerations of early models. 
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Fig. (5). Tm(r) functions of cyclohexane, benzene, decane, methyl chloride, 

krypton (Ke), argon (Ar), oxygen (O2) and neon (Ne) nanocrystals in terms 

of Eqs. (20), (21) and (23) shown as the solid lines. Necessary parameters 

and experimental data are all cited from the reference [137]. For cyclohexa-

ne, Tm( ) = 279.82 K, Svib( )  Sm( ) = 0.5311 J g-atom-1 K-1, and h = 

0.6088 nm. The symbol  denotes experimental and computer simulation 

results for porous spherosils with d = 0. For benzene, Tm( ) = 280.8 K, 

Svib( ) = 2.842 J g-atom-1 K-1, and h = 0.5066 nm. The symbol  denotes 

the experimental result in a single cylindrical pore with d = 1. For decane, 

Tm( ) = 243.3 K, Svib( ) = 3.693 J g-atom-1 K-1, and h = 0.425 nm. The 

symbol  denotes the experimental result in a single cylindrical pore with d 

= 1. For methyl chloride, Tm( ) = 175.6 K, Svib( ) = 7.317 J g-atom-1 K-1, 

and h = 0.4141 nm. The symbol  denotes the experimental result in a 

single cylindrical pore with d = 1. For Ke, Tm( ) = 116.0 K, Svib( ) = 14.14 

J g-atom-1 K-1, and h = 0.206 nm. The symbol + denotes experimental re-

sults for nanowires with d = 1. For O2, Tm( ) = 54.4 K, Svib( ) = 4.073 J g-

atom-1 K-1, and h = 0.278 nm. The symbol  denotes experimental results for 

nanowires with d = 1. For Ne, Tm( ) = 24.6 K, Svib( ) = 13.54 J g-atom-1 K-

1, and h = 0.102 nm. The symbol • denotes experimental results for nanowi-

res with d = 1. For Ar, Tm( ) = 83.81 K, Svib( ) = 14.18 J g-atom-1 K-1, and 

h = 0.176 nm. The symbol  denotes computer simulation results for nano-

particles with d = 0 and the symbol  denotes experimental results for na-

nowires with d = 1. 
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Fig. (4). Tm(r) and Tsm(r) functions of semi-metal In nanocrystals in terms of 

Eqs. (20), (21), (23), (24), and (25) shown as the solid lines. The dashed line 

presents Tm( ) = 429.75 K [131]. For In, Svib( ) = 6.58 J mol-1 K-1 in terms 

of Eq.(26) where Vm/Vs = 2.7% [132] and Sm( ) = 7.59 J mol-1 K-1 with 

Hm( ) = 3.26 KJ mol-1 [131], h = 0.3684 nm [8], and Cpm( ) = 0.707 J mol-

1 K-1 [136]. For Al, TM( ) = 933.47 K [131] and hM = 0.3164 nm [8]. The 

symbols , , and + denote experimental results with d = 2, d =1, and d = 0 

for In nanocrystals with free surface or deposited on inert substrates [84]. 

The Symbol  and  show experimental results for the In/Al system and for 

the surface melting, respectively [84]. 
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5.2.2. Glass Transition Temperature 

Fig. (7) compares Tg(r) function of polystyrene (PS) films with 
different surface conditions. As shown in Fig. (7), when the mo-
lecular force at the interface (surface) is stronger than that within 
the film, a superheating is present. In an opposite case, an under-
cooling occurs. Note again that the size dependence of Tg(r) is 
much weaker since the glass transition is a second order transition 
where Cpg( ) value in a size about (1/4-1/5)R in Eq. (36) is much 
smaller than the usual Svib( ) value of about R. 

Fig. (8) presents Tg(w,r) function of poly(2,6-dimethyl-1,4-
phenylene oxide)/polystyrene (PPO/PS) blended films supported by 
a passivated Si substrate. good correspondences among the model 
predictions, experimental results, and computer simulation results 
are shown where Tg(w,r) decreases as r decreases and Tg(w,r) de-
creases as w increases since Tg(1, ) < Tg(0, ). The successful ap-
plication of Eq. (39) implies that the chemical interaction between 
polymer films is weak. Thus, their interaction nature of van der 
Waals force is not necessary to be specially considered. The proper-
ties of the composite can be simply determined by an algebra sum 
of the components. 

5.2.3. Néel, Ferromagnetic, Ferroelectric, and Superconductive 

Transition Temperature 

Figs. (9) and (10) compare model predictions and experimental 

results for TN(r) function of NiO, CuO, Ho, and CoO with different 

surroundings. As shown in the figures, in the full size range, our 

model predictions are in good agreement with the experimental 

data. 

Figs. (11), (12), and (13) compare the model predictions of Eq. 

(42) and the experimental results for Tc(r) functions of ferromag-

netic, ferroelectric, and superconductive nanocrystals where the 

related parameters are listed in Table 1. Good agreements between 

Eq. (42) and experimental results for different substances, distinct 

transitions and different substrate conditions are found in a simple 

and unified form as long as the related thermodynamic parameters 

of crystals are known. Eq. (42) affords more facilities to predict 

Tc(r) without any free parameter. Note that Co-Ni alloys can be 

roughly expressed as an algebraic sum of elements of which the 

alloys consist and Sb  13R has been proved to be a good approxi-

mation for compounds [99]. 

5.3. Melting Enthalpy 

A comparison between Eq. (32) and experimental results for 
Hm(r) function of In nanocrystals is shown in Fig. (14). A pretty 
agreement between them is got. Hm(r) function has a similar form 
of Tm(r) or Ec(r). This result confirms the fact that Tm(r)  Hm(r)  
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Fig. (6). Tm(r) functions of nano-ice embedded in MCM-41 in terms of Eqs.  

(20), (21) and (23) shown as the solid lines. Necessary parameters and expe-

rimenta data are all cited from the reference [138]. For H2O, Tm( ) = 273.15 

K, Svib( )  Sm( ) = 7.37 Jg-atom-1K-1,  = [2Svib( )/(3R)+1](1- ) = 1.39 

with  = 12.7% denoting a ratio of the surface molecules that interact with 

the molecules on the pore wall to the total number of surface ice molecules. 

The symbol  denotes the experimental results with d = 1 since the morpho-

logy of MCM-41 is cylindrical. 
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Fig. (8). Tg(w,r) function of PPO/PS [poly(2,6-dimethyl-1,4-phenylene 

oxide)/polystyrene] blend films supported by a passivated Si (100) substrate 

in terms of Eqs. (35), (36) , and (39) with c1 = 1/2 in Eq. (20) since the 

interaction between the film and the substrate interface is similar to that 

within polymers. For PPO, Tg(0, ) = 483 K [94], Cpg( ) = 1.591 J·g-atom-

1·K-1 [141], and r0 = 1 = 9 nm [141]. For PS, Tg(1, ) = 375.15 K [139], 

Cpg( ) = 1.919 J·g-atom-1·K-1 [87], and r0 = 1 = 5 nm [91]. The symbols  

and  denote experimental and computer simulation results, respectively 

[142].  
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Fig. (7). Tg(r) function of free-standing polystyrene (PS) films and PS films 

supported by Si substrate with hydrogen bonding in terms of Eqs. (35), (36), 

(38) and (20). The dashed line denotes Tg( ) of PS. For free-standing PS 

films, d = 2, s = 1.154 determined by Eq. (36) where Cpg( ) = 30.7 J·mol-

1·K-1 = 1.919 J·g-atom-1·K-1 [87], Tg( ) = 375.15 K [139], r0 = 1 = 5 nm 

with c1 = 1 in terms of Eq. (20) where 1 = 1[T<Tg( )] = 5 nm [91], which 

is used to substitute h for polymers. The symbol  shows the experimental 

results [76]. For PS films supported by Si substrate with hydrogen bonding, 

i = 4.5 kcal·mol-1 is the mean hydrogen bonding strength of 4-5 kcal·mol-1 

[140], s = 1.5 kcal·mol-1 shows the mean van der Waals force of 1-2 

kcal·mol-1 [140], Thus, i = 0.3885 in terms of Eq. (37). r0 = 1 = 2.5 nm 

with c1 = 1 in light of Eq. (20) where 1 = 1[Tg( )] = 2.5 nm [91]. The 

symbol  denotes the experimental evidences [76]. 
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Ec(r) while Sm(r) has a secondary effect on these energetic thermo-
dynamic amounts. 

5.4. Phase Diagram 

5.4.1. Solution Phase Diagram for Binary System 

Figs. (15), (16), (17), and (18) show continuous solution phase 

diagrams of different binary systems of metals Cu-Ni, semiconduc-

tors Ge-Si, ceramics Al2O3-Cr2O3 and organic crystals p-

chlorobromobenzene-p-dibromobenzene in terms of Eqs. (48) and 

(49) where the parameters used are listed in Tables 2 and 3. Except 

for Fig. (16) where Svib( ) is cited from the reference [80], Svib( )  

Sm( ) = Hm( )/[nTm( )] is taken since the unit of Svib( ) is Jg-

atom
-1

K
-1

 [10]. n = 1 in Fig. (15), n = 5 in Fig. (17), and n = 12 in 

Fig. (18). To determine 2r0, larger h values between two component 

counterparts are always taken in all figures as illustrated above. For 

molecules, h = 
3

cV where Vc is the volume of the cell [10]. For 
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Fig. (9). TN(D) functions of NiO, CuO, and Ho in terms of Eq. (40). Neces-

sary parameters are cited from the reference [143]. For NiO, TN( ) = 523 

K, s = i = 1.583 in terms of Eq. (23), r0 = 0.421 nm, and the symbol  

denotes experimental results for NiO films [143]. For CuO, TN( ) = 229 K, 

s = i = 1.563, r0 = 1.369 nm and 2.054 nm for CuO nanorods with d = 1 

and nanoparticles with d =2, respectively, and the symbols • and  denote 

experimental results for CuO nanorods and nanoparticles, respectively 

[143]. For Ho, TN( ) = 131.2 K, s = i = 1.561, r0 = 0.358 nm, and the 

symbol  denotes experimental data of Ho films [143]. 
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Fig. (10). TN(r) functions of CoO in terms of Eqs. (40), (23) and (41). Ne-

cessary parameters are cited from the reference [143]. The solid line deno-

tes TN(r) of CoO films epitaxially grown on the SiO2 substrate and the 

symbol  denotes the corresponding experimental results [143]. TN( ) = 

293 K, s = i = 1.544, r0 = 0.426 nm. The dashed and dash dotted lines 

denote TN(r) function of CoO films supported by NiO and Fe3O4 substrates, 

respectively, and the symbols  and  denote the corresponding experimen-

tal results [143]. For CoO/NiO, i = 0.5544, and for CoO/Fe3O4, i = 
0.4139. 
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Fig. (11). Tc(r) functions of Co, Ni, and Co-Ni alloys ferromagnetic ultra-

thin films on substrates with strong interactions between the thin films and 

the substrates. The solid lines denote the model predictions based on Eq. 

(42) where r0 = h/8 with c1 = 1/2 in terms of Eq. (34). The symbol  [99] 

shows the experimental results of Co/Cu(100), Co/Cu(001) and Co/Cu(100) 

and the symbol  [99] shows that of Ni/Cu(100). The symbols ,  and  

denote the experimental results of Co-Ni alloys Co1Ni1/Cu(100), 

Co1Ni3/Cu(100) and Co1Ni9/Cu(100), respectively [99]. 
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Fig. (12). Tc(r) functions of PbTiO3, BaTiO3, PbZrO3 and SrBi2Ta2O9 ferro-

electric nanocrystals. The solid lines denote the model predictions in terms 

of Eq. (42) where r0 = h/4 with c1 = 1 in terms of Eq.(34). The symbols , 

, , and  show the experimental results of PbTiO3, BaTiO3, PbZrO3, and 

SrBi2Ta2O9, respectively [99]. 
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Fig. (13). Tc(r) functions of MgB2 superconductive nanocrystals. The solid 

lines denote the model predictions based on Eq. (42) where r0 = h/4 with c1 

= 1 in terms of Eq. (34). The symbol  [99] shows the experimental results 
of MgB2. 
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organic molecules, there is no direct value of Vc in literatures. Vc is 
thus determined by Vc = M/( Na). 

As shown in Figs. (15), (16), (17), and (18), although the 
chemical bonds between components in the above phase diagrams 
are different in nature, our model can be utilized in a unified form. 
This correspondence for any kind of continuous solution phase 
diagram is because the assumption that composition-independent  
takes the small role where the electronegativity difference between 
two components is little. As r decreases, solidus and liquidus curves 
drop as Tm(r) functions of each component decrease. Another evi-
dent change compared with the bulk phase diagram is the narrow-
ing of the two-phase zone. As r  2r0, which is about several 
nanometers, the zone even approaches zero since (2r0)  0 where 
the regular solution deteriorates into the ideal solution and the 
structures of the liquid and the solid become similar because they 
have the same short-range order at this limit size. 

The success of the model shown in Figs. (15), (16), (17), and 
(18) could be extended to deal with other related phase diagrams. 
Since the second-phase strengthening is one of the strengthening 
methods for structural materials, especially for nonferrous alloys, 

                                                
1 Reference [17] is cited in both Table 1 and the text. 

where the precipitated phase has the nanometer size while the solu-
tion phase remains in bulk. This is the problem to determine the 
solvus line in bulk phase diagrams with nanoprecipitation phase. 
This size difference leads to a larger solid solubility limit, which is 
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Fig. (14). Hm(r) functions of disk-like In nanoparticles in terms of Eqs. (32) 

and (20) shown as the solid line and the symbol  denotes the correspon-

ding experimental results [150] where Hm( ) = 3.36 KJ mol-1 [151], d = 1 

and other parameters see the caption of Fig. (4). 

Table 1. Necessary Parameters Used in Eq. (42) for Determining Tc( ) Functions of Several Transitions. Tc( ) is in K, Eb in KJ g-atom
-1

, Tb in K, Sb 

in J g-atom
-1

K
-1

 and h is in nm 

 Tc( ) Eb [144] Tb [144] Sb
a 

h
b 

Co 1404 [145] 376.5 3201 117.62 0.2497 

Ni 631 [145] 370.4 3187 116.22 0.2492 

Co1Ni1
c 1017.5   116.92 0.2495 

Co1Ni3
c 824.3   116.57 0.2493 

Co1Ni9
c 708.3   116.36 0.2493 

PbTiO3 773 [146]   13R 0.2830 

BaTiO3 396 [147]   13R 0.2430 

PbZrO3 513 [17]1   13R 0.2880 

SrBi2Ta2O9 589 [148]   13R 0.2700 

MgB2 41.7 [149]   13R 0.3520 

aFor elements, Sb = Eb/Tb, while for compounds Sb  13R as a first order approximation which is equal to that of the mean value of the most elements (70-150 J g-atom-1 K-1) [144].  
bSee the references for elements [8] and compounds [17]. 
cFor Co-Ni alloys, the values of Tc( ), Sb and h are calculated to a first order approximation as algebraic sum of the corresponding values for elements forming the alloys. 
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Fig. (15). Cu-Ni nano and bulk phase diagrams where the solid lines show 

the theoretical calculations for regular solution in terms of Eqs. (48) and 

(49) and the symbols  and  denote the bulk experimental results [153]. 

To determine S( ) and L( ), T = 1573.15 K, x1Ni
L = 0.45 and x1Ni

S = 0.57 

are used in the calculation. 
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Fig. (16). Ge-Si nano and bulk phase diagrams where the solid lines show 

the theoretical calculation for regular solution in terms of Eqs. (48) and (49) 

and the symbols  and  denote the bulk experimental results [154]. To 

determine S( ) and L( ), T = 1506.5 K, x1Si
L = 0.40 and x1Si

S = 0.73 are 

used in the calculation. 
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often found in industrial cases. According to the above deduction, 
we could consider the phase equilibrium between a bulk phase and 
a nanophase. 

5.4.2. Bi-Layer Transition Diagram of Metallic Thin Multilayers 

According to Eqs. (52) and (57), the predicted bi-layer dia-
grams for Co/Cr, and Zr/Nb multilayers are shown in Figs. (19) and 
(20) where experimental results and the bi-phase boundaries in light 
of experimental results are also shown. The parameters used in 
equations are listed in Tables 4 and 5. Our predictions correspond 
to the experimental results well and are much better than the fitting 
results, which are plotted in the figures as dash lines. As shown in 
Figs. (19) and (20), when one layer has a thicker thickness than 

another, the structure of the other prefers to take the same structure 
of this layer. This is because when the same structure is adopted, 
the interface energy changes from in to c while the corresponding 

                                                
2 References [8], [80] are cited in both Table 2 and the text. 

elastic energetic increase is smaller than the drop of interface en-
ergy. 

5.4.3. Thermodynamic Phase Stabilities of Nanocarbon 

In terms of Eq. (66) and other related equations, r-T phase dia-
gram of nanocarbon are calculated and plotted in Fig. (21) where 
the related parameters are listed in Table 6. As shown in Fig. (21), 
the predicted phase diagram is correspondent to experimental and 
other theoretical results. The disappearance of dangling bonds in F 
and O leads to significant drop of G

F
 and G

O
, which stabilizes F 

and O when r is very small. The energetic increase caused by the 
dangling bonds in D is larger than the energetic drop induced by Pin 

at very small size. Because the contributions of sv and f in different 
structures at different sizes on nanocarbons are distinct, nanocar-
bons undergo transitions in a series of G D O(F) or bonding of 
sp

2
sp

3
sp

2
 with reducing size. This result confirms that diamond 

could stably exist when T and P are low and r is small and the low 
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Fig. (17). Al2O3-Cr2O3 nano and bulk phase diagrams where the solid lines 

show the theoretical calculation for regular solution in terms of Eqs. (48) 

and (49) and the symbols  and  denote the bulk experimental results 

[155]. To determine S( ) and L( ), T = 2430 K, x1Cr2O3
L = 0.44 and 

x1Cr2O3
S = 0.67 are used in the calculation. 
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Fig. (18). p-chlorobromobenzene p-dibromobenzene nano and bulk phase 

diagrams where the solid lines show the theoretical calculation for regular 

solution in terms of Eqs. (48) and (49) and the symbols  and  denote the 

bulk experimental results [156]. To determine S( ) and L( ), T = 347.39 

K, x1p-dbb
L = 0.50 and x1p-dbb

S = 0.57 are used in the calculation. 

Table 2. Related parameters and Data Used in Figs. (15) and (16). r nad h are in nm, Tm in K, Hm, 
S
 and 

L
 in J mol

-1
 and Svib in J g-atom

-1
K

-1
. 

r  Cu Ni Ge Si 

Tm
 [152] 1357.6 1726 1210.4 1685 

Hm [152] 13050 17470 36940 50550 

S 11376.21 7666.74 

L 12219.46 7715.47 

h [8]2 0.2826 0.2754 0.351 0.3368 

 

Svib 9.613 10.122 4.62 [80]2 6.72 [80]2 

Tm 1160 1470 1096.7 1472.2 

Hm 8874.43 11930 24542.94 33135.53 

S 7518.31 4437.51 
5 

L 8075.6 4465.71 

Tm   1096.7 1472.2 

Hm   24542.94 33135.53 

S  1208.28 
2.5 

L  1215.96 

Tm 770.2 974.31   

Hm 1959.7 2916.9   

S 1731.46  
2 

L 1859.8  
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temperature synthesis of nanodiamond is a correct way without 
angst for the D  G transition. 

5.5. Diffusion Activation Energy and Diffusion Coefficient 

Fig. (22) shows the model predictions of Eq. (72) and related 
experimental results of Ag into Au and Ag into Cu. As shown in 
Fig. (22), as r decreases, or  increases, E(r) drops. In light of the 
figure, the model predictions for E(r) of different systems are in 

agreement with the experimental results. Since the considered size 
is only several nanometers, this decrease is induced not only by the 
contribution of surface, but also by the increase of internal energy 
of atoms within the nanocrystals. Thus, the activity needed for dif-
fusion is much smaller than the corresponding bulk. 

Fig. (23) shows a comparison between Eq. (73) and experimen-
tal results for D(r,T) function of N atoms diffusing into nanostruc-
tured bcc Fe. Although only one experimental point shown in the 
figure is difficult to supply the consistency of D(r,T) function in the 
whole range of r with the experiment, this experimental point fits 
the model prediction. This dramatic enhancement of diffusion abil-
ity due to the drop of grain size leads to the possibility of surface 
chemical treatment of steels at 573 K, which is much lower than the 
usual treatment temperature of about 930 K. 

6. CONCLUDING REMARKS 

6.1. Attainment 

Modeling for recent progress on Tm(r) function is compara-
tively reviewed. Without any free parameter, our model based on 
Lindemann s criterion, or enhancement or suppression of thermal 

vibrations of atoms of nanocrystals, has described both undercool-
ing and superheating phenomena of nanocrystals. This model cov-
ers all essential considerations of early models with wider size 

                                                
1 Reference [8] is cited in both Table 4 and the text. 

Table 3. Related Parameters and Data Used in Figs. (17), and (18) Where p-chlorobromobenzene and p-dibromobenzene are Respectively Abbrevi-
ated as p-cbb and p-dbb. r and h are in nm, Tm is in K, Hm, 

S
 and 

L
 in J mol

-1
 and Svib in J g-atom

-1
K

-1
. 

r  Al2O3 Cr2O3 p-cbb p-dbb 

Tm
 2327 [155] 2512 [155] 337.73 [156] 360.45 [156] 

Hm
 113040 [155] 117230 [155] 18760 [157] 20284 [158] 

S 22371.72 -3641.2 

L 22733.72 -4214.99 

ha 0.634 0.6618 0.5866 0.5971 

 

Svib 9.716 9.344 4.63 4.69 

Tm 1937.66 2086.4 312 332.16 

Hm 72032.54 73269.45 13627.4 14628.3 

S 13488.36 -2336.7 
10 

L 13706.61 -2704.93 

Tm 1148.04 1200.68 252.3 266.17 

Hm 5253.64 882.46 2996.64 2899.03 

S 163.31 -379.96 
4 

L 165.96 -439.83 

aTo determine h value, the related data are VcAl2O3 = 0.2548 nm3 and VcCr2O3 = 0.2898 nm3 [159], Mp-cbb = 191.46 g and p-cbb = 1.576 g cm-3 [160], Mp-dbb = 235.92 g and p-dbb = 1.841 

g cm-3 [160]. 
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Fig. (19). The bi-phase diagram of Co/Cr multilayers where the solid lines 

denote model predictions in terms of Eqs. (52) and (57) and the dashed lines 

[108] are obtained by the experimental results shown as , • and . 

[169,170]. 

Table 4. The Related Parameters in Eqs. (52) and (57). h is in nm, Tm in K, Hm in kJ mol
-1

, Vm in cm
3

mol
-1

, Svib in J mol
-1

K
-1

, and μ  is in J m
-3

. 

 h [8]1 Tm [161] Hm [161] Vm [161] Vm/Vs Svib( ) μ  

Cr  0.2498 2130 16.9 7.23 0.067 7.45 10.3 108 [162] 

Co  0.2497 1768 16.19 6.7 0.035 [163]  7.93 6.3 108 [162] 

Zr  0.3179 2125 16.9 14.1 0.035 8.64 3.7 108 [163] 

Nb  0.2858 2740 26.4 10.87 0.055 8.05 9.2 108 [163] 

Note: All h values are those of stable phases. When a metastable phase is present and when the corresponding CN is changed, h values change according to the Goldschmidt premise. 
Svib( ) are determined by Eq. (26) where Sm( ) values are cited from the reference [112]. The unknown Vm/Vs value of Zr is estimated to be 3.5% between that of Y and Nb accord-

ing to its location in the Periodic Table of elements [164,165]. The values of Vm/Vs of Cr and Nb are determined by (1/ l-1/ s) s-0.07 [166,167], where l and s are cited from 

references [8,168]. 
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range suitability and may be extended to predict Hm(r) and Ec(r) 
functions. Moreover, Tg(r) for glass transition and even binary 
polymer alloys, and Tc(r) functions for ferromagnetic-antiferro-
magnetic, ferromagnetic, ferroelectric, and superconductor phase 
transitions are established. The obtained unified form of the func-
tions reveals the physical nature of size dependence of materials 
properties and internal relationship among different types of phase 
transitions. Based on the above models, size-dependent phase dia-

grams including continuous binary solution phase diagrams, bi-
phase transition diagrams of metallic thin multilayers, and solid 
transition phase diagrams have been constructed. As r decreases, 
phase diagrams exhibit evident difference from the corresponding 
bulk and are theoretically and experimentally meaningful due to its 
utility of prediction on phase structures of nanocrystals. Moreover, 
the model has been applied to predict E(r) and D(r) functions, 
which indicates an evident tendency of much more rapid kinetic 
process in comparison with the bulk case. 

In all of the above extensions, reasonable agreements between 
model predictions and experimental data from systems with various 
bond natures have been reached, evidencing the validity of the 

model. Further extension of this general model to other fields would 
be more beneficial.  

It is found that the size dependence of properties of a system is 
indeed an independent thermodynamic amount. This result brings 
out an evident extension of the classic thermodynamics where the 

                                                
1
References [120], [126], [128] are cited in both Table 6 and the text. 

Table 5. The Calculated  (J m
-2

) and mi Values of the Considered Mul-

tilayer Systems. [During the Calculation of Eq. (52), 1 and 

3 is taken as the Differences Between in and c, Which are 

Determined by Eq. (57); 2 = 1 - 3.] 

 Co/Cr Zr/Nb 

in 0.8109 0.7724 

bcc/bcc 0.3700 0.2620 

hcp/hcp 0.3320 0.2880 

m1 -0.715 -0.362 

m2 10 21.15 

m3 1.075 0.949 
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Fig. (20). The bi-phase diagram of Zr/Nb multilayers where the solid lines 

denote model predictions in terms of Eqs. (52) and (57) and the dashed lines 

are obtained by the experimental results shown as , • and  [171,172]. 

Table 6. The Thermodynamic Parameters of the Nanocarbon. h is in nm, Vm in cm
3

mol
-1

, Hm, Ec, and EV in kJ mol
-1

, Tm in K, Sm and Svib in J mol
-

1
K

1
,  in 10

-10
Pa

-1
 and ƒ  and  are in J m

-2
 

 D G F O 

h 0.154 [173] 0.142 [174] 0.157 [175]  

Vm
 

3.417 [173] 5.398 [173] 5.4r [175] 7.310 [176] 

Hm
 125 [177] 120 [128]1 53 [178]  

Tm
 3723 [126]1 4800 [128]1 1600 [178]  

Sm
 33.58 25.00 33.12  

Svib 6.37 4.75 6.29  

 0.088 [126]1 1.000 [126]1 0.212 [179]  

Ec  -714 [180] -675 [180]  

ƒ 6.10 1.10 2.98/d1/2  

 3.70 [181,182] 3.27 [175] 0 0 

EV    5.4 [120]1 

Note: Sm = Hm/Tm. Svib  0.19Sm is estimated as a mean proportion of Si and Ge since they belong to the same IVA group in the elemental table. 
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Fig. (21). The r-T transition diagram of nanocarbon in terms of Eq. (66) 

under P = 0 shown as the solid lines where other theoretical ( ,  [118], 

and    [183]) and experimental results (  [123],  [129], and [184]) are pre-
sented for comparison. P(T) = (2.73T+2.02 103) MPa [114,115]. 
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studied system of the thermodynamics can cover all size range from 
microscopic, along mesoscopic, to macroscopic size, as long as the 
solid remains the bulk stable structure or other metastable structure. 
This is not only the most progress of the thermodynamics, but also 
especially beneficial for the research on nanoscience and nanotech-
nology nowadays. This progress clarifies also the always impor-
tance of the classic thermodynamics, which could keep up with the 
time. 

6.2. Limitation 

It is well known that thermodynanics has a statistic mechanics 
basis. Thus, as a system drops to several nanometers or a system 
consists of only several ten to several hundred molecules, the statis-
tic meaning disappears. In addition, as size of a system decreases, a 
crystalline structure is no more stable due to its big bond deficit 
where a cluster with special structure arises. Under this condition, 
bond order and bond strength vary, which lead to all thermody-
namic size-dependent functions to be disabled since the models 
assume that the structure of the concerned solids remains as the size 
decreases. Up to now, only computer simulation could be used to 
exactly determine the above mentioned structures and thus the cor-
responding functions, which have not any direct relation with the 
corresponding bulk ones and cannot be described by an analytical 
solution. 

The most low-dimensional materials are attached on substrates. 
Thus, interface effect due to the existence of film/substrate interface 
takes the role on the thermodynamic properties of nanocrystals. 
Since the interface combination, chemically and mechanically, 
depends on not only the composition and the structure of the low 
dimensional materials, but also experimental and technic condi-
tions, the predicted results cannot fully correspond to experimental 
results while the model prediction considers only the thermody-
namic properties under an ideal condition. Even the interface is 
ideally combined, the chemical interface bonding is only assumed 
to be strong and weak in our model, which is a too rough estima-
tion. This is also the case for the estimation of interface stress 
where nonlinear mechanical action widely exists. 

It is known that alloys are widely used in industry since the al-

loying could better satisfy the property requirement for parts and 
devices in industry especially when the mechanical properties are 

mainly considered. This consideration even exists in semiconductor 

industry, such as liners in IC. However,  function is difficult to 

determine due to its complicity for bond interaction when the value 

of ( ) is big. This is the reason why in the above sections only the 

elements, the compounds, and the alloys with weak chemical inter-

actions are concerned. Luckily, the interaction among different 

molecules become weaker as r decreases. This characteristic brings 

out lower error when the above models are utilized for nanosystems 

even the systems consist of two or more components. 

In our models, the energetic contribution of surface (interface) 

molecules is considered as the most essential size effect. However, 

for thin films, especially when the thickness of the thin films is 

larger than 10-20 nm, the additional contribution of grain boundary 

within the thin films on the size effect is present, which is extra true 

for electronic or electric properties of thin films. Although as a 

rough estimation, the contribution of grain boundary is about one 

third of the surface since the incoherent interface energy is about 

one third of the surface energy, grain size is not a certain thermody-

namic function of the film thickness, which strongly depends on the 
kinetic condition during the formation or fabrication of the thin 

films. Thus, surface/interface ratio is not a thermodynamic amount. 

Note that when the electric conductivity of thin films is considered, 

the interface effect on the electric conductivity could be stronger 

than the above mentioned fraction of surface, which becomes evi-

dent as r increases. 

Since the surface stress induces the internal pressure for low 

dimensional materials, surface stress is always an important effect 
on properties of nanomaterials. Note that the internal pressure is a 

natural phenomenon related with the bond contraction of surface 

atoms, and does not certainly depend on the curvature of the nano-

materials. Thus, there exists internal pressure even on a flat film. In 

addition, our quantitative modeling on surface stress has indeed 

been extended to determine T-P phase diagram since the internal 

pressure has the same effect of the external pressure [188,189]. 

However, although we have modeled this amount, the given equa-

tion is only a rough estimation and need further work on it. In par-

ticular, when there exist electronic charges on the surface, our 

model for surface stress leads to big errors. 

6.3. Prospect 

As nanothermodynamics on phase transitions develops, a more 
complete understanding of the thermodynamic and the kinetic as-
pects for nanomaterials could be carried out. These works will help 
us to understand the thermal stability of nanomaterials that is a very 
important property for their application of nanomaterials due to 
their metastable nature. In addition, since the mechanic, optic, mag-
netic and electronic properties of nanomaterials are functions of 
their structures, the phase transition temperatures decide the limit 
application temperature range and also the necessary size of nano-
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Fig. (22). E(r) functions of Ag diffusing into Au and Ag diffusing into Cu 

in terms of Eq. (72) shown as the solid lines. The parameters used are cited 

from the reference [185]. For Ag into Au, E( ) = 168.84 KJ mol-1, Svib( ) = 

9.157 J mol-1 K-1, and h = 0.2884 nm. The symbol  denotes the correspon-

ding experimental result [73]. For Ag into Cu, E( ) = 101.76 KJ mol-1, 

Svib( ) = 9.157 J mol-1 K-1, and h = 0.2238 nm. The symbol • denotes the 

corresponding experimental result [186]. 
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Fig. (23). D(r,T) function of N diffusing into bcc nanostructured Fe in terms 

of Eq. (73) shown as the solid line where T = 573 K. The parameters used 

are cited from the reference [187]. D0 = 7.46 10-7 m2 s-1, E( ) = 78.3 KJ g-

atom-1, Svib( ) = 36.106 J g-atom-1 K-1, and h = 0.2483 nm. The symbol  

denotes the corresponding experimental result [71]. 
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materials. Thus, the above theory is important for the application of 
nanomaterials. However, the above mentioned limits restrict the full 
comprehending and exact quantitative prediction. Thus, the above 
limits should be solved one by one. 

The above theory has established a good way for the top-down 
calculation, which can analytically obtain thermodynamic meso-
scopic and even microscopic properties. The thermodynamics with 
the size effect covers almost full size range from nanometer to cen-
timeter while its physical basis is at a molecular level. Note that 
since we are familiar with the bulk thermodynamics and related 
properties, its extending to nanometer size in this means can be 
better understood and better utilized in a natural art.  

The theory is also a good complementarity for the widely used 
bottom-up method of computer simulation. The computer simula-
tion is based on potential of atoms, which gives more electronic 
message of atoms and helps us to understand the physical nature of 
matters at the electronic level. However, the coverage of materials 
size using computer simulation technique is small due to the limita-
tion of the computer calculation ability. Moreover, the reliability of 
the computer simulation at present depends on strongly the given 
potential, which achieves progress only gradually although this 
progress is fast than the computer calculation ability. As computer 
calculation ability increases, which is decided by Moore rule, the 
importance of the nanothermodynamics gently decreases. However, 
the nanothermodynamics still takes its special role in the known 
future. 

A special emphasis here is given for the melting phenomenon. 
Although the melting is a well known natural phenomenon, its 
physical nature is still in question. The Lindemann s criterion, 
which is the basis of the above theory, has given a thermodynamic 
melting temperature although the criterion in nature is a kinetic 
melting one. A simple interpretation of the criterion could be con-
sidered as that the melting temperature is a kinetic melting tempera-
ture of the surface, which leads to a thermodynamic melting within 
the crystals. Further work should reveal the nature of the melting 
and why Lindemann s criterion is correct. 

Fabrication of patterns directly on substrates shows a wonderful 
and an essential way for IC and MEMS manufacture and denotes 
the future of nanotechnology. This technique combines the both 
manufacture procedures of row materials production and device 
fabrication, and exhibits thus the spirit of the environment-friendly 
manufacture. Since the quantum effect at this case becomes evident 
[190] and statistic basis of the thermodynamics results in larger 
error due to the small size of patterns, the application of nanother-
modynamics in this field will be a chanllenge and need to come to 
more attention. 
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NOMENCLATURE 

a = Activity 

A = Surface or interface area 

A0 = Surface atom density 

Am = Molar surface area 

b = Burgers vector 

B = bucky diamond 

c = Constant. For special cases, Arabic number 
as subscript is used. 

ci = CN-dependent reduction of bond length 

Cpg = Heat capacity difference between liquid and 
glass at Tg 

CN = Coordination number 

Cp = Specific heat capacity of crystals 

Cpm = Heat capacity difference between liquid and 
crystal at Tm 

d = Dimension of crystals 

D(r,T) = Self-diffusion or intrinsic diffusion coeffi-
cient of interdiffusion 

D0(r) = A pre-exponential constant 

D = Diamond 

E(r) = Activation enthalpy 

Eb = Bulk evaporation enthalpy 

Ec = Cohesive energy 

Ev = Molar van der Waals interlayer attraction 

Eexc(T) = Spin-spin exchange interaction 

Ev(T) = Thermal vibration energy 

f = Activity coefficient 

fs = Surface stress 

fB = Volume fraction of element B in the multi-
layer 

F(r) = A size dependent function during the deduc-
tion of Tm(r) function 

F = Fullerenes 

g = Shear modulus 

G = Gibbs free energy 

Ge = Molar elastic free energy 

Gl = Gibbs free energy of liquid 

Gm = Melting Gibbs free energy 

Gs = Gibbs free energy of crystals 

Gv = Molar volume Gibbs free energy 

G  = Graphite 

h = Atomic or molecular diameter (the nearest 
atomic or molecular spacing) 

Hm = Melting enthalpy 

k = Boltzmann s constant 

l = Length of the dislocation 

M = Atomic or molecular molar weight 

m = A parameter varying with the bond nature 

m1, m2, m3 = Slopes of lines for binary multilayer dia-
grams 

ma = Atomic mass 

n = Atom number 

N = Number of molecules 

Na = Avogadro constant 

Nd = Dislocation number 

N
F
 = Carbon atom number of fullerenes 

O = carbon onions 

p = Planck s constant 

P = Pressure 

Pin = Size-induced internal pressure 
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r = Radius of nanoparticles 

r0 = A critical radius at which all atoms are lo-
cated on the surface 

R = Ideal gas constant 

S = Entropy 

Sa = Activation entropy 

Sb = Bulk evaporation entropy 

Sconf = Configurational melting entropy 

Sel = Electronic melting entropy 

Sm = Melting entropy 

Svib = Vibrational melting entropy 

T = Absolute temperature 

Tb = Bulk evaporation temperature 

Tc = Critical temperatures of ferromagnetic, fer-
roelectric, and superconductor transition 

Tg = Glass transition temperature 

Tm = Melting temperature 

U = Internal energy 

ud = Misfit dislocation energy of a single disloca-
tion 

V = Volume denoted by different subscripts 

Va = (Vs+Vl)/2 

w = Weight fraction of the second component 

x = Atomic percentage of a component in a 
binary system 

y = Volume percentage of atoms in liquid 

zb = The bulk coordinate 

zi = The surface coordinate 

zib  = zib = zi/zb 

 = Bulk size 

 =  = sa
2
/ va

2
 with sa

2
/ va

2
 denoting the 

mean-square displacement of surface atoms 
and interior atoms 

ij = Volume or number ratio of the ith atomic 
layer to that of the entire crystal 

 = Surface or interface energy denoted by dif-
ferent subscripts 

 = Layer thickness of surface melting 

 = Difference between two physical amounts 

 = A half of the distance of two adjacent dislo-
cations 

 = Bond energy 

 = Contact angle between a particle and the 
matrix 

E = Einstein temperature 

D = Debye temperature 

 = Bi-layer thickness 

μ = Chemical potentials 

vf = Vibrational frequency 

 = Poisson ratio 

E = Einstein frequency 

 = Correlation length of solid-liquid interface 

1 = Correlation length for intermolecular coop-
erative rearrangement 

 = Mass density 

 = Root-mean-square (rms) average amplitude 
of atomic thermal vibration 

c = Electronic conductivity 

 = Surface/volume ratio 

 = activity coefficient 

 = = /z 

 = Atomic interaction energy 
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