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 Homocysteine (Hcys) Metabolism and 

Hyperhomocysteinemia (hHcys) 

 Hcys as a thiol-containing amino acid has gained great 
notoriety, since elevation of its plasma concentrations,
a condition known as hHcys, is correlated with many 
 different diseases, in particular cardiovascular diseases 
 [1–3] , stroke  [4] , neurodegenerative diseases  [5] , neural 
tube defects  [6, 7] , and end-stage renal disease (ESRD) 
 [8–12] . As shown in  figure 1 , Hcys is mainly generated 
from methionine which contains a methyl group that is 
activated through the transformation to S-adenosylme-
thionine (SAM). SAM is a major methyl group donor for 
various methylation reactions. When the methyl group is 
transferred by methyltransferases to respective accep-
tors, SAM is converted to S-adenosylhomocysteine (SAH) 
and then subsequently hydrolyzed by SAH hydrolase to 
form Hcys and adenosine.

  It is well known that Hcys is metabolized by two 
alternative pathways, including its remethylation and 
transsulfuration. The remethylation pathway regener-
ates methionine by methylenetetrahydrofolate reductase
(MTHFR) using Hcys as substrate and folate and vitamin 
B 12  as cofactors. This remethylation cycle may occur in 
all mammalian cells or tissues which could control the 
concentrations of Hcys within these cells or tissues. An-
other pathway responsible for the Hcys metabolism is its 
transsulfuration which is catalyzed by two sequentially 
acting enzymes, namely cystathione- � -synthase (CBS) 
and  � -cystathionase. In this pathway, Hcys first under-
goes condensation with serine to form cystathionine by 
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 Abstract 

 Hyperhomocysteinemia (hHcys) has been recognized as a 
critical risk or pathogenic factor in the progression of end-
stage renal disease (ESRD) and in the development of cardio-
vascular complications related to ESRD. Recently, evidence
is accumulating that hHcys may directly act on glomerular 
cells to induce glomerular dysfunction and consequent glo-
merular sclerosis, leading to ESRD. In this review, we sum-
marize recent findings that reveal the contribution of ho-
mocysteine as a pathogenic factor to the development of 
glomerular sclerosis or ESRD. In addition, we discuss several 
important mechanisms mediating the pathogenic action of 
homocysteine in the glomeruli or in the kidney, such as lo-
cal oxidative stress, endoplasmic reticulum stress, homo-
cysteinylation, and hypomethylation. Understanding these 
mechanisms may help design new approaches to develop 
therapeutic strategies for treatment of hHcys-associated 
end-organ damage and for prevention of deterioration of 
kidney function and ultimate ESRD in patients with hyper-
tension and diabetes mellitus or even in aged people with 
hHcys.  Copyright © 2007 S. Karger AG, Basel 
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CBS. Then, cystathionine is broken down into cysteine by 
 � -cystathionase. Finally, cysteine is metabolized into 
taurine and sulfate or transferred into glutathione. The 
synthesis of cystathionine is an irreversible enzymatic re-
action which occurs primarily in liver, kidney, small in-
testine, and pancreas  [13] . Although two enzymes are in-
volved in this metabolic pathway of Hcys, CBS is rate lim-
iting in this transsulfuration metabolism of Hcys. In the 
kidney, Hcys is primarily transsulfurated, and deficiency 
of this renal transulfuration importantly contributes to 
the elevation of plasma Hcys under different physiologi-
cal or pathological conditions, such as hypertension, dia-
betes mellitus, aging, or ESRD  [14, 15] .

  There are reduced and oxidized forms of Hcys in hu-
man and animal plasma  [16] . More than 90% of the total 
plasma Hcys is oxidized Hcys that is bound to proteins, 
such as albumin and hemoglobin. The rest of the oxidized 
Hcys exists as a disulfide form, including homocystine 
(Hcys-S-S-Hcys) and cysteinylhomocysteine (Cys-S-S-
Hcys). Another small fraction of oxidized Hcys is Hcys 
thiolactone, a Hcys metabolite which only represents 
about 0.4% of the total plasma Hcys, but is very active in 
regard to the detrimental actions of Hcys. Only about 2% 
of the total Hcys in plasma exists as a free or reduced form. 
In general, hHcys is defined as an increase in the plasma 
level of total Hcys which is the sum of all Hcys forms that 

exist in plasma. Structures of some major species of Hcys 
in the plasma are summarized in  figure 2 . In humans, the 
total plasma Hcys concentration is normally  ! 10  �  M . 
Clinically, a mild hHcys is defined as a plasma total Hcys 
level  1 10  �  M , but  ! 16  �  M . A plasma total Hcys level in the 
range of 16–30  �  M  is considered moderate hHcys and one 
in the range of 30–100  �  M  intermediate hHcys. If the plas-
ma total Hcys level is  1 100  �  M , a severe hHcys may be 
diagnosed  [12, 17] . Many diseases or metabolic deficiency 
may cause hHcys, such as mutations of the gene encoding 
key enzymes of the Hcys metabolism such as CBS and 
methylenetetrahydrofolate reductase, decreased intake
or intestinal absorption of vitamin B or other cofactors 
like folic acid and vitamin B 12 , drug administration like 
 L -DOPA, or chronic renal failure  [14, 18] .

  hHcys and ESRD 

 hHcys was originally reported as a risk factor for ath-
erosclerosis  [19–21]  based on observational data that link 
increased plasma Hcys levels to premature arterioscle-
rotic diseases  [22] . Later, numerous epidemiological and 
clinical case-control studies have observed a significant 
positive association between plasma Hcys levels and car-
diovascular diseases, including hypertension, stroke  [23, 
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  Fig. 1.  Homocysteine metabolism. Methi-
onine is activated by ATP to S-adenosyl-
methionine (SAM) which serves as a uni-
versal donor for methyl transfer reactions. 
S-adenosylhomocysteine (SAH) is pro-
duced as a product of methyl transfer reac-
tions that utilize SAM as a methyl donor. 
Homocysteine is formed from the revers-
ible hydrolysis of SAH. The levels of homo-
cysteine are regulated by remethylation of 
homocysteine to methionine by the en-
zyme methionine synthase (MS) and 
transsulfuration of homocysteine to cysta-
thionine by the enzyme cystathionine  � -
synthase (CBS). 
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24] , and coronary arterial disease  [25] . In this regard, 
Boushey et al.  [26]  have reported that the risk associated 
with a 5- �  M  increase in plasma total Hcys is similar to 
that associated with a 0.5-m M  increase in the plasma cho-
lesterol concentration. A meta-analysis of prospective 
studies has also shown that a 25% lower plasma total Hcys 
concentration is associated with an 11% lower risk of 
ischemic heart disease and a 19% lower risk of stroke  [27] . 
In addition, a strong positive relationship between Hcys 
levels and mortality in patients with established cardio-
vascular diseases has also been observed by Nygard et al. 
 [28] . All these data have indicated that a deranged Hcys 
metabolism may increase the incidence or prevalence of 
cardiovascular diseases in general populations.

  As reviewed by Brattström and Wilcken  [29] , almost 
every study in which the plasma Hcys level was measured 
in patients with renal diseases has shown a highly sig-
nificant positive correlation between serum creatinine 
and Hcys concentrations. The plasma total Hcys levels 
increase in patients with moderate renal failure and can 
be  1 100  �  M  in patients with ESRD  [11] . The prevalence 
of hHcys in patients with dialysis therapy is  1 85%, and in 
these patients the plasma Hcys levels may remain three 
to five times higher than the normal level. It has been 
proposed that hHcys is a crucial element in the pathogen-
esis of uremic cardiovascular complications  [30–32] .

  Increased plasma Hcys levels during chronic renal 
failure or ESRD might be caused by an increased produc-
tion via transmethylation and decreased metabolism or 
removal. The latter includes decreases in its transsulfura-
tion, remethylation, and renal excretion. However, it is 
still debated as to whether an increased plasma Hcys lev-
el in patients with ESRD is due to a reduction of the renal 
metabolic clearance or an extrarenal metabolic distur-
bance  [33] . It also remains unknown what renal mecha-
nisms could be responsible for elevated plasma Hcys con-
centrations during ESRD or other kidney diseases. In this 
regard, early studies have indicated that increased plasma 
Hcys levels are attributed to a reduction of the glomerular 
filtration rate (GFR)  [31, 34] . However, recent studies 
have challenged this view, since Hcys may be filtrated in 
very small amounts due to its binding to plasma proteins. 
Many studies indeed demonstrated that clinically stable 
renal transplant recipients have an excess prevalence of 
hHcys, suggesting that improvement of the GFR in these 
patients does not completely restore plasma Hcys to nor-
mal  [9, 29] . Similarly, in ESRD patients receiving hemo-
dialysis therapy, improvement of the renal function could 
not restore plasma Hcys concentrations to normal levels 
 [35, 36] . In some patients with hypertension, moreover, 
long-term diuretic therapy results in hHcys, but their 
GFR or renal functions are normal  [3] . More directly, a 
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  Fig. 2.  Major species of homocysteine pres-
ent in human and animal plasma. 
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study performed in hypertensive patients  [12, 37]  ob-
served that the fractional extraction of Hcys across the 
kidney is related positively to renal plasma flow but not 
to GFR. All these data have strongly indicated that elevat-
ed Hcys levels in patients with ESRD or hypertension are 
at least not solely dependent upon a decrease in GFR. An 
intrinsic metabolic derangement may also be important-
ly involved in elevation of plasma Hcys levels which may 
be related to decreased renal transsulfuration. Our recent 
studies done in a hypertensive rat model, Dahl salt-sensi-
tive rats, have demonstrated that abnormal renal trans-
sulfuration by renal tubules is a major cause of hHcys in 
these rats  [14] , indicating that the defect in renal trans-
sulfuration may be responsible for the development of 
hHcys in salt-sensitive hypertensive individuals. In addi-
tion, extrarenal metabolic disturbances of Hcys have also 
been reported to contribute to the occurrence of hHcys 
in ESRD. These metabolic disturbances are associated 
with a generalized downregulation of the methionine cy-
cle and its catabolism which may be the inhibitory action 
of various metabolites accumulated or retained during 
ESRD, such as SAH, sulfate, and dimethylglycine.

  Although hHcys is considered a critical pathogenic 
factor in the progression of ESRD and in the development 
of cardiovascular complications related to ESRD, some 
recent studies have shown that plasma Hcys levels may 
also be inversely related to the clinical outcome of ESRD 
which is now called ‘reverse epidemiology’ of hHcys in 
ESRD  [38–40] . Along with the line, low plasma Hcys lev-
els may be associated with a worse prognosis or mortal-
ity in ESRD. However, this reverse association of plasma 
Hcys levels with the clinical outcome in ESRD patients is 
not only observed for hHcys, but also for many other car-
diovascular risk factors, including blood pressure, cho-
lesterol, and body size. Several possible explanations have 
been given for this reverse epidemiology in ESRD which 
include survival bias and discrepancies between compet-
itive risk factors. Among the most important confound-
ing factors to influence Hcys levels in ESRD patients are 
hypoalbuminemia, malnutrition, inflammation, and di-
abetes mellitus  [41] . In particular, malnutrition is consid-
ered a critical factor resulting in this reverse phenome-
non, since it leads to cachexia, now called ‘malnutrition-
inflammation-cachexia syndrome’  [42, 43] . Under this 
condition, a reverse association of plasma Hcys levels 
does not mean that high plasma Hcys levels produce ben-
eficial action, but rather indicate that high Hcys levels 
may reflect a better cachexia status of patients with 
ESRD.

  Potential Mechanisms of Hcys-Induced Toxicity in 

Glomeruli 

 Despite substantial evidence indicating the associa-
tion between hHcys and ESRD, the pathogenic role of 
increased plasma Hcys levels in the progression of ESRD 
remains controversial. Given the similarity of patholog-
ical changes between glomerular injury and Hcys-in-
duced arterial damages, such as endothelial injury, cell 
proliferation or growth, increased matrix formation, and 
aggregated proteoglycan  [20, 22] , it is assumed that an 
increase in plasma Hcys levels may also directly act on 
glomerular cells, resulting in glomerular injury and ulti-
mate sclerosis. Moreover, an impaired renal function will 
lead to a further increase in plasma Hcys levels which in 
turn exaggerates the progression of glomerular injury, re-
sulting in a vicious cycle and consequent glomeruloscle-
rosis and ESRD. In addition, Hcys may also produce det-
rimental actions or increase the risk of cardiovascular 
disease by decreasing plasma or tissue adenosine levels 
 [44, 45] . It is well known that adenosine evokes several 
biological actions in the cardiovascular system and par-
ticipates in the regulation of the renal function, including 
renal glomerular perfusion  [46] . We have demonstrated 
 [45]  that chronic elevations of the plasma Hcys concen-
trations in rats resulted in arteriosclerotic changes and 
glomerular dysfunction and sclerosis accompanied by a 
sustained low level of plasma adenosine. It is possible that 
the sclerotic effect of hHcys is associated with decreased 
adenosine. Indeed, it was demonstrated  [47]  that de-
creased adenosine levels are associated with enhanced 
proliferation or growth of vascular smooth muscle cells 
and sclerotic changes in arteries or glomeruli. Decreased 
adenosine concentrations during hHcys may be due to an 
enhanced activity of a bidirectonal enzyme, SAH hydro-
lase. As discussed above, Hcys is formed by hydrolysis of 
SAH via SAH hydrolase. At the same time, a molecule of 
adenosine is produced during this enzyme reaction. 
However, under certain conditions, this enzyme could 
catalyze the condensation of Hcys and adenosine to form 
SAH. In particular, when adenosine, Hcys, or both in-
creased, the SAH synthesis was markedly enhanced  [48] , 
resulting in a reduction of adenosine levels in blood or in 
different tissues. In a recent review, Deussen et al.  [44]  
have summarized recent findings regarding the pathoge-
nicity of adenosine in hHcys.

  With respect to the direct action of Hcys to damage 
cells or induce sclerotic changes, recent studies focus on 
several important cellular and molecular mechanisms. 
Below we summarize some of these recent findings re-
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lated to its damaging actions on glomerular cells and the 
possible role in the development of glomerular sclerosis 
or chronic renal failure. It is our belief that understanding 
these mechanisms will help further clarify the pathogen-
esis of ESRD under different pathological processes, such 
as hypertension and diabetes mellitus. Most importantly, 
some new directions for studies on Hcys-induced glo-
merular injury and prevention or treatment of hHcys-as-
sociated ESRD are suggested during discussion of these 
mechanisms.

  Local Oxidative Stress 

 In numerous studies, oxidative stress in local tissues or 
cells has been implicated in the pathological actions of 
hHcys. Hcys may reduce nitric oxide production and di-
rectly trap nitric oxide, thereby increasing tissue superox-
ide (O2·–) levels. It can also enhance the production of re-
active oxygen species (ROS) by auto-oxidation of itself 
and reduction of antioxidant enzyme activities, such as 
superoxide dismutase, thioredoxin/thioredoxin reduc-
tase, and glutathione peroxidase-1  [12, 16, 29, 49, 50] . In 
addition, redox regulation is also considered an impor-
tant mechanism in the regulation of the Hcys metabolism 
 [49] . With respect to the redox regulation of Hcys-me-
tabolizing enzymes, it seems that several enzymes in-
volved in the Hcys metabolism are redox sensitive, such 
as methionine synthase in remethylation and CBS,  � -glu-
tamylcysteine ligase, and glutathione synthetase in trans-
sulfuration  [49, 51–53] . For detail information regarding 
this redox regulation of the Hcys metabolism, the readers 
are directed to the recent review by Zou and Banerjee  [49] . 
Here we will mainly focus on the role of the redox mech-
anism in Hcys-induced pathogenic actions in hHcys.

  NADPH Oxidase 
 Although multiple enzymes may contribute to oxida-

tive stress in different tissues or cells, it is generally ac-
cepted that NADPH oxidase is a major source of ROS in 
many nonphagocytic cells  [54–57] . In the kidney, O2·– 
produced via NADPH oxidase can be detected in fibro-
blasts, endothelial cells, vascular smooth muscle cells, 
mesangial cells, tubular cells, and podocytes  [56–58] . 
This O2·–-producing enzyme in the kidney has similar 
characteristics to an NADPH oxidase identified in phago-
cytes. It consists of a membrane-bound flavocytochrome 
 b  558 , the three cytosolic subunits p47 phox , p67 phox  ,  and 
p40 phox , and a small GTPase, Rac1 or Rac2  [59, 60] . The 
membrane-bound flavocytochrome  b  558  is a complex of 

two membrane subunits, namely a flavin- and heme-
binding glycoprotein gp91 phox  and a smaller subunit 
p22 phox . In the past few years, a family of gp91 phox -like 
proteins, termed the nonphagocytic NAD(P)H oxidase 
(NOX) proteins, has been identified, including NOX1, 
NOX2 (gp91 phox ), NOX3, NOX4, and NOX5. In addition, 
DUOX1 and DUOX2 are 175- to 180-kDa proteins that 
have a domain homologous to gp91 phox  as well as an ad-
ditional peroxidase domain. All isoforms of NOX are ex-
pressed in the kidney, and NOX4 is originally described 
as a renal oxidase (renox)  [55, 59] . To produce O2·–, 
NADPH oxidase is normally activated by p47 phox  phos-
phorylation and translocation, Rac GTPase activation, or 
protein-protein interactions  [61] .

  Recent studies have demonstrated that NADPH oxi-
dase is importantly involved in the progressive glomeru-
lar injury associated with hHcys  [62–64] . In cultured rat 
mesangial cells,  L -Hcys (40–160  �  M , active form of Hcys) 
markedly increased the mRNA levels of tissue inhibitor of 
metalloproteinase-1 and led to accumulation of collagen 
type I which was accompanied by enhanced cell prolif-
eration and NADPH oxidase activity. These Hcys-in-
duced biochemical and functional changes could be sub-
stantially blocked by an NADPH oxidase inhibitor, DPI, 
or a superoxide dismutase mimetic, hydroxyl-tetrameth-
ylpiperidine-oxyl. Moreover, blockade of the NADPH ox-
idase subunit p22 phox  by its antisense oligodeoxynucleo-
tide also eliminated the increase in NADPH oxidase ac-
tivity induced by  L -Hcys  [65] . In the rat model of hHcys 
induced by a folate-free diet, glomerular sclerosis oc-
curred which is characterized by enhanced local oxidative 
stress, mesangial expansion, podocyte dysfunction, and 
fibrosis. When these rats with hHcys were treated with the 
NADPH oxidase inhibitor apocynin, the glomerular inju-
ries were significantly attenuated  [63, 66] , as shown by de-
creased urinary albumin excretion and reduced glomeru-
lar damage index. It is concluded that Hcys-induced local 
oxidative stress and consequent cell dysfunction and ex-
tracellular matrix (ECM) metabolism in glomerular cells 
are associated with enhanced NADPH oxidase activity. 
We also demonstrated that Hcys-induced activation of 
NADPH oxidase is associated with increased de novo ce-
ramide synthesis and consequent enhancement of Rac 
GTPase activity  [67] . Other studies have also confirmed 
that Hcys-induced ROS is associated with NADPH oxi-
dase. In addition, Hcys has been reported to cause mesan-
gial apoptosis via ROS generation and p38-mitogen-acti-
vated protein kinase activation  [62] . Taken together, these 
findings support the view that local oxidative stress or a 
change in redox status in glomeruli due to activation of 
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NADPH oxidase importantly contributes to glomerular 
injury and ultimate glomerular sclerosis in hHcys.

  The role of NADPH-oxidase-derived O2·– in mediat-
ing Hcys-induced cell injury or sclerosis is also confirmed 
in studies using other tissues or cells  [68] . Dai et al.  [69]  
have shown that Hcys-induced upregulation and translo-
cation of Ref-1 is due to ROS production via NADPH ox-
idase. Increased Ref-1 enhances nuclear factor-kappa B 
activity and monocyte chemoattractant protein-1 secre-
tion in monocytes/macrophages, accelerating the devel-
opment of atherosclerosis  [69] . There is also evidence that 
folic acid inhibits the Hcys-induced O2·– production via 
NADPH oxidase and nuclear factor-kappa B activation in 
macrophages which may constitute a solid basis for folic 
acid treatment in Hcys-induced oxidative stress and in-
flammatory responses  [70] . All these results obtained 
from both renal and nonrenal studies suggest that 
NADPH oxidase is an important intermediate enzyme, 
mediating Hcys-induced local oxidative stress and con-
sequent cell injury and tissue sclerosis, such as athero-
sclerosis and glomerular sclerosis.

  Mitochondria-Derived ROS 
 Another important source of O2·– is the electron trans-

port chain in mitochondria  [71] , where complexes I and 
III are primarily responsible for the generation of O2·– 
 [72] . Under certain conditions, such as hypoxia, mito-
chondria produce O2·– from the semiquinone form of co-
enzyme Q and a reduced component of NADH dehydro-
genase  [73] . Mitochondrial O2·– may be converted into 
H 2 O 2  by manganese superoxide dismutase, and the latter 
may freely diffuse into cytosol or other cellular compart-
ments and thereby produce various injurious effects. Evi-
dence is increasing that a continuous release of mitochon-
dria-derived H 2 O 2  or other ROS is an important mecha-
nism mediating the pathogenic action of Hcys in 
cardiovascular diseases  [74, 75] . For example, Tyagi et al. 
 [68]  have shown a positive relationship between cellular 
mitochondrial oxidative stress and systemic hypertension 
in hHcys. Sethi et al.  [76]  also reported that a combined 
metabolic burden of Hcys and high glucose stimulates ET-
1 synthesis in endothelial cells via a mitochondrial ROS-
dependent mechanism and thereby results in cell dys-
function. Given the similarity of pathological changes at 
the cellular or molecular levels in glomerular injury and 
arterial damages, mitochondria-derived ROS may also be 
importantly involved in the initiation and progression of 
Hcys-induced glomerular sclerosis. Further studies are 
needed to provide direct evidence demonstrating this mi-
tochondrial mechanism in glomerular cells.

  Endoplasmic Reticulum (ER) Stress 

 Recently, the Hcys-induced ER stress response has re-
ceived much attention, and increasing evidence indicates 
that this ER stress may represent an important funda-
mental mechanism mediating the pathogenic action of 
hHcys  [77–79] . The ER is an intracellular compartment 
that plays a critical role for protein synthesis and folding, 
calcium storage, and calcium release. It also serves as a 
site of biosynthesis for steroids, cholesterol, and other lip-
ids. Proteins that are translocated into the ER lumen un-
dergo posttranslational modifications and folding re-
quired for optimal function. Properly folded proteins are 
allowed to reach their destiny via the secretory pathway, 
whereas unfolded and misfolded proteins are exported or 
dislocated from the ER and then degraded by cytoplas-
mic proteasomes  [80, 81] . ER stress is referred to as a con-
dition under which unfolded and misfolded proteins are 
accumulated. Accumulation of these unfolded or mis-
folded proteins activates an unfolded protein response 
(UPR) which includes increased expressions of UPR-re-
sponsive genes, reduced global protein translation, and 
unfolded protein degradation. Recent studies have dem-
onstrated that Hcys causes ER stress by disruption of di-
sulfide bond formation and misfolding proteins. In addi-
tion, elevation of intracellular Hcys levels increases the 
expression of several ER stress response genes, including 
GRP78, GRP94, Herp, GADD153, and RTP  [77–79, 82] , 
among which increased GADD153 expression may acti-
vate cell death  [83] . Other mechanisms by which Hcys 
induces cell injury through ER stress may be associated 
with activation of IRE-1, a signaling molecule that leads 
to a rapid and sustained activation of JNK protein kinas-
es and cell apoptosis  [84, 85]  or dysregulation of the sterol 
response to Hcys. This multiple disturbance of protein 
and lipid metabolisms during Hcys-induced ER stress 
has been indeed observed as a mechanism for tissue or 
organ sclerotic changes in CBS-deficient patients with se-
vere hHcys and in a diet-induced mouse model of hHcys 
 [77] .

  Specific to the kidney, the pathophysiological role of 
ER stress in glomerular injury or chronic renal failure 
both in vitro and in vivo has also been reported. Inagi et 
al. provided evidence that complement attack against 
podocytes induces ER injury which is associated with up-
regulation of ER stress proteins such as GRP78 and 
GRP94 both in vivo and in vitro. By analysis of the ex-
pression of ER stress, the authors demonstrated that in-
ducible proteins such as GRP78, GRP94, and ORP150 in 
cultured podocytes treated with tunicamycin, A23187, 
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SNAP, and hyperglycemia are upregulated. Using a trans-
genic rat model that overexpresses a serine protease 
 inhibitor, megsin gene  [86, 87] , ER stress is detected in 
isolated glomeruli as shown by flooding of the protein-
handling system and subsequent accumulation of poly-
merizing megsin within the ER of podocytes. This ER 
stress of podocytes is accompanied by proteinuria and 
deterioration of the renal function  [86, 87] . It is clear that 
accumulation of proteins in the podocyte ER due to its 
stress contributes to the development of podocyte injury 
and proteinuria  [88] . Given that Hcys is a strong stimulat-
ing factor of ER stress and podocyte injury  [66] , it is pos-
sible that ER stress is an important pathogenic mecha-
nisms in Hcys-induced sclerosis.

  Homocysteinylation 

 Protein homocysteinylation is recently emerging as an 
important cellular mechanism responsible for Hcys-in-
duced toxicity in a variety of cells or tissues. It has been 
reported that there are many plasma proteins that may be 
homocysteinylated in vitro and in vivo  [89] . Protein ho-
mocysteinylation occurs through several different mech-
anisms, among which posttranslational acylation of free 
amino groups (protein-N-homocysteinylation) is one of 
the most important processes. This protein-N-linked 
Hcys is formed when Hcys thiolactone enters the blood 
circulation and reacts with an epsilon amino group of ly-
sine via its activated carbonyl group to form a stable am-
ide bond. Another type of protein homocysteinylation 
occurs through the formation of a covalent –S-S– bond 
by its reaction with cysteine residues (protein-S-homo-
cysteinylation)  [90–92] .

  Protein homocysteinylation may lead to its molecular 
damage and function loss. Among a number of homocys-
teinylated proteins, several are importantly involved in 
the sclerotic process in arteries, brain, or glomeruli. For 
example, low-density lipoprotein-N-homocysteinylation 
may cause protein aggregation, accumulation of intracel-
lular cholesterol, and formation of ‘foam cells’  [93] . This 
homocysteinylated low-density lipoprotein also induces 
oxidative stress in cultured human aortic endothelial 
cells which may lead to endothelial dysfunction, a key 
event of artherosclerotic plaque fromation  [94, 95] . An-
other homocysteinylated protein is fibronectin, an ECM 
protein. This fibronectin-S-homocysteinylation impairs 
fibronectin-fibrin interaction, resulting in dysfunction of 
cell adhesion and migration and tissue remodeling  [96] . 
Importantly, this homocysteinylated fibronectin may 

lead to abnormal ECM metabolism, promoting the devel-
opment of sclerotic processes.

  There is considerable evidence that protein homocys-
teinylation participates in glomerular sclerosis and in the 
development of ESRD. In this regard, Perna et al.  [90]  
have reported that plasma homocysteinylation increased 
in ESRD patients subject to hemodialysis, where both 
protein-N-homocysteinylation and protein-S-homocys-
teinylation are significantly higher as compared with 
normal subjects. It was demonstrated  [97]  that in patients 
with terminal renal failure without dialysis S-homocys-
teinylation and N-homocysteinylation reactions of pro-
teins are significantly enhanced which may contribute to 
the atherogenesis and progression of ESRD in these pa-
tients. Another interesting mechanism that possibly me-
diates glomerular injury or sclerosis induced by homo-
cysteinylation is the irreversible homocysteinylation of 
long-lived proteins in connective tissues. In this regard, 
an intensively studied extracellular connective tissue 
protein, fibrillin-1, and epidermal growth factor-like do-
main present in many other extracellular proteins are es-
pecially susceptible to Hcys (and presumably Hcy thio-
lactone) attacks  [98] . This homocysteinylation of these 
proteins may cause abnormal metabolism of the ECM, 
promoting the progression of glomerular sclerosis  [99, 
100] .

  Hypomethylation 

 Hcys-induced hypomethylation has been recognized 
as a pathogenic mechanism of Hcys even at an early stage, 
when this amino acid was considered a risk factor for car-
diovascular disease. There is increasing evidence that 
this hypomethylation during hHcys also participates in 
the progression of ESRD  [32, 93] . SAH as a potent com-
petitive inhibitor of methyltransferases may result in hy-
pomethylation which causes DNA damage and cell apop-
tosis and induces tissue inflammation and sclerotic re-
sponses  [101] . In patients with ESRD, a hypomethylation 
status of cellular proteins and DNA can be detected, as 
shown by high SAH intracellular concentrations, low 
SAM/SAH concentration ratios  [18, 102] , and inhibited 
protein methylation and repair  [103] . This supports the 
view that the toxic actions of Hcys may be mediated by 
DNA hypomethylation in ESRD. It is clear that this hy-
pomethylation induced by hHcys may alter the function 
of various cellular proteins, DNA, and gene expression 
and thereby initiate or promote the sclerotic process  [12, 
15] . For more detailed information about the role of Hcys-
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induced hypomethylation in the progression of ESRD, 
the recent review by van Guldener et al.  [15]  is suggested 
for further reading.

  Conclusions and Perspective 

 This review provides evidence that supports the role 
of Hcys in the development of glomerular sclerosis or 
ESRD and outlines several important cellular and mo-
lecular mechanisms by which Hcys may produce patho-
genic action on glomeruli to induce glomerular injury or 
sclerosis. These mechanisms include the role of local ox-
idative stress, ER stress, homocysteinylation, and hypo-
methylation. Due to space limitations, some other inter-
esting topics related to the possible mechanisms mediat-
ing Hcys-induced glomerular toxicity are not included, 
such as activation of proinflammatory factors, increased 
homocysteine thiolactone levels, and Hcys-induced ab-
normal mitochondrial biogenesis.  Figure 3  summarizes 
all discussed mechanisms to present an integrate picture 
for understanding pathogenesis of Hcys-induced glo-
merular injury and progression of ESRD. In perspective, 
further studies are much needed to provide more con-
vincing evidence demonstrating the contribution of these 

mechanisms to glomerular injury or sclerosis in in vivo  
 animal experiments and clinical studies. Some key tar-
gets in these pathogenic pathways for Hcys-induced in-
jury or sclerosis must be identified to direct toward pre-
vention or treatment of ESRD associated with hHcys 
which is particularly important since so far there are no 
efficient Hcys-lowering and Hcys-detoxifying strategies 
being used in chronic kidney disease patients. Although 
folic acid and some B vitamins may enhance Hcys me-
tabolism or decrease Hcys efflux into the plasma com-
partment, many studies have demonstrated that such fo-
late- or B-vitamin-based therapy is insufficient to over-
ride the primary defect of the Hcys metabolism in ESRD 
patients to restore plasma Hcys to a normal level. For ex-
ample, a very recent clinical study  [104]  reported that 
three large, randomized, controlled trials of patients with 
preexisting cardiovascular disease and two smaller, ran-
domized, controlled trials of patients with kidney failure 
failed to demonstrate any cardiovascular benefit from 
Hcys-lowering vitamins. Therefore, understanding the 
mechanisms responsible for Hcys-induced specific path-
ological actions may provide clues to develop new thera-
peutic strategies beyond lowering the plasma Hcys levels. 
It should be noted that despite some controversial clinical 
results or reports about the beneficial effect of Hcys-low-
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  Fig. 3.  Summarized mechanisms of homo-
cysteine-induced toxicity in the kidney. 
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ering therapy, conclusions should be drawn with caution, 
unless the plasma Hcys levels in patients with chronic 
renal failure or ESRD could become normal. We hope 
that this review could provide some useful information 
to help find valuable ideas in advancing this area, in par-
ticular, in developing new therapeutic strategies for the 
prevention of hHcys-associated glomerular injury or 
sclerosis.
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