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Abstract

In this article, two-person zero-sum games are investigated in the fuzzy environment. Several models constructed by Maeda in
the symmetrical fuzzy environment are extended to the models in the asymmetric fuzzy environment. The existence of equilibrium
strategies for these extended models is proposed in the asymmetric fuzzy environment. However, in some cases, Nash equilibrium
strategies may not exist. Therefore, two special cases are presented for which Nash equilibrium strategies do exist. In order to
investigate the existence of (weak) Pareto Nash equilibrium strategies for fuzzy matrix games, we introduce the concept of crisp
bi-matrix games with parameters. By solving the parametric bi-matrix games, we obtain the (weak) Pareto Nash equilibrium strategies
for the fuzzy matrix games.
© 2011 Elsevier B.V. All rights reserved.

Keywords: (Fuzzy) Two-person zero-sum games; Parametric bi-matrix games; (Weak) Pareto Nash equilibrium strategy

1. Introduction

Nash presented non-cooperative game theory [1] for conflict resolution based on the assumption that each player
had a well-defined quantitative utility function. In this paper, this assumption is violated because of the complexity of
problems in economics, engineering, social and political sciences and the difficulty inherent in defining a well-defined
quantitative payoff function for each player in these types of problems. Therefore, the gain or payoff of the players
should not be modeled as a crisp number. It should rather be formulated in terms of uncertain variables, such as
semantic variables, random variables, rough variables or fuzzy numbers, etc. This article uses fuzzy sets to measure
the uncertainty. In other words, if the player’s payoff is about 100 thousand dollars, it will be modeled as a fuzzy
number.

However, the risk preference of the decision makers or experts play an important role in modeling fuzzy information.
According to the prospect theory [2] presented by Kahneman and Tversky in 1979, people underweight outcomes that
are merely probable in comparison with outcomes obtained with certainty. This tendency contributes to risk aversion
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in choices involving sure gains and to risk seeking in choices involving sure losses. If the center of the triangular fuzzy
numbers are modeled as certain outcomes, the right extension (the left extension) should be gains (losses) compared
with the center. The gain does not always equal the loss because the decision makers or experts have different risk
preferences. Therefore, this article models the fuzzy information as asymmetric fuzzy numbers; in other words, the
expected payoffs of the players are assumed to be fuzzy numbers.

Many excellent works have contributed to the theory of non-cooperative fuzzy games, beginning with the work of
Butnariu [3]. He assigned a strategic composition for any crisp strategies and determined the equilibrium strategies
based on the fuzzy preference relations of the investment of the player’s pure strategy. Campos [4] modeled two-person
zero-sum games with fuzzy payoffs based on the fuzzy order and transformed the fuzzy games into fuzzy optimization
problems. Using Yager’s fuzzy numbers ordering method, he transformed the problem of finding a solution to the fuzzy
matrix games into a linear programming problem [5]. Sakawa and Nishizaki [6,7] investigated single-objective and
multi-objective games with fuzzy goals and fuzzy payoffs. They introduced a fuzzy goal for a payoff and assumed
that every player tried to maximize his degree of attainment of the fuzzy goal. Then, the equilibrium solutions with
respect to the degree of attainment of a fuzzy goal were defined. Finally, they transformed their models into a fractional
programming problem and solved the fractional programming problem by a relaxed method. Vijay, Bector and Chandra
[8–11] proposed non-cooperative games in uncertainty based on the duality in fuzzy linear programming. They defined
two types of solutions for the game and solved them by transforming the fuzzy dual problems into pairs of crisp dual
problems. Larbani [12–14] proposed a new class of games with fuzzy parameters involving two aspects: the game
aspect and a decision making under uncertainty aspect. When the players choose their strategies, they must consider
both the behavior of the other players and the possible realizations of the fuzzy parameter. Maeda [15,16] presented
three kinds of equilibrium strategies for fuzzy matrix games based on specific symmetric triangular fuzzy numbers and
investigated the existence conditions of equilibrium strategies for these models. However, it was hard to accept that
fuzzy payoffs were modeled as symmetric triangular fuzzy numbers.

This paper will generalize Maeda’s model, which was established based on symmetrical triangular fuzzy numbers,
and it will investigate all types of equilibrium strategies based on more general asymmetrical triangular fuzzy numbers.
In order to find the (weak) Pareto Nash equilibrium strategies of games with fuzzy payoffs, the crisp bi-matrix games
with parameters and their equilibrium strategies are given. For that purpose, this paper is organized as follows. In
Section 2, we introduce some basic definitions and notations on fuzzy set theory, followed by several different fuzzy
ordering methods (including the fuzzy maximum order presented by Ramík presented [17]). In Section 3, the fuzzy
zero-sum non-cooperative games and some useful notations about game theory are presented. Then, we focus on finding
the existence conditions for different equilibrium strategies and establishing the relation between the matrix games with
fuzzy payoffs and the crisp matrix games with parameters. In the last section, several examples are given to illustrate
our conclusions.

2. Preliminaries

In this section, we summarize some basic concepts of fuzzy sets, which were initiated by Zadeh [18,19] to measure
fuzzy events.

Definition 2.1. A fuzzy number ã is defined as a fuzzy set on the space of real numbers R, whose membership function
�ã(x) satisfies the following conditions:

(i) �ã(x) is a mapping from R to the closed interval [0,1];
(ii) there exists a unique real number c, called the center of ã, such that
(a) �ã(c) = 1,
(b) �ã(x) is nondecreasing on (− ∝, c],
(c) �ã(x) is nonincreasing on [c, ∝).

In the rest of this paper, the �-level sets of ã are defined for ã ∈ F and � ∈ [0, 1] as ã��{x ��ã(x) ≥ �, x ∈ R} .
ã0�{x ��ã(x) > 0, x ∈ R} is called the support of ã. aR

� � sup ã�, aL
� � inf ã�, and ã� = [aL

� , aR
� ].
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Definition 2.2. Let ã be a fuzzy number. If the membership function of ã is given by

�ã(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x − a + l

l
, x ∈ [a − l, a],

a + r − x

r
, x ∈ [a, a + r ],

0 otherwise,

where, a, l and r are all real numbers, and l and r are non-negative. Then, ã is called a triangular fuzzy number, denoted
by ã = (a, l, r ). We denote the sets of triangular fuzzy numbers as F.

Definition 2.3. Let ã, b̃ ∈ F, c ∈ R; Then, the membership function of the sum of ã and b̃ and the scalar product of
c and ã are defined as follows:

(i) �ã+b̃(x) = supx=�+� min{�ã, �b̃},
(ii) �cã(x) = max{supx=c�, 0}, with sup{�} = − ∝.

Lemma 2.1. Let ã = (a, l, r ), b̃ = (b, m, n) ∈ F, c ∈ R+. It holds that

(i) cã = (ca, cl, cr ),
(ii) ã + b̃ = (a + b, l + m, r + n).

Definition 2.4. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) be vectors in n-dimensional Euclidean space Rn .

(i) x�y if and only if xi ≤ yi holds with xi , yi ∈ R, i = 1, 2, . . . , n,

(ii) x ≤ y if and only if x�y and x � y hold,

(iii) x < y if and only if xi < yi holds with xi , yi ∈ R, i = 1, 2, . . . , n.

Definition 2.5 (Maeda [15]). Let ã, b̃ ∈ F be fuzzy numbers. Then,

(i) b̃ dominates ã (denoted by ã�b̃) if and only if (aL
� , aR

� )�(bL
� , bR

� ) hold with � ∈ [0, 1];

(ii) b̃ strictly dominates ã (denoted by ã�b̃) if and only if (aL
� , aR

� )≤(bL
� , bR

� ) hold with � ∈ [0, 1];

(iii) b̃ strongly dominates ã (denoted by ã ≺ b̃) if and only if (aL
� , aR

� )<(bL
� , bR

� ) hold with � ∈ [0, 1];

(iv) b̃ is equal to ã (denoted by ã = b̃) if and only if (aL
� , aR

� )=(bL
� , bR

� ) hold with � ∈ [0, 1].

It is obvious that (i) of Definition 2.5 is precisely equivalent to the fuzzy maximum order given in [17].

Theorem 2.1. Let ã = (a, l, r ), b̃ = (b, m, n) ∈ F, where a, b, l, m, r and n are all real numbers, and l,m,r and n are
all non-negatives; then,

(i) ã�b̃ if and only if max{m − l, 0} ≤ b − a and max{r − n, 0} ≤ b − a;

(ii) ã ≺ b̃ if and only if max{m − l, 0} < b − a and max{r − n, 0} < b − a hold.

The proof is omitted.

3. Several Nash equilibrium strategies for a two-person zero-sum game with fuzzy payoffs

Next, we introduce some useful definitions for non-cooperative games. Then, we focus on the games with fuzzy
payoffs.

Definition 3.1. Let M = {1, 2, . . . , m} and N = {1, 2, . . . , n} be the sets of pure strategies of Player I and Player J,
respectively. The mixed strategies of Player I and Player J are probability distributions on the sets of pure strategies,
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represented by

SI =
{

(x1, x2, . . . , xm) ∈ Rm |xi ≥ 0, i = 1, 2, . . . , m,

m∑
i=1

= 1

}
,

SJ =
{

(x1, x2, . . . , xn) ∈ Rm |xi ≥ 0, i = 1, 2, . . . , n,

n∑
i=1

= 1

}
,

respectively, where Rm is the m-dimensional real vector space.

In this paper, the payoffs of the pair (i, j) ∈ SI × SJ are modeled as asymmetric triangular fuzzy numbers ã =
(a, l, r ) ∈ F. The membership functions of the fuzzy payoffs are given based on the experts assessments.

Definition 3.2. Let ãi j ∈ F represent the incomes of Player I and the losses of Player J based on the pair (i, j) ∈
SI ×SJ . We then say that the game is a fuzzy two-person zero-sum game. The fuzzy payoff matrix of the game is given by

Ã =

⎛
⎜⎜⎝

ã11 · · · ã1n

...
. . .

...

ãm1 · · · ãmn

⎞
⎟⎟⎠ ,

where ãi j = (ai j , li j , ri j ) ∈ F. The fuzzy two-person zero-sum games are denoted by �̃ ≡ ({I, J }, SI , SJ , Ã) and are
also called fuzzy matrix games.

The expected payoffs of the players are E(x, y) = xT Ãy = ∑m
i=1

∑n
j=1 xi ãi j y j . By Lemma 1 of Ref. [17], E(x, y)

is still a triangular fuzzy number. The fuzzy matrix represents the fuzzy expected income matrix of Player I and the
fuzzy expected loss matrix of Player J. In the rest of this paper, we denote A = (ai j )m×n, L = (li j )m×n, R = (ri j )m×n,

AL
0 = A − L and AR

0 = A + R.

Definition 3.3 (Maeda [15]). A pair (x∗, y∗) ∈ SI × SJ is a Nash equilibrium strategy for a game �̃ if

(i) xT Ãy∗�x∗T Ãy∗, x ∈ SI ;
(ii) x∗T Ãy∗�x∗T Ãy, y ∈ SJ .

Definition 3.4 (Maeda [15]). A pair (x∗, y∗) ∈ SI × SJ is a Pareto Nash equilibrium strategy for a game �̃, if

(i) there exists no x ∈ SI such that x∗T Ãy∗�xT Ãy∗;
(ii) there exists no y ∈ SJ such that x∗T Ãy�x∗T Ãy∗.

Definition 3.5 (Maeda [15]). A pair (x∗, y∗) ∈ SI × SJ is a weak Pareto Nash equilibrium strategy for a game �̃ if

(i) there exists no x ∈ SI such that x∗T Ãy∗ ≺ xT Ãy∗;
(ii) there exists no y ∈ SJ such that x∗T Ãy ≺ x∗T Ãy∗.

Clearly, if the elements of Ã are all crisp number, the above three definitions then coincide with the Nash equilibrium
strategy for crisp two-person zero-sum games. Therefore, these definitions are natural generalizations of crisp two-
person zero-sum games.

Theorem 3.1. A pair (x∗, y∗) ∈ SI × SJ is the Nash equilibrium strategy for a fuzzy two-person zero-sum game
�̃ ≡ ({I, J }, SI , SJ , Ã) if and only if the following inequalities hold with x ∈ SI , y ∈ SJ :

xT Ay∗ ≤ x∗T Ay∗ ≤ x∗T Ay, (1)

xT Ay∗ − xT Ly∗ ≤ x∗T Ay∗ − x∗T Ly∗ ≤ x∗T Ay − x∗T Ly, (2)

xT Ay∗ + xT Ry∗ ≤ x∗T Ay∗ + x∗T Ry∗ ≤ x∗T Ay + x∗T Ry. (3)
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Proof. Let the pair (x∗, y∗) ∈ SI × SJ be a Nash equilibrium strategy for the game �̃. According to Theorem 2.1 and
Definition 3.3(i), we have

max{x∗T Ly∗ − xT Ly∗, 0} ≤ x∗T Ay∗ − xT Ay∗, (4)

max{xT Ry∗ − x∗T Ry∗, 0} ≤ x∗T Ay∗ − xT Ay∗. (5)

From (4), it follows that

x∗T Ly∗ − xT Ly∗ ≤ x∗T Ay∗ − xT Ay∗, 0 ≤ x∗T Ay∗ − xT Ay∗.

By rearranging, we get

xT Ay∗ − xT Ly∗ ≤ x∗T Ay∗ − x∗T Ly∗, xT Ay∗ ≤ x∗T Ay∗. (6)

Analogously, (5) implies that

xT Ry∗ − x∗T Ry∗ ≤ x∗T Ay∗ − xT Ay∗.

By rearranging, we get

xT Ry∗ + xT Ay∗ ≤ x∗T Ay∗ + x∗T Ry∗. (7)

Analogously, from Theorem 2.1 and Definition 3.3(ii), we have

x∗T Ay∗ − x∗T Ly∗ ≤ x∗T Ay − x∗T Ly, x∗T Ay∗ ≤ x∗T Ay. (8)

x∗T Ay∗ + x∗T Ry∗ ≤ x∗T Ry + x∗T Ay. (9)

By rearranging (6)–(9), we get (1)–(3).
Otherwise, according to (1),

0 ≤ x∗T Ay∗ − xT Ay∗. (10)

From (2), it follows that

xT Ay∗ − xT Ly∗ ≤ x∗T Ay∗ − x∗T Ly∗, (11)

x∗T Ay∗ − x∗T Ly∗ ≤ x∗T Ay − x∗T Ly. (12)

From (3), it follows that

xT Ay∗ + xT Ry∗ ≤ x∗T Ay∗ + x∗T Ry∗, (13)

x∗T Ay∗ + x∗T Ry∗ ≤ x∗T Ay + x∗T Ry. (14)

Combining (10) with (11), we obtain (4). Combining (10) with (13), we get (5). Therefore, we have Definition 3.3(i)
by Theorem 2.1.

Analogously, from Theorem 2.1 and the results of rearranging (10), (13) and (14), we obtain Definition 3.3(ii). �

By the above result, combining xT Ay − xT Ly = xT AL
0 y and xT Ay + xT Ry = xT AR

0 y, we conclude that fuzzy
two-person zero-sum games are equivalent to the following three matrix games �l ≡ ({I, J }, SI , SJ , AL

0 ), �c ≡
({I, J }, SI , SJ , A), �r ≡ ({I, J }, SI , SJ , AR

0 ). If we denote these three two-person zero-sum matrix games �l , �c, and
�r as a triple (AL

0 , A, AR
0 ), then the following corollary holds.

Corollary 3.1. The pair (x∗, y∗) ∈ SI × SJ is the Nash equilibrium strategy for the game �̃ if and only if the pair is
the Nash equilibrium strategy of the triple (AL

0 , A, AR
0 ), that is,

xT (AL
0 , A, AR

0 )y∗�x∗T (AL
0 , A, AR

0 )y∗�x∗T (AL
0 , A, AR

0 )y

where xT (AL
0 , A, AR

0 )y = (xT AL
0 y, xT Ay, xT AR

0 y).
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We have presented equivalent conditions for Nash equilibrium strategies in the fuzzy environment. Unfortunately,
we have found that the games with fuzzy payoffs do not always have a Nash equilibrium strategy, such as in
Example 3.1. However, in the following cases, there exists at least one Nash equilibrium strategy.

Definition 3.6. Let Ã = (ãi j )m×n be the fuzzy payoff matrix of game �̃; it is said to be a proportional fuzzy game if
and only if there exists k1, k2 ∈ (0, 1] such that

k1ai j = li j , k2ai j = ri j , i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Theorem 3.2. Let Ã = (ãi j )m×n be the payoff matrix of a proportional fuzzy game �̃; the pair (x∗, y∗) ∈ SI × SJ

is the Nash equilibrium strategy for the game �̃ if and only if (x∗, y∗) is still the Nash equilibrium strategy for the
game �c.

The proof is omitted.

Definition 3.7. Let Ã = (ãi j )m×n be the fuzzy payoff matrix of game �̃; it is said to be a constant extension fuzzy
game if and only if there exists l, r ∈ R such that

li j = l, ri j = r, i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Theorem 3.3. Let Ã = (ãi j )m×n be the payoff matrix of a constant extension fuzzy game �̃; the pair (x∗, y∗) ∈ SI × SJ

is the Nash equilibrium strategy for the game �̃ if and only if (x∗, y∗) is still the Nash equilibrium strategy for the
game �c.

Proof. From Definition 3.7, L and R are both constant matrices. Therefore, by Lemma 1 of Ref. [17],

ãi j = (l, ai j , r ) = ai j + (l, 0, r ) = ai j + d̃,

where d̃ = (l, 0, r ). Hence, for x ∈ SI , y ∈ SJ , we obtain the following equations:

xT Ãy =
m∑

i=1

n∑
j=1

xi ãi j y j =
m∑

i=1

n∑
j=1

xi (ai j + d̃)y j =
m∑

i=1

n∑
j=1

xi ai j y j +
m∑

i=1

n∑
j=1

xi d̃ y j = xT Ay + d̃. (15)

Next, let (x∗, y∗) ∈ SI × SJ be the Nash equilibrium strategy of the game �c; it follows that

xT Ay∗ ≤ x∗T Ay∗ ≤ x∗T Ay.

Combining Definition 2.5 with Lemma 1 of Ref. [17], it is obvious that the above inequalities are equivalent to

xT Ay∗ + d̃�x∗T Ay∗ + d̃�x∗T Ay + d̃.

Using (15), this is also equivalent to

xT Ãy∗�x∗T Ãy∗�x∗T Ãy.

In other words, the pair (x∗, y∗) satisfies Definition 3.3.
And vice versa.
Thus, Theorem 3.3 is proved. �

Theorem 3.4. Let �̃ ≡ ({I, J }, SI , SJ , Ã) be fuzzy two-person zero-sum games. A pair (x∗, y∗) ∈ SI × SJ is the
Pareto Nash equilibrium strategy for the game �̃ if and only if

(i) there exists no x ∈ SI such that

x∗T (AL
0 , AR

0 )y∗ ≤ xT (AL
0 , AR

0 )y∗ and x∗T Ay∗ ≤ xT Ay∗; (16)
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(ii) there exists no y ∈ SJ such that

x∗T (AL
0 , AR

0 )y ≤ x∗T (AL
0 , AR

0 )y∗ and x∗T Ay ≤ x∗T Ay∗. (17)

Proof. Let the pair (x∗, y∗) ∈ SI × SJ be the Pareto Nash equilibrium for the game �̃. First, we assume that there
exists a strategy x ∈ SI such that (16) holds, that is,

x∗T (A − L , A + R)y∗ ≤ xT (A − L , A + R)y∗ and x∗T Ay∗ ≤ xT Ay∗. (18)

As above, this implies the following:

x∗T (A − L)y∗ ≤ xT (A − L)y∗, x∗T (A + R)y∗ ≤ xT (A + R)y∗.

Furthermore, the above two inequalities do not occur simultaneously. Thus, for � ∈ [0, 1), from the above inequalities,
it follows that

(x∗T (�A + (1 − �)(A − L))y∗, x∗T (�A + (1 − �)(A + R))y∗)

≤ (xT (�A + (1 − �)(A − L))y∗, xT (�A + (1 − �)(A + R))y∗).

By rearranging, this implies that

(x∗T (A − (1 − �)L)y∗, x∗T (A + (1 − �)R)y∗) ≤ (xT (A − (1 − �)L)y∗, xT (A + (1 − �)R)y∗),

that is, x∗T Ãy∗�xT Ãy∗, by Definition 2.5. This is a contradiction.
Analogously, there exists no y such that (17) holds.
Otherwise, let the pair (x∗, y∗) ∈ SI × SJ satisfy (16) and (17). Assume that there exists a strategy x ∈ SI such that

x∗T Ãy∗�xT Ãy∗. From Definition 2.5, for � ∈ [0, 1), it is clear that

x∗T (AL
� , AR

� )y∗ ≤ xT (AL
� , AR

� )y∗

furthermore, AL
� and AR

� are continuous with respect to �. Therefore, let � tend to 1, it follows

x∗T Ay∗ ≤ xT Ay∗.

Set � = 0, it follows

x∗T (AL
0 , AR

0 )y∗ ≤ xT (AL
0 , AR

0 )y∗.

These contradict (16).
Analogously, it is clear that there exists no y ∈ SJ such that x∗T Ãy�x∗T Ãy∗. �

Theorem 3.5. Let �̃ ≡ ({I, J }, SI , SJ , Ã) be fuzzy two-person zero-sum games. A pair (x∗, y∗) ∈ SI × SJ is the weak
Pareto Nash equilibrium strategy for the game �̃ if and only if

(i) there exists no x ∈ SI such that

x∗T (AL
0 , A, AR

0 )y∗ < xT (AL
0 , A, AR

0 )y∗;
(ii) there exists no y ∈ SJ such that

x∗T (AL
0 , A, AR

0 )y < x∗T (AL
0 , A, AR

0 )y∗.

Proof. The proof of this theorem is similar to that of Theorem 3.6. �

Next, parametric bi-matrix games will be characterized, and other types of Nash equilibrium strategies will be
investigated through parametric bi-matrix games.
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Let �̃ ≡ ({I, J }, SI , SJ , Ã) be fuzzy two-person zero-sum games, and suppose that Player I chooses pure strategy i
and Player J chooses pure strategy j; we set (1−�)(ai j − li j )+�(ai j +ri j ) to be payoffs of Player I and −[(1−�)(ai j −
li j ) + �(ai j + ri j )] to be the payoffs of Player J, where �, � ∈ [0, 1]. The payoff matrices of Player I and Player J are

A(�) = (1 − �)(A − L) + �(A + R) and − A(�) = −[(1 − �)(A − L) + �(A + R)].

Then, we have the parametric bi-matrix game �(�, �) ≡ ({I, J }, SI , SJ , A(�), −A(�)), where � and � are parameters.

Definition 3.8. A pair (x∗, y∗) ∈ SI × SJ is the Nash equilibrium strategy of the parametric bi-matrix game �(�, �)
with �, � ∈ [0, 1], if

(i) xT A(�)y∗ ≤ x∗T A(�)y∗, x ∈ SI ;
(ii) x∗T A(�)y∗ ≤ x∗T A(�)y, y ∈ SJ .

Lemma 3.1. There exists at least one Nash equilibrium strategy for all parametric bi-matrix games �(�, �) with
�, � ∈ [0, 1].

Theorem 3.6. Let the pair (x∗, y∗) ∈ SI × SJ be the Nash equilibrium strategy for the parametric bi-matrix game
�(�, �) with �, � ∈ (0, 1). Then, (x∗, y∗) is the Pareto Nash equilibrium strategy for the game �̃.

Proof. Let (x∗, y∗) be the Nash equilibrium strategy for the parametric bi-matrix game �(�0, �0), where �0, �0 ∈ (0, 1).
For x ∈ SI , from Definition 3.8(i), it follows that

(1 − �0)xT AL
0 y∗ + �0xT AR

0 y∗ ≤ (1 − �0)x∗T AL
0 y∗ + �0x∗T AR

0 y∗. (19)

For y ∈ SJ , from Definition 3.8(ii), it follows that

(1 − �0)x∗T AL
0 y∗ + �0x∗T AR

0 y∗ ≤ (1 − �0)x∗T AL
0 y + �0x∗T AR

0 y. (20)

First, we assume there exists x ∈ SI such that x∗T Ãy∗�xT Ãy∗ holds. From Definition 2.5, it follows that

(x∗T AL
0 y∗, x∗T AR

0 y∗) ≤ (xT AL
0 y∗, xT AR

0 y∗).

Because x∗T AL
0 y∗ = xT AL

0 y∗ and x∗T AR
0 y∗ = xT AR

0 y∗ do not occur simultaneously, we have

(1 − �0)x∗T AL
0 y∗ + �0x∗T AR

0 y∗ < (1 − �0)xT AL
0 y∗ + �0xT AR

0 y∗, � ∈ (0, 1).

This contradicts (19).
Analogously, we conclude that (x∗, y∗) satisfies Definition 3.8(ii). Thus, the theorem is proved. �

Theorem 3.7. Let the pair (x∗, y∗) ∈ SI × SJ be the Nash equilibrium strategy for the parametric bi-matrix game
�(�, �) with �, � ∈ [0, 1]. Then, (x∗, y∗) is the weak Pareto Nash equilibrium strategy for the game �̃.

Proof. The proof of this theorem is similar to that of the Theorem 3.6. �

From Theorems 3.6, 3.7 and Lemma 3.1, it is easy to conclude the following theorem.

Theorem 3.8. Let �̃ be two-person zero-sum games with fuzzy payoffs. The following properties hold:

(i) there exists at least one Pareto Nash equilibrium strategy for the game �̃;
(ii) there exists at least one weak Pareto Nash equilibrium strategy for the game �̃.

Example 3.1. Let Ã be the fuzzy payoff matrix of the fuzzy two-person zero-sum game �̃, given as follows:

Ã =
(

(100, 10, 15) (85, 5, 10)

(80, 5, 5) (185, 15, 20)

)
.
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Find the Nash equilibrium strategies, Pareto Nash equilibrium strategies and the weak Pareto Nash equilibrium strategies
for the game �̃.

We denote by xT = (t, 1 − t) and yT = (s, 1 − s) the mixed strategies of Player I and Player J, respectively. It is
easy to show that there is no (x, y) ∈ SI × SJ satisfying (1), (2) and (3) at the same time. Hence, there is no Nash
equilibrium strategy for the game �̃.

Then, for �(�, �) with �, � ∈ [0, 1], we define two payoff matrices as follows:

A(�) =
(

90 + 25� 80 + 15�

75 + 10� 170 + 35�

)
, A(�) =

(
90 + 25� 80 + 15�

75 + 10� 170 + 35�

)
.

It is easy to see that the Nash equilibrium strategies for the parametric bi-matrix game �(�, �) satisfy the following:

(1, 0)A(�)y ≤ xT A(�)y, (0, 1)A(�)y ≤ xT A(�)y,

xT A(�)y ≤ xT A(�)(0, 1)T , xT A(�)y ≤ xT A(�)(1, 0)T .

The above inequalities are equivalent to{
(105 + 35�)(1 − t)s − (90 + 20�)(1 − t) ≤ 0,

(105 + 35�)st − (90 + 20�)t ≥ 0.{
(105 + 35�)(1 − s)t − (95 + 25�)(1 − s) ≥ 0,

(105 + 35�)st − (95 + 25�)s ≤ 0.

Thus, for �, � ∈ (0, 1), Nash equilibrium strategies for the parametric bi-matrix game �(�, �) are as follows:

x∗T = (x∗
1 , x∗

2 ) =
(

95 + 25�

105 + 35�
,

10 + 10�

105 + 35�

)
, y∗T = (y∗

1 , y∗
2 ) =

(
90 + 20�

105 + 35�
,

15 + 15�

105 + 35�

)
.

By Theorems 3.6 and 3.7, the Pareto Nash equilibrium strategies and the weak Pareto Nash equilibrium strategies for
the game �̃ are as follows:

P N =
{

(x∗T , y∗T ) =
((

95 + 25�

105 + 35�
,

10 + 10�

105 + 35�

)
,

(
90 + 20�

105 + 35�
,

15 + 15�

105 + 35�

))∣∣∣∣ �, � ∈ (0, 1)

}
,

W P N =
{

(x∗T , y∗T ) =
((

95 + 25�

105 + 35�
,

10 + 10�

105 + 35�

)
,

(
90 + 20�

105 + 35�
,

15 + 15�

105 + 35�

))∣∣∣∣ �, � ∈ [0, 1]

}
.

Example 3.2. Let Ã be the payoff matrix of the fuzzy two-person zero-sum game �̃, given as follows:

Ã =
(

(70, 7, 14) (90, 9, 18)

(110, 11, 22) (30, 3, 6)

)
.

Find the Nash equilibrium strategies for the game �̃.
It is obvious that �̃ is a proportional fuzzy game. From Theorem 3.2, it is easy to show that the Nash equilibrium

strategy and the value of game �̃ are given by((
4

5
,

1

5

)
,

(
3

5
,

2

5

))
, v�̃ =

(
4

5
,

1

5

)
Ã

(
3

5
,

2

5

)T

= (74, 7.4, 14.8).

Example 3.3. Let Ã be the payoff matrix of the fuzzy two-person zero-sum games �̃, given as follows:

Ã =
(

(40, 7, 4) (70, 7, 4)

(50, 7, 4) (20, 7, 4)

)
.

Find the Nash equilibrium strategies for the game �̃.
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It is obvious that �̃ is a constant extension fuzzy game. From Theorem 3.3, it is easy to show that the Nash equilibrium
strategy and the value of game �̃ are given by((

1

2
,

1

2

)
,

(
5

6
,

1

6

))
, v�̃ =

(
1

2
,

1

2

)
Ã

(
5

6
,

1

6

)T

=
(

130

3
, 7, 4

)
.

4. Conclusion

In this paper, we have developed a new theoretical approach to two-person zero-sum games with fuzzy payoffs. We
then examined some extensions of Maeda’s models and generalized existence conditions for all types of equilibrium
strategy from models based on symmetric triangular numbers to models based on asymmetric triangular numbers. By
investigating crisp parametric bi-matrix games, we presented a method to find the (weak) Pareto Nash equilibrium
strategy for fuzzy games. It is also easy to see that all the generalizations of Nash equilibrium strategy that we have
defined here are natural extensions of the Nash equilibrium strategy for the crisp matrix games, and our models are
more general than Maeda’s models.
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