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a b s t r a c t

The operating speed of the rotating machinery often exceeds the second or even higher
order critical speeds to pursue higher efficiency. Thus, how to restrain the higher order
mode instability caused by the nonlinear oil-film force and seal force at high speed as far
as possible has become more and more important. In this study, a lumped mass model of a

self-lubricating bearing and the sliding bearing are simulated by a spring-damping model
and a nonlinear oil-film force model based on the assumption of short bearings,
respectively. The seal is simulated by Muszynska nonlinear seal force model. Effects of
the seal force and oil-film force on the first and second mode instabilities are investigated
under two loading conditions which are determined by API Standard 617 (Axial and
Centrifugal Compressors and Expander-compressors for Petroleum, Chemical and Gas
Industry Services, Seventh Edition). The research focuses on the effects of exciting force
forms and their magnitudes on the first and second mode whips in a rotor-bearing-seal
system by using the spectrum cascades, vibration waveforms, orbits and Poincaré maps.
The first and second mode instability laws are compared by including and excluding the
seal effect in a rotor system with single-diameter shaft and two same discs. Meanwhile,
the instability laws are also verified in a rotor system with multi-diameter shaft and two
different discs. The results show that the second loading condition (out-of-phase
unbalances of two discs) and the nonlinear seal force can mainly restrain the first mode
instability and have slight effects on the second mode instability. This study may
contribute to a further understanding about the higher order mode instability of such a
rotor system with fluid-induced forces from the oil-film bearings and seals.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Modern rotating machines, such as turbines, compressors, generators, are designed for high speed, flexibility and
efficiency. In order to avoid unstable vibrations at higher operating speeds, more and more attention has been paid on the
self-excited vibration, which is induced by the interaction between the rotor and surrounding fluid. Fluid-induced forces
mainly include the force from the oil-film bearings and seals. It can lead to significant alternating stresses in the rotor, the
high-level vibration, the rubbing between the rotor and the stator and the potential damage of the rotating machinery
eventually. So the research on the mechanism of fluid–solid interaction in the rotor-bearing-seal system is of great
importance for modern rotating machines.
All rights reserved.
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Nomenclature

c bearing clearance
cblx, cbly dampings of the left bearing in x and y

directions
cf radial clearance of seal
C damping matrix of the global system
C1 Rayleigh damping matrix
C2 bearing damping matrix
D bearing diameter
Df equivalent damping
ef the radio of the rotor radial displacement to

seal clearance
E Young's modulus of elasticity
fr rotating frequency
fbx5, fby5 dimensionless oil-film forces in x and y

directions
fn1,fn2 the first and second mode whirl/whip

frequencies
Fb oil-film force vector of the bearing
Fbx5, Fby5 oil-film forces in x and y directions
Fe unbalanced force vector of the rotor system
Fs nonlinear seal force vector of the rotor system
Fsx3, Fsx4, Fsy3,Fsx4 nonlinear seal forces of the disc 1 and

disc 2 in x and y directions
g acceleration of gravity
G gyroscopic matrix
I moment of inertia
Jdi(i¼1,2,3,4,5) diametral moment of inertia of lumped

points
Jpi(i¼1,2,3,4,5) polar moment of inertia of lumped

points

K stiffness matrix of the global system
Kf equivalent stiffness
lf length of seal
li the distance between every two consecutive

lumped mass points
L bearing length
mf equivalent mass
mi (i¼1,2,3,4,5) lumped mass
m3r, m4r unbalance moments of two discs
m0, n0 experiential coefficients, determined by

experiments and material structure of seal
M general mass matrix of the global system
ΔP pressure margin of seal
q displacement vector
~q dimensionless displacement vector
r eccentricity of the disc
Rf radius of seal
v axial fluid speed
xi, yi (i¼1,2,3,4,5) displacements in x and y directions
~xi; ~yiði¼ 1;2;3;4;5Þ dimensionless displacements in x

and y directions
η lubricant viscosity
θxi, θyi angles of orientation associated with the x and

y axes
ξ inlet loss coefficient
ξ1, ξ2 the first and second modal damping ratios
τf fluid average circumferential velocity ration
υ fluid dynamic viscous coefficient
φ1, φ2 initial phase angle of two discs
ω rotating speed of rotor
ωn1, ωn2 the first and second natural frequencies
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In earlier studies, the linear stiffness and damping coefficients are widely adopted to simulate the dynamic
characteristics of bearings and seals [1,2]. However, the observed phenomena show that the bearing and seal fluid forces
present strong nonlinearity. And the linear model will fail to analyze the nonlinear dynamic behaviors of the rotor-bearing-
seal system under some conditions, such as the large perturbed motion of the journal.

In order to simulate the nonlinearity of the sliding bearing better, some nonlinear oil-film force models have been
proposed, such as in papers [3–5]. Based on Capone model, Adiletta et al. [6] analyzed the possible chaotic motions resulted
from the nonlinear response of bearings; Jing et al. [7,8] studied the nonlinear dynamic behaviors of a rotor-bearing system
considering the oil whip phenomenon; de Castro et al. [9] researched the system instability threshold influenced by the
unbalance, rotor arrangement form and bearing parameters; Ding et al. [10] analyzed the non-stationary dynamic responses
of the system during speed-up with a constant angular acceleration for a multi-bearing rotor. Based on the non-steady
nonlinear oil-film force model presented by Zhang [5], Ding et al. [11] analyzed non-stationary processes of a rotor-bearing
system by taking the rotating angular speed as control parameter. In his another paper [12], Ding et al. studied dimension
reductions of a continuous rotor system by the standard Galerkin method and the nonlinear Galerkin method, and his
results revealed that transitions or bifurcations of the rotor whirl from being synchronous to nonsynchronous as the
unstable speed was exceeded. Zhang et al. [13] presented a mathematical model and a computational methodology to
simulate the complicated flow behaviors of the journal microbearing in the slip regime, and their investigation showed that
the rotor motion was stable with half-frequency whirling when the system located in the lower stability region, and the
rotor had high-frequency whirling when the system located in the upper stability region.

The seal force models have also been developed by many researchers. Alford [14] derived the formula of the gas exciting
force first to research on the stability of aeroengine. The Alford model could explain some basic phenomena, but it was a
simple linear one. Based on Hirs' turbulent lubrication equations, Childs [15] derived dynamic coefficient expressions for
high-pressure annular seals typical of neck-ring and interstage seals employed in multistage centrifugal pumps. Muszynska
[16,17] proposed a simple model of nonlinear fluid dynamic force generated in the seal based on the results of a series of
experiments.
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Based on Muszynska nonlinear seal force model, Li et al. [18] determined the empirical parameters of gas exciting force

of the Muszynska model by using the results of computational fluid dynamics (CFD); Li et al. [19] analyzed dynamic
behaviors of an unbalanced rotor-seal system with sliding bearings based on Floquet theory and the bifurcation theorem;
Hua et al. [20] established a nonlinear model of rotor-seal system and investigated the nonlinear behavior of the unbalanced
rotor-seal system by using an efficient and high-precision direct integration method; Ding et al. [21] investigated a
symmetric rotor/seal system and analyzed the Hopf bifurcation of the system; Wang et al. [22] established a nonlinear
mathematical model for orbital motion of the rotor system under the influence of leakage flow through an interlocking seal.

Considering the coupled effect of the nonlinear oil-film force and seal force, many researchers studied the dynamic
behaviors of the rotor-bearing-seal system. Cheng et al. [23,24] and Shen et al. [25,26] investigated nonlinear dynamic
behaviors of a rotor-bearing-seal coupled system by using the nonlinear oil-film forces obtained under the short bearing
theory and Muszynska nonlinear seal force model. Based on an unsteady oil-film force proposed by Zhang and Muszynska
seal force model, Li et al. [27,28] established a new dynamic model of a rotor system by the Hamilton principle and the finite
element method, and they analyzed the coupled effects of the nonlinear oil-film force, the nonlinear seal force, and the mass
eccentricity of the disc; Wang et al. [29] studied the nonlinear coupling vibrations excited by a labyrinth seal and two air-
film journal bearings through numerical simulations for high-speed centrifugal compressors.

It should be noted that in all the above researches, only the first mode instability (oil whirl/whip) was concerned. In fact,
the operating speed of the rotating machinery often exceeds the second or even higher order critical speed to pursue higher
efficiency. Thus, the second mode instability can appear when the operating speed approaches or exceeds twice the second-
order critical speed according to the literatures [16,30-32]. The researches about the coupled effects of the nonlinear oil-film
force and seal force on the second mode instability have not been found. In this paper, influences of the nonlinear oil-film
force coupled with seal force on the first and the second mode instabilities of a rotor-bearing-seal system, attached with two
discs, are investigated. A nonlinear oil-film force model under short bearing assumption [3,4] and Muszynska seal force
model [16,17] are adopted. Numerical integrations are used to get the solutions because of the nonlinearity of oil-film and
seal forces. Spectrum cascade, vibration waveform, orbit and Poincaré map are applied to analyze various nonlinear
phenomena and system unstable processes.

This paper consists of five sections. After this introduction, in Section 2, mathematical model of a rotor-bearing-seal
system is established considering the nonlinearity of sliding bearing and seal. In Section 3, the first and second mode
instability laws are compared by including and excluding the seal effect in a rotor system with single-diameter shaft and
two same discs (simulation 1), and the effects of rotating speeds and eccentricities of disc on system instability are discussed
under two loading conditions. Then, for examining the universality of simulation 1, Section 4 analyzes the instability laws in
a rotor system with multi-diameter shaft and two different discs (simulation 2) under two loading conditions by adopting
the same analysis method as that in Section 3. Finally, some conclusions are drawn in Section 5.
2. Mathematical model of a rotor-bearing-seal system with two discs

In order to study oil-film instability efficiently, a mathematical model of a rotor-bearing-seal system, which is depicted in
Fig. 1, is simplified according to the following assumptions:
(a)
 The movements of the rotor in torsional and axial directions are negligible; the journals, coupling and discs are
simulated by five lumped mass points and the corresponding points are connected by massless shaft sections of lateral
stiffness; each point has four degrees of freedom including two rotations and two translations, as is shown in Fig. 1b. In
the figure, mi (i¼1,2,3,4,5) and ω are lumped masses and rotating speed respectively.
(b)
 The left bearing shown in Fig. 1b is a graphite bearing, which is simulated by a spring-damping model in this paper, and
the right one is a sliding bearing simulated by a nonlinear oil-film force model [3,4].
2.1. Equation of motion

The dynamic equation of the rotor-bearing-seal system with twenty degrees of freedom can be deduced as follows:

M €qþ ðGþ CÞ _qþ Kq¼ Fe þ Fb þ Fs−Fg ; (1)

q¼ ½x1; θy1; x2; θy2; x3; θy3; x4; θy4; x5; θy5; y1; θx1; y2; θx2; y3; θx3; y4; θx4; y5; θx5�T (2)

where xi, yi, θxi and θyi (i¼1,2,3,4,5) are the displacements in x and y directions and angles of orientation associated with the
x and y axes, respectively.

M¼
Mx 0
0 My

" #
; Mx ¼My ¼ diag½m1; Jd1;m2; Jd2;m3; Jd3;m4; Jd4;m5; Jd5� (3)
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Fig. 1. Physical dimension and schematic diagram of a rotor-bearing-seal system: (a) physical dimension and (b) schematic diagram.
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G¼ωJ¼ω
0 J1
−JT1 0

" #
; J1 ¼ diag½0; Jp1;0; Jp2;0; Jp3;0; Jp4;0; Jp5�; (4)

where Jpi and Jdi (i¼1,2…5) are the polar moment of inertia and the diametral moment of inertia of lumped mass points,
respectively.

K¼
Kx 0
0 Ky

" #
; (5)

Kx ¼

k11 k12 k13 k14 0 0 0 0 0 0
k12 k22 k23 k24 0 0 0 0 0 0
k13 k23 k33 þ kblx k34 k35 k36 0 0 0 0
k14 k24 k34 k44 k45 k46 0 0 0 0
0 0 k35 k45 k55 k56 k57 k58 0 0
0 0 k36 k46 k56 k66 k67 k68 0 0
0 0 0 0 k57 k67 k77 k78 k79 k7;10
0 0 0 0 k58 k68 k78 k88 k89 k8;10
0 0 0 0 0 0 k79 k89 k99 k9;10
0 0 0 0 0 0 k7;10 k8;10 k9;10 k10;10

2
66666666666666666664

3
77777777777777777775

(6)

Ky ¼

k11 −k12 k13 −k14 0 0 0 0 0 0
−k12 k22 −k23 k24 0 0 0 0 0 0
k13 −k23 k33 þ kbly −k34 k35 −k36 0 0 0 0
−k14 k24 −k34 k44 −k45 k46 0 0 0 0
0 0 k35 −k45 k55 −k56 k57 −k58 0 0
0 0 −k36 k46 −k56 k66 −k67 k68 0 0
0 0 0 0 k57 −k67 k77 −k78 k79 −k7;10
0 0 0 0 −k58 k68 −k78 k88 −k89 k8;10
0 0 0 0 0 0 k79 −k89 k99 −k9;10
0 0 0 0 0 0 −k7;10 k8;10 −k9;10 k10;10

2
66666666666666666664

3
77777777777777777775

(7)
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The matrix elements of Kx and Ky are as follows:

k11 ¼ a11
k12 ¼ a21
k13 ¼−a11
k14 ¼ a21

;

k22 ¼ l1a21−a31
k23 ¼ −a21
k24 ¼ a31

;

k33 ¼ a11 þ a12
k34 ¼−a21 þ a22
k35 ¼−a12
k36 ¼ a22

;

8>>>><
>>>>:

8>>>><
>>>>:

8>>>><
>>>>:

k44 ¼ l1a21−a31 þ l2a22−a32
k45 ¼−a22
k46 ¼ a32

;

k55 ¼ a12 þ a13
k56 ¼−a22 þ a23
k57 ¼−a13
k58 ¼ a23

;

k66 ¼ l2a22−a32 þ l3a23−a33
k67 ¼−a23
k68 ¼ a33

;

8><
>:

8>>>><
>>>>:

8>>>><
>>>>:

k77 ¼ a13 þ a14
k78 ¼−a23 þ a24
k79 ¼−a14
k7;10 ¼ a24

;

k88 ¼ l3a23−a33 þ l4a24−a34
k89 ¼−a24
k8;10 ¼ a34

;

k99 ¼ a14
k9;10 ¼ −a24
k10;10 ¼ l4a24−a34

;

8><
>:

8><
>:

8>>>><
>>>>:

where kblx and kbly denote the stiffnesses of the left bearing in x and y directions, respectively. And

a1i ¼ 12EI
l3i

a2i ¼ 1
2 lia1i; i¼ 1;2;3;4

a3i ¼ 1
6 l

2
i a1i

;

8>>><
>>>:

(8)

in which E, li (i¼1,2…4) and I are the Young's modulus of elasticity, the distance between every two consecutive lumped
mass points and the area moment of inertia respectively.

C¼ C1 þ C2; (9)

C1 ¼ αMþ βK; (10)

α¼ 60ðωn2ξ1−ωn1ξ2Þωn1ωn2

πðω2
n2−ω

2
n1Þ

; β¼ πðωn2ξ2−ωn1ξ1Þ
15ðω2

n2−ω
2
n1Þ

; (11)

where ωn1 and ωn2 are the first and second natural frequencies (rev/min); ξ1 and ξ2 are the first and second modal damping
ratios, respectively.

C2 ¼ diag½0;0; cblx;0;0;0;0;0;0;0;0;0; cbly;0;0;0;0;0;0;0�; (12)

in which cblx and cbly are the dampings of the left bearing in x and y directions respectively.

Fe ¼ ½0;0;0;0;m3rω2 cos ðωt þ φ1Þ;0;m4rω2 cos ðωt þ φ2Þ;0;0;0;
0;0;0;0;m3rω2 sin ðωt þ φ1Þ;0;m4rω2 sin ðωt þ φ2Þ;0;0;0�T: (13)

Herem3r, m4r, φ1 and φ2 denote unbalance moments of the left and right discs, initial phase angles of eccentricity in left and
right discs, respectively.

Fb ¼ ½0;0;0;0;0;0;0;0; Fbx5;0;0;0;0;0;0;0;0;0; Fby5;0�T (14)

where Fbx5 and Fby5 are nonlinear oil-film forces of the right bearing in x and y directions.

Fg ¼ 0;0;0;0;0;0;0;0;0;0;m1g;0;m2g;0;m3g;0;m4g;0;m5g;0½ �T: (15)

Fs ¼ ½0;0;0;0; Fsx3;0; Fsx4;0;0;0;0;0;0;0; Fsy3;0; Fsy4;0;0;0�T (16)

where Fsx3, Fsx4, Fsy3 and Fsy4 are nonlinear seal forces of two discs in x and y directions.

2.2. Nonlinear oil-film force

Nonlinear oil-film forces [3,4] (Fbx5 and Fby5) based on the assumption of short bearings can be calculated as

Fbx5
Fby5

" #
¼ s

f bx5
f by5

" #
; (17)

s¼ ηω
D
2
L

D
2c

� �2 L
D

� �2

(18)
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where fbx5 and fby5 are dimensionless nonlinear oil-film forces of the right bearing in x and y directions; η, L and D are oil
viscosity, bearing length and bearing diameter respectively. The dimensionless displacements of right journal in x and y
directions are given as follows:

~x5 ¼
x5
c
; ~y5 ¼

y5
c

(19)

f bx5
f by5

" #
¼

ð ~x5−2 _~y5Þ2 þ ð ~y5 þ 2 _~x5Þ2
h i1=2

1− ~x25− ~y2
5

�
3 ~x5Vð ~x5; ~y5; αÞ− sin αGð ~x5; ~y5; αÞ−2 cosαSð ~x5; ~y5; αÞ
3 ~y5Vð ~x5; ~y5; αÞ þ cos αGð ~x5; ~y5; αÞ−2 sin αSð ~x5; ~y5; αÞ

" #
(20)

where the functions V, S, G and α are respectively given in Eqs. (21)–(24):

Vð ~x5; ~y5; αÞ ¼
2þ ð ~y5 cos α− ~x5 sin αÞGð ~x5; ~y5; αÞ

1− ~x25− ~y2
5

; (21)

Sð ~x5; ~y5; αÞ ¼
~x5 cos αþ ~y5 sin α

1−ð ~x5 cosαþ ~y5 sin αÞ2
; (22)

Gð ~x5; ~y5;αÞ ¼
2

ð1− ~x25− ~y2
5Þ1=2

π

2
þ arctan

~y5 cos α− ~x5 sin α

ð1− ~x25− ~y2
5Þ1=2

" #
; (23)

α¼ arctan
~y5 þ 2 _~x5
~x5−2 _~y5

 !
−
π

2
sgn

~y5 þ 2 _~x5
~x5−2 _~y5

 !
−
π

2
sgnð ~y5 þ 2 _~x5Þ: (24)
2.3. Nonlinear seal force

Muszynska model is used to describe the nonlinear seal force because it not only reflects the nonlinear characteristics of
seal force but also describes a clear physical meaning.

Fsxi
Fsyi

" #
¼−

Kf−mf τ
2
f ω

2 τfωDf

−τfωDf Kf−mf τ
2
f ω

2

2
4

3
5 xi

yi

" #
−

Df 2τf mfω

−2τf mfω Df

" #
_xi
_yi

" #
−

mf 0
0 mf

" #
€xi
€yi

" #
ði¼ 3;4Þ (25)

where Kf, mf, Df and τf are equivalent stiffness, equivalent mass, equivalent damping and fluid average circumferential
velocity ration, respectively. These parameters are all nonlinear functions of the radial displacement of the rotor.

Kf ¼ K0ð1−e2f Þ−n;Df ¼D0ð1−e2f Þ−n;n¼ 1
2
�3ðsuch as 1=2;1;3=2;2;5=2;3 in Ref : 31½ �Þ;

τf ¼ τ0ð1−ef Þb;0obo1ðRefs: ½18;20�Þ; mf ¼ μ2μ3T
2
f (26)

where the empirical parameter n, b and τ0 determined by types of seal are set to 2.5 (Ref. [19]), 0.5 (Ref. [20]) and 0.25
(a intermediate value between τ0¼0.2 in Ref. [19] and τ0¼0.3,0.4 in Ref. [20]), respectively. In Eq. (27), the radio of the rotor
radial displacement to seal clearance ef is defined as

ef ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
=cf (27)

Furthermore, K0 and D0 in Eq. (26) are given by Childs [15].

K0 ¼ μ3μ0; D0 ¼ μ1μ3Tf (28)

where

μ0 ¼
2s2

1þ ξþ 2s
Ef ð1−m0Þ; μ1 ¼

2s2

1þ ξþ 2s
Ef
s
þ B
2

1
6
þ Ef

� �� �
; μ2 ¼

s
1þ ξþ 2s

1
6
þ Ef

� �
; μ3 ¼

πRfΔP
λ

; Tf ¼
lf
v

(29)

and

λ¼ n0ðRaÞm0 1þ Rv

Ra

� �2
" #ð1þm0Þ=2

; s¼ λlf
cf

; Ef ¼
1þ ξ

2ð1þ ξþ 2sÞ ; B¼ 2−
ðRv=RaÞ2−m0

ðRv=RaÞ2 þ 1
; Rv ¼

Rfωcf
υ

; Ra ¼
2vcf
υ

(30)

Here, the parameters of Eq. (30) are as follows: ξ¼0.1, n0¼0.079, m0¼−0.25 (Ref. [22]); υ¼1.5� �10−5 Pa s (dynamic
viscous coefficient of air).
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2.4. Dimensionless equation of motion

In order to facilitate calculation and avoid excessive truncation errors, the dimensionless transformations are given as follows:

~q ¼ q
c
; ~xi ¼

xi
c
; ~yi ¼

yi
c

ði¼ 1;2;3;4;5Þ (31)

Through Eq. (31), dimensionless equation of Eq. (1) can be rewritten as follows:

ω2Mf
€~q þ ωðGþ CÞ _~q þ K ~q ¼ Fe þ Fb−Fg

c
þ ~Fs; (32)

~Fs ¼
~F sxi
~F syi

" #
¼−

Kf−mf τ
2
f ω

2 τfωDf

−τfωDf Kf−mf τ
2
f ω

2

2
4

3
5 ~xi

~yi

" #
−ω

Df 2τf mfω

−2τf mfω Df

" #
_~xi
_~yi

" #
ði¼ 3;4Þ; (33)

Mf ¼
Mxf 0

0 Myf

" #
(34)

where

Mxf ¼Myf ¼ diag½m1; Jd1;m2; Jd2;m3 þmf3; Jd3;m4 þmf4; Jd4;m5; Jd5�: (35)

Considering the change of mass matrix caused by seal, Eq. (10) is revised as follows:

C1 ¼ αMf þ βK (36)

Eq. (32) can be solved by using numerical methods. In this paper, Newmark integration method is adopted because it is a
kind of robust algorithm to solve nonlinear equations in the time domain. The spectrum cascade is used to exhibit
continuous changes of frequency components of the rotor-bearing system. The rotating speed and the eccentricities of two
discs are selected as control parameters, which vary with a constant step. The Poincaré map, which is a stroboscopic picture
of motion in a phase plane and consists of the time series at a constant interval of T (T¼2π/ω), is adopted to indicate the
nature of the system motion. The rotor orbit is used to show the axis trace moving direction. The vibration waveform is
adopted to indicate the time features at some parameters.

The physical dimension of the rotor system is shown in Fig. 1a. The other parameters of the model about the bearing and
seal are listed in Table 1. Assuming that the stiffness of the right bearing is the same as that of the left bearing, the first and
second natural frequencies without considering seal influence can be determined as 28.6 Hz and 105 Hz approximately
when the rotor is stationary. In the following Sections 3 and 4, numerical simulation will be carried out under two loading
conditions of different shafts. In order to understand the vibration intensity of the rotor-bearing-seal system intuitively,
the vibration responses are presented by dimensional forms and the detailed simulation condition schematic is shown in
Fig. 2.
3. Simulation 1 under two loading conditions

Based on the API Standard 617 [33], the two unbalance loading conditions are determined by the modal shape of the
system, as is shown in Fig. 1b. The first loading condition corresponds to in-phase unbalances of two discs and the unbalance
moments are m3r¼m4r¼1.1838�10−4 kg m, respectively. For the second loading condition, m3r¼m4r are the same as those
under the first loading condition and the unbalances of two discs are out-of-phase. In this section, only vibration responses
of the right bearing (the lumped mass point 5) are shown by spectrum cascade of the rotor in y direction, rotor orbits and
Poincaré maps.
3.1. Simulation 1: influence of nonlinear oil-film force under two loading conditions

3.1.1. Simulation 1: vibration responses under the first loading condition

Rotating speed is one of the key parameters affecting the dynamic characteristics of the rotor system. Under the first
loading condition, spectrum cascade of the rotor in y direction, rotor orbits and Poincaré maps are shown in Fig. 3, which
shows the following dynamic phenomena:
(1)
 When the rotating speed ω approaches about double the first natural frequency (about 3000 rev/min), the first mode
whirl frequency reaches the first balance resonance frequency and disappears near 3300 rev/min; the synchronous
motion appears in the range of ω∈[3300,4800] rev/min; the first mode whip appears at 4800 rev/min and the whip
frequency remains close to the first critical speed, in addition, the oil whip amplitude is much higher than that of
synchronous vibration.
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Fig. 2. Simulation condition schematic.

Table 1
Model parameters of the rotor-bearing-seal system.

Parameters Value

m1, m2, m3, m4, m5 (kg) 0.0439, 0.02343, 0.5919, 0.5919, 0.09633
Jp1, Jd1 (kg m2) 2.957�10−6, 3.196�10−6

Jp2, Jd2 (kg m2) 0.2929�10−6, 2.966�10−6

Jp3, Jd3 (kg m2) 4.735�10−4, 2.478�10−4

Jp4, Jd4 (kg m2) 4.735�10−4, 2.478�10−4

Jp5, Jd5 (kg m2) 7.526�10−6, 8.780�10−6

η (Pa s) 0.04
kblx, kbly (N/m) 2�108, 2�108

cblx, cbly (N s/m) 2�103, 2�103

c, D, L (mm) 0.3, 25, 10
ξ1, ξ2 0.02, 0.04
ξ 0.1
Rf (mm) 43
lf (mm) 18
cf (mm) 1.5
v (m/s) 10
ΔP (Pa) 0.1�105

υ (Pa s) 1.5�10−5
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(2)
 The frequency components of the system caused by oil whip include the first whip frequency fn1, rotating frequency fr
and combination frequencies of both, such as 2fn1, fr−3fn1, fr+fn1, etc.
(3)
 Rotor orbits and Poincaré maps at constant speeds show that the system motion is quasi-periodic at ω¼2800, 5000 and
12,000 rev/min.



Fig. 3. Vibration response of the rotor-bearing system under the first loading condition: (a) spectrum cascade in y direction, (b) rotor orbits, and (c) Poincaré maps.
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The spectrum cascades with the change of eccentricities r of two discs at 6500 and 12,000 rev/min are depicted in Fig. 4a
and b, respectively. They all indicate that the amplitude of fr increases slightly, and the amplitude of fn1 keeps constant with
increasing eccentricity under the first loading condition. Furthermore, Fig. 4b also indicates that the amplitude of 5fn1
increases markedly compared with those of other combination frequency components.



Fig. 4. Spectrum cascades of the rotor-bearing system under the first loading condition: (a) 6500 rev/min and (b) 12,000 rev/min.
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3.1.2. Simulation 1: vibration responses under the second loading condition
Under the second loading condition, spectrum cascade of the rotor in y direction, rotor orbits and Poincaré maps (see

Fig. 5) exhibits the following dynamic phenomena.
(1)
 When the rotating speed approaches about double the first natural frequency about 3000 rev/min, the half-speed oil
whirl frequency reaches the first balance frequency and disappears at 3900 rev/min; the synchronous motion appears in
the range of ω∈[3900,8700] rev/min; the first mode whip appears at 8700 rev/min, and the whip frequency remains
close to the first critical speed of the rotor. The second mode whip appears in the range of ω∈[12,000,13,200] rev/min.
It appears again and its amplitude increases sharply when ω≥14,100 rev/min.
(2)
 The frequency components of the system in different rotating speed ranges include complicated combination frequency
components about fr, fn1 and fn2, such as fr−3fn1, fr−2fn1, fr−fn2, etc.
(3)
 Rotor orbits and Poincaré maps (see Fig. 5b and c) at constant speeds shows that system motion is quasi-periodic at
3200 rev/min, period-one motion at 6500 rev/min and quasi-periodic motions determined by a closed circle in Poincaré
maps at 10,000, 13,800 and 16,000 rev/min.
The spectrum cascades with the change of eccentricity at 6500 rev/min and 16,000 rev/min are depicted in Fig. 6a and b,

respectively. When the rotating speed is 6500 rev/min, there is no oil-film instability and the amplitude of fr increases
slightly. Fig. 6b shows that fn1 and fr are obvious and the amplitude of fn1 is maximal in the range of r∈[0.1, 0.16] mm.
However, fn2 and fr are dominant and the amplitude of fn2 is maximal in the range of r∈[0.16, 0.255] mm. The above analysis
shows that the self-excited vibration energy of the first mode whip can be switched to that of the second mode whip
under some eccentricities. The amplitudes of fn1 and fn2 decrease sharply and the continuous spectra between fr−fn2 and



Fig. 5. Vibration response of the rotor-bearing system under the second loading condition: (a) spectrum cascade in y direction; (b) rotor orbits; and (c)
Poincaré maps.
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fr can be observed in the range of r∈[0.255, 0.29] mm. Moreover, the amplitude of fr increases slightly when
r≤0.29 mm. However, the amplitude of fr increases sharply because of the disappearance of oil-film instability when
r40.29 mm.

Vibration waveforms at ω¼16,000 rev/min under three eccentricities of r¼0.125, 0.24 and 0.28 mm are illustrated in
Fig. 7. The rotor orbits and the Poincaré maps under different r are depicted in Fig. 8. These figures indicate the



Fig. 6. Spectrum cascades of the rotor-bearing system under the second loading condition: (a) 6500 rev/min and (b) 16,000 rev/min.

Fig. 7. Vibration waveforms at 16,000 rev/min: (a) r¼0.125 mm, (b) r¼0.24 mm, and (c) r¼0.28 mm.
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transformation process from oil-film instability to period-one motion with the changing r. Rotor orbit (see Fig. 8a) change
from irregular motion caused by the oil whip to elliptical orbit with period-one motion, and the complicated motion forms
can also be observed through irregular points in Poincaré maps (see Fig. 8b)



Fig. 8. Rotor orbits and Poincaré maps of the rotor-bearing system at 16,000 rev/min: (a) rotor orbits and (b) Poincaré maps.
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3.2. Simulation 1: coupled influence of nonlinear oil-film force and seal force under two loading conditions

3.2.1. Simulation 1: vibration responses under the first loading condition
Under the first loading condition, spectrum cascade of the rotor-bearing-seal system in y direction, rotor orbits and

Poincaré maps (see Fig. 9), which exhibits the following dynamic phenomena:
(1)
 The first oil whip does not appear until 6700 rev/min and its frequency is slightly greater than that in Fig. 3a. Meanwhile,
the frequency components of the system include the first mode whip frequency fn1, rotating frequency fr and
combination frequencies of both, such as 2fn1, 3fn1, 4fn1, 5fn1, fr−5fn1, fr−4fn1, fr−3fn1, fr−2fn1, etc.
(2)
 Rotor orbits and Poincaré maps (see Fig. 9b and c) show that the system motion is period-one at 2800 rev/min and
5000 rev/min and quasi-periodic motion at 12,000 rev/min, which can be determined by a closed circle in
Poincaré maps.
The spectrum cascade at 6500 rev/min (see Fig. 10), which indicates the transformation process from instability to
stability with the changing eccentricity r. The amplitude of fn1 is maximal (the maximum value is 0.1839 mm) at r¼0.1 mm
and decreases to the value of 0.1539 mm at r¼0.12 mm, hereafter reduces sharply and disappears at r¼0.2 mm. Vibration
waveforms at ω¼6500 rev/min are illustrated in Fig. 11 under three eccentricities of r¼0.12 mm, 0.15 mm and 0.22 mm.
The rotor orbits and the Poincaré maps under different r are depicted in Fig. 12, which shows that the rotor motion is from
quasi-periodic to period-one.



Fig. 9. Vibration response of the rotor-bearing-seal system under the first loading condition: (a) spectrum cascade in y direction, (b) rotor orbits, and
(c) Poincaré maps.

H. Ma et al. / Journal of Sound and Vibration 332 (2013) 6128–6154 6141

Author's Personal Copy
The spectrum cascade at 12,000 rev/min (see Fig. 13) indicates that the combination frequency components about fn1 and
fr, such as 2fn1, fr−4fn1, etc., appear in the range of r∈[0.1, 0.29] mm. Some new combination components, such as 24.05 Hz,
54.51 Hz, 115 Hz, etc., can be observed in the range of r∈[0.29, 0.3] mm besides those in the range of r∈[0.1, 0.29] mm.
Vibration waveforms under three eccentricities of r¼0.1, 0.2 and 0.3 mm at ω¼12,000 rev/min are illustrated in Fig. 14.
Rotor orbits and Poincaré maps under different r are depicted in Fig. 15, which shows that system motion becomes more
complicated and unstable with the increasing eccentricity r.



Fig. 10. Spectrum cascade of the rotor-bearing-seal system in y direction at 6500 rev/min.

Fig. 11. Vibration waveforms at 6500 rev/min: (a) r¼0.12 mm, (b) r¼0.15 mm, and (c) r¼0.22 mm.
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3.2.2. Simulation 1: vibration responses under the second loading condition
Under the second loading condition, spectrum cascade of the rotor-bearing-seal system in y direction is shown in

Fig. 16a. The quasi-periodic motion (regular combination frequency components about fr can be observed, such as low
frequency components 50.29 Hz and 54.71 Hz at fr¼95 Hz, 38.08 Hz and 56.92 Hz at fr¼105 Hz, respectively) appears in the
range of ω∈[5700,7200] rev/min and displaced by synchronous motion in the range of ω∈[7200,13,500] rev/min. The first
mode whip appears again at ω¼13,500 rev/min and the whip frequency is slightly greater than that in Fig. 5a. The second
mode whip appears in the range of ω∈[14,130,14,790] rev/min (see Fig. 16b). The frequency components of the system in
different ranges of rotating speed include complicated combination frequency components about fr, fn1 and fn2, such as
fr−3fn1, fr−2fn1, fr−fn1, fn1+fn2, etc.

Vibration waveforms (see Fig. 17), rotor orbits (see Fig. 18a) and Poincaré maps (see Fig. 18b) at constant speeds show that
system motion is quasi-periodic at ω¼3200 rev/min, period-one at ω¼10,000 rev/min and quasi-periodic at ω¼6500,
13,800 and 16,000 rev/min.

The spectrum cascade (see Fig. 19a) at 6500 rev/min indicates that the oil-film instability does not appear in the range of
r∈[0.1, 0.12] mm. The first mode whirl fn1 appears and increases from 33.87 Hz at r¼0.12 mm to 70.12 Hz at r¼0.3 mm in the
range of r∈[0.12, 0.3] mm. The instability features mentioned above at ω¼6500 rev/min are different from those in Fig. 6a.
The spectrum cascade (see Fig. 19b) at 16,000 rev/min shows that fn1 and fr are obvious and the amplitude of fn1 is largest in
the range of r∈[0.1, 0.225] mm. However, fn2 and fr are dominant and the amplitude of fn2 is maximal in the range of
r∈[0.225, 0.255] mm. The above analysis shows that the self-excited vibration energy of the first mode whip can be switched
to that of the second mode whip under some eccentricities. The amplitudes of fn1 and fn2 decrease sharply and the
continuous spectra between fr−fn2 and fr can be observed in the range of r∈[0.255, 0.29] mm. The amplitude of fr increases
slightly when r≤0.29 mm, however, increases sharply because of the disappearance of oil-film instability when r40.29 mm.
Except that fn1 and fn2 are slightly greater than those in Fig. 6b, other instability features in Fig. 19b are similar to those in
Fig. 6b.



Fig. 12. Rotor orbits and Poincaré maps of the rotor-bearing-seal system at 6500 rev/min: (a) rotor orbits and (b) Poincaré maps.

Fig. 13. Spectrum cascades in y direction of the rotor-bearing-seal system at 12,000 rev/min.
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Fig. 14. Vibration waveforms at 12,000 rev/min: (a) r¼0.1 mm, (b) r¼0.2 mm, and (c) r¼0.3 mm.

Fig. 15. Rotor orbits and Poincaré maps of the rotor-bearing-seal system at 12,000 rev/min: (a) rotor orbits and (b) Poincaré maps.
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Vibration waveforms at ω¼16,000 rev/min under three eccentricities of r¼0.125 mm, 0.24 mm and 0.28 mm are
illustrated in Fig. 20. The rotor orbits and the Poincaré maps under different r are depicted in Fig. 21. System motions shown
in Figs. 20 and 21 are similar to those in Figs. 6 and 8.



Fig. 16. Spectrum cascades of the rotor-bearing-seal system under the second loading condition: (a) spectrum cascade in the range of ω∈[600,18,000] rev/min,
and (b) elaborate spectrum cascade in the range of ω∈[13,800,15,000] rev/min.

Fig. 17. Vibration waveforms: (a) ω¼3200 rev/min, (b) ω¼6500 rev/min, and (c) ω¼16,000 rev/min.

H. Ma et al. / Journal of Sound and Vibration 332 (2013) 6128–6154 6145

Author's Personal Copy



Fig. 18. Rotor orbits and Poincaré maps of the rotor-bearing-seal system under the second loading condition: (a) rotor orbits and (b) Poincaré maps.
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3.3. Discussion on the results of simulation 1

In this paper, the first mode instability includes the first mode whirl and whip (oil whip evolves from half-speed whirl).
When the rotating speed increases to about twice its first balance resonance, the first mode whirl frequency is close to the
first natural frequency of the rotor. After that the mode whirl will be replaced by the first mode whip. Similarly, when the
rotating speed increased to approximately twice its second critical speed, the second mode whip appears. As is shown in
Figs. 3a and 9a, the first loading condition mainly excites the first mode instability, however, the second loading condition
can excite the first and second mode instabilities (see Figs. 5a and 16).

Under the first loading condition, the first mode instability threshold in the rotor-bearing system increases from
4800 rev/min to 6700 rev/min in rotor-bearing-seal system. Combination frequency components (related to fr and fn1) of the
latter become more complicated than those of the former when the rotating speed and eccentricities of two discs increase.
System motion of the latter changes from quasi-periodic to period-one with increasing eccentricities of two discs at
ω¼6500 rev/min (see Fig. 10) and the frequency components at ω¼12,000 rev/min become more complicated at some
eccentricities of disc (see Fig. 13). However the former is always a stable quasi-periodic motion at ω¼6500 and 12,000 rev/
min (see Fig. 4).

Under the second loading condition, many first and second mode instability regions (see Fig. 5a) in the rotor-bearing
system appear alternatively. Only two instability regions (see Fig. 16a) can be observed in the rotor-bearing-seal system. One
of them corresponds to quasi-periodic motion and the other indicates the first mode whip and slight second mode whip
(see Fig. 16b). Compared with the rotor-bearing system, the instability speed is postponed and some new combination
frequency components only related to fr appear in the range of ω∈[5700,7200] rev/min in the rotor-bearing-seal
system. Furthermore, the first and second mode instability are dominant in different range of eccentricities of the disc(



Fig. 19. Spectrum cascades of the rotor-bearing-seal system under the second loading condition: (a) 6500 rev/min and (b) 16,000 rev/min.

Fig. 20. Vibration waveforms at 16,000 rev/min: (a) r¼0.125 mm, (b) r¼0.24 mm, and (c) r¼0.28 mm.
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see Figs. 6b and 19b), which shows that the self-excited vibration energy of the first mode whip can be switched to that of
the second mode whip under some eccentricities of two discs.

By the spectrum cascade comparison including and excluding the seal effect, it can be observed that the seal force can
restrain the occurrence of the first and second mode instabilities. The added mass, added stiffness and added damping
coefficients caused by nonlinear seal force may contribute to this phenomenon. Under two loading conditions, the
equivalent stiffnesses of right disc in x direction and cross stiffnesses in x and y directions at ω¼1706 and 6518 rev/min are



Fig. 21. Rotor orbits and Poincaré maps of the rotor-bearing-seal system at 16,000 rev/min: (a) rotor orbits and (b) Poincaré maps.
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shown in Fig. 22. The average equivalent masses and stiffnesses of right disc obtained by Fig. 22 are listed in Table 2.
Assuming that the stiffness of the right bearing is the same as that of the left bearing, the first two natural frequencies (see
Table 3) can be determined by considering the effects of average equivalent stiffnesses (see Table 2) caused by seal at
ω¼1706 and 6518 rev/min.

Considering the changing average equivalent masses and stiffnesses with rotating speeds caused by seal, amplitude
frequency responses including and excluding seal influence under two loading conditions are shown in Fig. 23, which shows
that the seal force not only changes the critical instability speed slightly but restrains resonance responses under two
loading conditions. Because the equivalent stiffness caused by seal increases with the increasing eccentricity ratio (disc
radial displacement to radial clearance), the equivalent stiffness will increase sharply under instability conditions (see right
figure in Fig. 22b). We have reason to believe that stiffnesses and masses caused by the nonlinear seal force can increase the
first natural frequency, and then improve the first mode instability threshold significantly. However, the second natural
frequency changes little by the added stiffnesses and masses of two discs caused by seal, so the nonlinear seal force has a
minor effect on the second mode instability threshold.
4. Simulation 2 under two loading conditions

In order to validate the universality of the results obtained in Section 3, the shaft of the previous rotor-bearing system is
changed into a multi-diameter shaft with three different shaft sections, moreover, the mass of the left disc is increased by 20
percent. The physical dimensions of the new rotor system are shown in Fig. 24. The other parameters of the model, which
are different from those of the previous model, are listed in Table 4. The first and second natural frequencies in stationary
state can be determined as 44 Hz and 147.5 Hz approximately, which are obtained by previous method.



Fig. 22. Equivalent stiffnesses of the right disc under two loading conditions: (a) the first loading condition and (b) the second loading condition.

Table 2
Equivalent masses and stiffnesses of right disc.

Two loading conditions Rotating speed (rev/min) Equivalent mass (kg) Average equivalent stiffness (kN/m)

kxx kxy kyx kyy

Condition 1 1706 0.021 3.006 1.134 −1.134 3.006
Condition 1 6158 0.018 2.005 2.727 −2.727 2.005
Condition 2 1706 0.021 1.825 0.8494 −0.8494 1.825
Condition 2 6158 0.018 19.23 10.67 −10.67 19.23

Table 3
The first two natural frequencies under two loading conditions.

Two loading conditions Rotating speed (rev/min) The first natural frequency (Hz) The second natural frequency (Hz)

Condition 1 1706 29.80 103.44
Condition 1 6158 29.46 103.60
Condition 2 1706 29.25 103.34
Condition 2 6158 33.88 104.35
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Spectrum cascades (lumped mass point 9) of right bearing in the rotor-bearing system (see Figs. 25a and 26a) and
spectrum cascades (lumped mass point 9) in the rotor-bearing-seal system (see Figs. 25b and 26b) under two loading
conditions exhibit the following dynamic phenomena:
(1)
 Under the first loading condition, for the rotor-bearing system, the first mode whirl appears in the range of
ω∈[3600,5400] rev/min, then is replaced by the first mode whip when ω45400 rev/min and the corresponding whip



Fig. 23. Amplitude frequency responses including and excluding seal influences under two loading conditions: (a) the first loading condition and (b) the
second loading condition.

Fig. 24. Physical dimensions of a rotor-bearing system with a multi-diameter shaft.

Table 4
Model parameters of the rotor-bearing system simulated by nine lumped mass points.

Parameters Value

m1, m2, m3, m4, m5, m6, m7, m8, m9 (kg) 0.0408, 0.0418, 0.1066,0.75, 0.1946, 0.637, 0.0861, 0.0572, 0.058
Jp1, Jd1 (kg m2) 2.965�10−6, 3.2045�10−6

Jp2, Jd2 (kg m2) 0.5231�10−6, 1.6244�10−5

Jp3, Jd3 (kg m2) 2.5663�10−6, 1.0513�10−4

Jp4, Jd4 (kg m2) 5.7086�10−4, 3.1366�10−4

Jp5, Jd5 (kg m2) 5.0864�10−6, 4.221�10−4

Jp6, Jd6 (kg m2) 4.7578�10−4, 2.6207�10−4

Jp7, Jd7 (kg m2) 1.3359�10−6, 9.6351�10−5

Jp8, Jd8 (kg m2) 3.2499�10−6, 8.3493�10−6

Jp9, Jd9 (kg m2) 4.5272�10−6, 3.35�10−6

lf (mm) 21
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Fig. 25. Spectrum cascades in y direction under the first loading conditions: (a) rotor-bearing system and (b) rotor-bearing-seal system.
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frequency is about 42 Hz, which remains close to the first natural frequency of the rotor (44 Hz), moreover, the
amplitudes of oil whip are much higher than those of synchronous vibrations.
However, for the rotor-bearing-seal system, the first mode whirl appears in the range of ω∈[3900,5100] rev/min, and is
replaced by synchronous vibration in the range of ω∈[5100,7200] rev/min, and then appears again when ω47200 rev/
min.
Based on the analyses above, it is clear that ranges of instability region decrease considering the effect of the seal; the
first mode whip frequency and its amplitude show little change.
(2)
 Under the second loading condition, for the rotor-bearing system, the first mode whirl appears in the range of
ω∈[3600,5700] rev/min, is replaced by synchronous vibration in the range of ω∈[5700,12,000] rev/min and occurs again
when ω412,000 rev/min and the corresponding whip frequency is about 43 Hz and are less than those of synchronous
vibrations. The second mode whip appears and the amplitudes of the first mode whip decreases sharply when
ω417,100 rev/min, which shows the self-vibration energy is transferred from the first mode whip to the second mode
whip. Moreover, the second whip frequency is about 145 Hz, which remains constant and is close to the second natural
frequency (147.5 Hz).
However, for the rotor-bearing-seal system, the first mode whirl appears in the range of ω∈[3900,5400] rev/min and is
replaced by synchronous vibration in the range of ω∈[5400,81,000] rev/min. Quasi-periodic motion (regular combination
frequency components about fr appear, such as low frequency components 54 Hz and 81 Hz at fr¼135 Hz, 71.94 Hz and
78.06 Hz at fr¼150 Hz, respectively) occurs in the range of ω∈[8100,96,000] rev/min and is replaced by synchronous
vibration in the range of ω∈[9600,12,900] rev/min. The first mode whip occurs again when ω412,900 rev/min and the
second mode whip appear when ω417,100 rev/min.

Compared with the features without considering the effect of the seal (see Fig. 26a), it is shown that the first instability
region range for the first mode whirl decreases, moreover, the second instability threshold for the first mode whip increases



Fig. 26. Spectrum cascades in y direction under the second conditions: (a) rotor-bearing system and (b) rotor-bearing-seal system.
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slightly and the threshold for the second mode whip remain unchanged considering the influence of the seal. It is worth
noting that quasi-periodic motion (see Figs. 16a and 26b) will occurs at some rotating speeds between the first and second
critical speeds in the rotor-bearing-seal system, however, does not appears in the rotor-bearing system. The nonlinear seal
force should be primarily responsible for the appearance of quasi-periodic motion.
5. Conclusions

In this paper, the effects of the rotating speeds and the eccentrics of two discs on oil-film instability in a rotor-bearing-
seal system under two loading conditions are investigated. A nonlinear oil-film force model based on short bearing
assumption and Muszynska seal force model are adopted. The first and second mode instability laws are not only compared
by including and excluding the seal effect in a rotor system with single-diameter shaft and two same discs and the
instability laws are but also verified in a rotor system with multi-diameter shaft and two different discs. Some conclusions
drawn from the study can be summarized as follows:
(1)
 For the rotor system with single-diameter shaft and two same discs under the first loading condition, the first mode
instability threshold increases from 4800 rev/min (excluding the seal effect) to 6700 rev/min (including the seal effect).
With the increasing eccentricity r of the disc, the whip amplitudes of the system excluding the seal effect are stable,
however the first mode whip disappears at some r when the nonlinear seal force is considered. On the whole, the
vibration intensity excluding the seal effect is greater than that including the seal effect, and the first mode whip
frequency of the former is less than that of the latter. Namely, the seal force can restrain the occurrence of the first mode
whip to some extent.
For the rotor system under the first loading condition, attached with multi-diameter shaft and two different discs,
instability region ranges decrease due to considering the effect of the seal. Moreover, the first mode whip frequency and
its amplitude show little change.
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(2)
 For the rotor system with single-diameter shaft and two same discs under the second loading condition, the first mode

instability threshold increases from 8700 rev/min (excluding the seal effect) to 13,500 rev/min (including the seal
effect). For the former, the second mode instability appears at ω¼12,000 rev/min, however, it appears at ω¼14,130 rev/
min for the latter. With the increase of eccentricity of the disc, the amplitude of the first mode whip at 16,000 rev/min
decreases sharply and the amplitude of the second mode whip increases sharply for the former at r¼0.16 mm, and the
similar condition for the latter appears at r¼0.225 mm. These features also show that the magnitude and phase of the
unbalance could restrain the occurrence of the first and second mode whips.
For the rotor system with multi-diameter shaft and two different discs under the second loading condition, considering
the nonlinear seal force, the first instability range for the first mode whirl decreases, the second instability threshold for
the first mode whip increases slightly and the threshold for the second mode whip remain unchanged compared with
those without considering seal effect.
(3)
 The oil-film instability threshold of the rotor system (considering the nonlinear seal force or not) under the second
loading condition is higher than that under the first loading condition. Namely, the second loading condition can delay
the first mode whips to some extent. Moreover, complicated combination frequency components about the rotating
frequency fr, the first mode instability frequency fn1 and the second mode instability frequency fn2 can be excited by the
nonlinear oil-film force and seal force, and the second mode whip may appear under the second loading condition.
Energy transfer phenomena occur between the first and second mode whips, that is to say, the amplitudes of two whip
frequencies influence each other.
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