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Abstract An adjacent vertex distinguishing total coloring of a graph G is a proper
total coloring of G such that any pair of adjacent vertices are incident to distinct sets
of colors. The minimum number of colors required for an adjacent vertex distinguish-
ing total coloring of G is denoted by χ ′′

a (G). In this paper, we characterize completely
the adjacent vertex distinguishing total chromatic number of outerplanar graphs.

Keywords Adjacent vertex distinguishing total coloring · Outerplanar graph ·
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1 Introduction

We only consider simple graphs, i.e., graphs without self loops or multiple edges,
throughout this paper. Let G be a graph with vertex set V (G) and edge set E(G).
A proper total k-coloring is a mapping φ : V (G) ∪ E(G) → {1,2, . . . , k} such that
any two adjacent or incident elements in V (G) ∪ E(G) receive different colors. The
total chromatic number χ ′′(G) of G is the smallest integer k such that G has a total
k-coloring. Let Cφ(v) = {φ(v)} ∪ {φ(xv) | xv ∈ E(G)} denote the set of colors as-
signed to a vertex v and those edges incident to v. A proper total k-coloring φ of G

is adjacent vertex distinguishing, or a total-k-avd-coloring, if Cφ(u) �= Cφ(v) when-
ever uv ∈ E(G). The adjacent vertex distinguishing total chromatic number χ ′′

a (G)

is the smallest integer k such that G has a total-k-avd-coloring.
Let �(G) and δ(G) denote the maximum degree and the minimum degree of a

graph G, respectively. By definition, it is evident that χ ′′
a (G) ≥ χ ′′(G) ≥ �(G) + 1
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for any graph G. Zhang et al. (2005) first investigated the adjacent vertex distin-
guishing total coloring of graphs. They determined the adjacent vertex distinguishing
total chromatic numbers for paths, cycles, fans, wheels, trees, complete graphs, and
complete bipartite graphs. The well-known Total Coloring Conjecture, made inde-
pendently by Behzad (1965) and Vizing (1968), says that every simple graph G has
χ ′′(G) ≤ �(G) + 2. This conjecture still remains open. Zhang et al. (2005) put for-
ward the following conjecture:

Conjecture 1 If G is a graph with at least two vertices, then χ ′′
a (G) ≤ �(G) + 3.

Note that χ ′′
a (K2n+1) = �(K2n+1) + 3 = 2n + 3 for any n ≥ 1. This example

shows that the upper bound �(G)+ 3 for χ ′′
a (G) is tight if Conjecture 1 is true. More

recently, Chen (2007) and Wang (2007), independently, confirmed Conjecture 1 for
graphs G with �(G) ≤ 3.

Let χ(G) and χ ′(G) denote the (vertex) chromatic number and the edge chromatic
number of a graph G, respectively. Vizing Theorem (Vizing 1964) asserts that every
simple graph G satisfies �(G) ≤ χ ′(G) ≤ �(G) + 1. The graph G is of Class 1
if χ ′(G) = �(G), and Class 2 if χ ′(G) = �(G) + 1. As a direct consequence of
definitions, we have the following relation:

Proposition 1 For any graph G, χ ′′
a (G) ≤ χ(G) + χ ′(G).

Some upper bounds for χ ′′
a (G) can be easily derived from Proposition 1 as fol-

lows:

(i) If G is a planar graph, then χ(G) ≤ 4 by the Four-Color Theorem (Appel and
Haken 1976), thus χ ′′

a (G) ≤ 4 + �(G) + 1 = �(G) + 5.
(ii) If G is a bipartite graph, then χ(G) ≤ 2 and χ ′(G) = �(G), thus χ ′′

a (G) ≤
�(G) + 2.

(iii) If G is a Class 1 graph and χ(G) ≤ 3, then χ ′′
a (G) ≤ �(G) + 3.

A planar graph is called outerplanar if there is an embedding of G into the Euclid-
ean plane such that all the vertices are incident to the unbounded face. An outerplane
graph is a particular embedding of an outerplanar graph. Obviously, all trees and
graphs of maximum degree at most 2 are outerplanar graphs.

The following result first appeared in Zhang et al. (2005):

Lemma 2 Let G be a graph with �(G) ≤ 2. Then χ ′′
a (G) ≤ 5. Moreover, χ ′′

a (G) = 5
if and only if G is a 3-cycle.

It is easy to show that every outerplanar graph G has χ(G) ≤ 3. It is known in
Fiorini (1975) that an outerplanar graph G is of Class 1 if and only if G is not an odd
cycle. These facts, Lemma 2 and Proposition 1 give the following:

(iv) If G is an outerplanar graph, then χ ′′
a (G) ≤ �(G) + 3.

Another easy observation was made in Zhang et al. (2005):
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Fig. 1 Configurations (C2), (C4) and (C5)

Proposition 3 If G is a graph with two adjacent vertices of maximum degree, then
χ ′′

a (G) ≥ �(G) + 2.

Several authors, e.g., Chen and Zhang (2006) and Zhang et al. (2005), considered
the adjacent vertex distinguishing total coloring of 2-connected outerplane graphs in
the past years. In this paper, we extend their results by characterizing completely the
adjacent vertex distinguishing total chromatic number of outerplane graphs. More
precisely, we prove the following:

Main Theorem Let G be an outerplane graph with �(G) ≥ 3. Then �(G) + 1 ≤
χ ′′

a (G) ≤ �(G) + 2; and χ ′′
a (G) = �(G) + 2 if and only if G contains two adjacent

vertices of maximum degree.

2 Structural lemmas

Let G be an outerplane graph. Let F(G) denote the set of faces in G. For f ∈ F(G),
we use b(f ) to denote the boundary walk of f and write f = [u1u2 · · ·un] if
u1, u2, . . . , un are all the vertices of b(f ) traversed once in cyclic order. A k-vertex
is a vertex of degree k. A 1-vertex is also said to be a leaf.

We define some configurations as follows:

(C1) A vertex v of degree at most 3 is adjacent to a leaf.
(C2) A path x1x2 · · ·xn, n ≥ 4, with dG(x1) �= 2, dG(xn) �= 2, and dG(xi) = 2 for all

i = 2,3, . . . , n − 1.
(C3) A k-vertex v, k ≥ 4, is adjacent to a leaf and k − 3 vertices of degree ≤ 2.
(C4) A 3-face [uv1v2] satisfies dG(u) = 2 and dG(v1) = 3.
(C5) Two 3-faces [u1v1x] and [u2v2x] satisfy dG(x) = 4 and dG(u1) = dG(u2) = 2.

Lemma 4 (Wang and Zhang 1999) Every outerplane graph G with δ(G) = 2 con-
tains one of the configurations (C2), (C4) and (C5) (see Fig. 1).

Lemma 5 Every connected outerplane graph G with at least two vertices contains
one of the configurations (C1) to (C5).

Proof Assume to the contrary that G contains none of (C1)–(C5). Since G has no
(C1), there is no vertex of degree at most 3 adjacent to a leaf. Since G contains no
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(C3), every vertex v of degree at least 4 is adjacent to at most dG(v) − 3 leaves; that
is, it has at least three neighbors that are not leaves.

Let H be the graph obtained by removing all leaves of G. Then H is a connected
outerplane graph. It follows from the previous argument that, for every v ∈ V (H),
dH (v) ≥ 2 and dH (v) = dG(v) if 2 ≤ dG(v) ≤ 3. By Lemma 4, H contains one of
(C2), (C4) and (C5), see Fig. 1. If H contains (C2) or (C4), then (C2) or (C4) must
be a configuration of G because dH (t) = dG(t) for all t ∈ {x2, . . . , xn−1, u, v1}. If H

contains (C5), then since dH (ui) = dG(ui) for i = 1,2, and x cannot be adjacent to
any leaf in G by the excluding of (C3) from G, (C5) also is a configuration of G.
This contradicts the assumption on G. �

Lemma 6 Every connected outerplane graph G with �(G) ≤ 3 contains one of the
following configurations:

(B1) A vertex v adjacent to at most one vertex that is not a leaf.
(B2) A path x1x2x3x4 such that each of x2 and x3 is either a 2-vertex, or a 3-vertex

that is adjacent to a leaf.
(B3) A 3-face [uxy] such that either dG(u) = 2, or dG(u) = 3 and u is adjacent to a

leaf.

Proof Assume to the contrary that G contains none of (B1)–(B3). Since G has no
(B1), there is no 2-vertex adjacent to a leaf, and there is no 3-vertex adjacent to two
or more leaves. Equivalently, every 3-vertex is adjacent to at most one leaf.

Let H be the graph obtained by removing all leaves of G. Then H is a connected
outerplane graph. It is easy to inspect that δ(H) = 2. If H is a cycle, then G contains
(B2) or (B3). Thus, suppose that H is not a cycle, so �(H) = 3. If H is 2-connected,
then there is an end face f = [u1u2 · · ·un], n ≥ 3, such that dH (u1) = dH (un) = 3
and dH (ui) = 2 for all i = 2,3, . . . , n − 1. Since G has no (B2), we derive that n = 3
and hence (B3) is contained in G. If H is not 2-connected, then there is an end block
M which is a cycle C in H with a cut vertex of degree 3 in G. Again, since (B2) does
not appear in G, C is a 3-cycle. Thus, (B3) holds. We always obtain a contradiction. �

Lemma 7 Every connected outerplane graph G with �(G) = 4 and without adja-
cent 4-vertices contains one of the following configurations:

(A1) A vertex v with dG(v) �= 3 is adjacent to a leaf.
(A2) A 3-vertex is adjacent to at least two leaves.
(A3) A path x1x2x3x4 such that each of x2 and x3 is either a 2-vertex, or a 3-vertex

that is adjacent to a leaf.
(A4) A 3-face [uxy] with dG(x) = 3 such that either dG(u) = 2, or dG(u) = 3 and u

is adjacent to a leaf.

Proof Assume to the contrary that G contains none of (A1)–(A4). Since G has no
(A1), there does not exist a vertex of degree 1, 2 or 4 adjacent to a leaf. Since G has
no (A2), every 3-vertex is adjacent to at most one leaf. Thus, each leaf of G must be
adjacent to a 3-vertex.

Let H be the graph obtained by removing all leaves of G. Then H is a connected
outerplane graph. It is easy to derive that δ(H) = 2. By Lemma 4 and noting the fact



J Comb Optim (2010) 19: 123–133 127

that there are no adjacent 4-vertices, H contains (C2) or (C4). If H contains (C2),
then G will contain (A3). If H contains (C4), G will contain (A4). We always get a
contradiction. �

Lemma 8 Every connected outerplane graph G with �(G) = 3 and without adja-
cent 3-vertices contains one of the following configurations:

(D1) A leaf.
(D2) A cycle C = x1x2 · · ·xn, with n ≥ 3, such that dG(x1) = 3 and dG(xi) = 2 for

all i = 2,3, . . . , n.

Proof Suppose that G contains no (D1), i.e., δ(G) = 2. Let M be an end block of
G. Then M is a cycle C since G contains no adjacent 3-vertices. However, since
�(G) = 3, there is a vertex v ∈ V (C) such that dG(v) = 3. Thus, G contains (D2). �

Given an outerplane graph G, we write |T (G)| = |V (G)| + |E(G)|. Suppose that
φ is a total-k-avd-coloring of G with a color set C = {1,2, . . . , k}, where k ≥ 5.
Assume that v ∈ V (G) with dG(v) ≤ 2 is not adjacent to any vertex of the same
degree as itself. Since v has at most two adjacent vertices and two incident edges
and |C| ≥ 5, we always can color v in the last stage when all its incident or adja-
cent elements have been colored. In other words, we may omit the coloring for such
1-vertices and 2-vertices in the following proofs of several theorems.

The proof of the Main Theorem is divided into two cases: �(G) = 3 and
�(G) ≥ 4.

3 �(G) = 3

Theorem 9 If G is an outerplane graph with �(G) ≤ 3, then χ ′′
a (G) � 5.

Proof The proof proceeds by induction on |T (G)|. If |T (G)| ≤ 5, the theorem holds
trivially. Suppose that G is an outerplane graph with �(G) ≤ 3 and |T (G)| ≥ 6.
We may assume that G is connected since χ ′′

a (G) = max{χ ′′
a (Gi)} and �(G) =

max{�(Gi)}, where both maxima are taken over all components Gi of G. By the
induction assumption, any outerplane graph H with �(H) ≤ 3 and |T (H)| < |T (G)|
has a total-5-avd-coloring φ.

By Lemma 6, G contains one of the configurations (B1)–(B3). To complete the
proof, we need to handle separately every possible case. In the subsequent proofs,
we routinely construct appropriate proper total colorings without verifying in detail
that they are adjacent vertex distinguishing because that usually can be supplied in a
straightforward manner.

(B1) G contains a vertex v adjacent to at most one vertex that is not a leaf.

Let v1, . . . , vn be all the neighbors of v with dG(v1) = · · · = dG(vn−1) = 1 and
dG(vn) ≥ 1. Clearly, 2 ≤ n ≤ 3. Let H = G − {v1, . . . , vn−1}. Then, H is an outer-
plane graph with �(H) ≤ 3 and |T (H)| < |T (G)|, hence it has a total-5-avd-coloring
φ with the color set C = {1,2, . . . ,5}. We color vv1, . . . , vvn−1 with different colors
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in C \ {φ(v),φ(vn),φ(vvn)}. Since n − 1 ≤ 2 and |C \ {φ(v),φ(vn),φ(vvn)}| ≥ 2,
the extended coloring is a total-5-avd-coloring of G.

(B2) G contains a path x1x2x3x4 such that each of x2 and x3 is either a 2-vertex, or
a 3-vertex that is adjacent to a leaf.

For i ∈ {2,3}, let x′
i be a leaf adjacent to xi provided xi is a 3-vertex.

If both x2 and x3 are 2-vertices, then the proof can be given with a similar argu-
ment as in the case (C2) of the following Theorem 11.

If dG(x2) = dG(x3) = 3, let H denote the graph obtained from G by identifying
x′

2 and x′
3. Then, H is an outerplane graph with �(H) ≤ 3 and |T (H)| = |T (G)|−1.

Obviously, any total-5-avd-coloring of H can induce a total-5-avd-coloring of G.
If dG(x2) = 3 and dG(x3) = 2, say, let H = G − x′

2. By the induction assumption,
H has a total-5-avd-coloring φ with the color set C = {1,2, . . . ,5}. If dG(x1) �= 3,
we only need to color properly x2x

′
2. Assume that dG(x1) = 3, and further suppose

Cφ(x1) = {1,2,3,4}. If 5 ∈ {φ(x2),φ(x2x3)}, we properly color x2x
′
2. Otherwise, we

color x2x
′
2 with 5.

(B3) G contains a 3-face [uxy] such that either dG(u) = 2, or dG(u) = 3 and u is
adjacent to a leaf u′.

Based on the proof of (B2), we may assume that dG(x) = dG(y) = 3. Let x′ �= u,y

be the third neighbor of x, and y′ �= u,x be the third neighbor of y. Let f ′ denote
the face adjacent to [uxy] with xy as a common edge. We need to consider some
subcases, depending on the size of f ′.

(B3.1) dG(f ′) = 3, i.e., x′ is identical to y′. By the induction assumption, G −
{u,xy} has a total-5-avd-coloring φ with the color set C = {1,2, . . . ,5}. If
dG(x′) = 2, i.e., G is a graph of order 4 obtained from K4 by removing
an edge, then the theorem holds obviously. Assume that dG(x′) = 3 and let
t �= x, y be the third neighbor of x′. Let φ(x′t) = 1, φ(x′) = 2, φ(x′x) = 3,
and φ(x′y) = 4. We color uy with 1, ux with 2, {y,uu′} with 3 (if u′ exists),
x with 4, and {u,xy} with 5.

(B3.2) dG(f ′) = 4, i.e., x′ is adjacent to y′. Without loss of generality, we as-
sume that both x′ and y′ are 3-vertices (otherwise, we have an easier proof).
Let x′′ �= x, y′ denote the third neighbor of x′, and y′′ �= y, x′ be the third
neighbor of y′. By the induction assumption, G − {u,xy} has a total-5-avd-
coloring φ with the color set C = {1,2, . . . ,5}. Let φ(x′) = 1, φ(x′y′) = 2,
φ(x′x′′) = 3, φ(x′x) = 4, φ(y′) = a, φ(yy′) = b, and φ(y′y′′) = c. Since x′
is adjacent to y′, we see that 5 ∈ {a, b, c}.
(3.2.1) a = 5. Then b ∈ {1,3,4}. If b = 1, we color or recolor u with 1,

{y,ux} with 2, xy with 3, uy with 4, and {x,uu′} with 5 (if u′ exists).
If b = 3, we color or recolor xy with 1, {y,ux} with 2, u with 3, uy

with 4, and {x,uu′} with 5 (if u′ exists). If b = 4, we color or recolor
uy with 1, {y,ux} with 2, {u,xy} with 3, and {x,uu′} with 5 (if u′
exists).

(3.2.2) b = 5. We color or recolor {y,uu′} with 1 (if u′ exists), ux with 2,
{u,xy} with 3, uy with 4, and x with 5 (if u′ exists).
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(3.2.3) c = 5. Then b ∈ {1,3,4}. We first color or recolor {y,ux} with 2 and
{x,uu′} with 5 (if u′ exists). If b = 1, we further color u with 1, xy

with 3, uy with 4. If b = 3, we color xy with 1, u with 3, uy with 4.
If b = 4, we color xy with 1, uy with 3, and u with 4.

(B3.3) dG(f ′) ≥ 5, i.e., x′ is not adjacent to y′. Let H = G − {u,x, y} + x′y′. By
the induction assumption, H has a total-5-avd-coloring φ with the color set
C = {1,2, . . . ,5}. Suppose that φ(x′) = 1, φ(x′y′) = 2, and φ(y′) = 3. In G,
we color {y,uu′} with 1 (if u′ exists), {u,xx′, yy′} with 2, ux with 3, {x,uy}
with 4, and xy with 5. �

Theorem 10 If G is an outerplane graph with �(G) = 3 and without adjacent
3-vertices, then χ ′′

a (G) = 4.

Proof The lower bound that χ ′′
a (G) ≥ 4 is trivial. We prove the upper bound

χ ′′
a (G) ≤ 4 by induction on the vertex number |V (G)|. If |V (G)| = 4, then G is

either K1,3, or a graph obtained from K1,3 by joining a pair of leaves. It is easy to
verify that χ ′′

a (G) = 4 for both these cases. Let G be a connected outerplane graph
with �(G) = 3 and |V (G)| ≥ 5 and having no adjacent 3-vertices. By Lemma 8, G

contains (D1) or (D2).
If G contains (D1), i.e., a leaf v adjacent to a vertex u, let H = G − v. Then, H is

a connected outerplane graph with �(H) ≤ 3 and |V (H)| ≥ 4 and without adjacent
3-vertices. This means that H cannot be a 3-cycle. By the induction assumption or
Lemma 2 in Sect. 1, H has a total-4-avd-coloring φ with the color set C = {1,2,3,4}.

If dG(u) = 2, let x �= v be the second neighbor of u. We color uv with a color
different from the colors of u,x, xu, and v with a color different from the colors of
u,uv.

If dG(u) = 3, let u1, u2 �= v be the other neighbors of u. Since G contains no
adjacent 3-vertices, dG(ui) ≤ 2 for all i = 1,2. We color uv with a color different
from the colors of u,uu1, uu2, and v with a color different from the colors of u,uv.

If G contains (D2), i.e., a cycle C = x1x2 · · ·xn, with n ≥ 3, such that dG(x1) = 3
and dG(xi) = 2 for all i = 2,3, . . . , n, let y �= x2, xn be the third neighbor of x1. We
see that y is not a 3-vertex. Let H = G − x2. Then H is a connected outerplane
graph with �(H) ≤ 3 and |V (H)| ≥ 4 and without adjacent 3-vertices. We note that
H is not a 3-cycle. By the induction assumption or Lemma 2, H has a total-4-avd-
coloring φ with the color set C = {1,2,3,4}. Assume that φ(y) = 1, φ(x1y) = 2,
and φ(x1) = 3. Erase the colors of all edges and all vertices other than x1 in C.

If n = 3, we color {x3, x1x2} with 1, x2 with 2, x2x3 with 3, and x1x3 with 4.
If n ≥ 4, we first color x1x2 with 1 and x1xn with 4, then extend the current col-

oring to the other vertices and edges of C, with a similar method in the proof of
Theorem 2.1 in Zhang et al. (2005). �

Combining Proposition 3, Theorems 9 and 10, we complete the proof of Main
Theorem for the case �(G) = 3.

4 � ≥ 4

Theorem 11 If G is an outerplane graph with �(G) ≥ 4, then χ ′′
a (G) ≤ �(G) + 2.
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Proof We prove the theorem by induction on |T (G)|. If |T (G)| ≤ 5, the theorem
holds clearly. Suppose that G is a connected outerplane graph with �(G) ≥ 4 and
|T (G)| ≥ 6. By the induction assumption or Theorem 9, every outerplane graph H

with �(H) ≤ �(G) and |T (H)| < |T (G)| has χ ′′
a (H) ≤ �(H) + 2 ≤ �(G) + 2.

By Lemma 5, G contains one of the configurations (C1)–(C5). Since �(G) ≥ 4,
the number of colors used is �(G) + 2 ≥ 6.

(C1) G contains a vertex v with dG(v) ≤ 3 which is adjacent to a leaf.

Without loss of generality, we may assume that dG(v) = 3 and u1, u2, u3 are
neighbors of v with dG(u1) = 1. Let H = G − u1. Then H is a connected outer-
plane graph with |T (H)| < |T (G)|. By the induction assumption or Theorem 9, H

has a total-(�(G) + 2)-avd-coloring φ with the color set C = {1,2, . . . ,�(G) + 2}.
Suppose that φ(v) = 1, φ(vu2) = 2, and φ(vu3) = 3.

If |{4,5,6} ∩ Cφ(ui)| ≥ 2 for all i = 2,3, we color vu1 with 4. If |{4,5,6} ∩
Cφ(ui)| ≤ 1 for all i = 2,3, we color uv1 with a color in {4,5,6}\(Cφ(u2)∪Cφ(u3)).
If |{4,5,6}∩Cφ(u2)| ≥ 2 and |{4,5,6}∩Cφ(u3)| ≤ 1, say, we color vu1 with a color
in {4,5,6}\Cφ(u3).

(C2) G contains a path x1x2 · · ·xn with dG(x1) �= 2, dG(xn) �= 2, and dG(xi) = 2 for
all i = 2,3, . . . , n − 1, where n ≥ 4.

By the induction assumption or Theorem 9, G−x2x3 has a total-(�(G)+ 2)-avd-
coloring φ with the color set C = {1,2, . . . ,�(G) + 2}.

If n = 4, we recolor x2 with a color a ∈ C \ {φ(x1),φ(x3),φ(x1x2),φ(x3x4)}, and
color x2x3 with a color in C \ {a,φ(x3),φ(x1x2),φ(x3x4)}.

If n ≥ 5, we recolor x3x4 with a ∈ C \ {φ(x2),φ(x4),φ(x5),φ(x4x5)}, x3
with b ∈ C \ {a,φ(x2),φ(x4),φ(x4x5)}, and color x2x3 with a color in C \
{a, b,φ(x2),φ(x1x2)}.
(C3) G contains a vertex v with neighbors v1, v2, . . . , vk , k ≥ 4, such that dG(v1) = 1

and dG(vi) ≤ 2 for all i = 2,4, . . . , k − 2.

For 2 ≤ i ≤ k − 2, if vi is a 2-vertex, we denote by ui �= v the second neigh-
bor of vi . It follows from (C2) that dG(ui) ≥ 3. By the induction assumption or
Theorem 9, G − v1 has a total-(�(G) + 2)-avd-coloring φ with the color set C =
{1,2, . . . ,�(G) + 2}. We may assume that φ(v) = 1, φ(vvi) = i for i = 2,3, . . . , k.
Since �(G) ≥ dG(v) = k, |C| ≥ �(G) + 2 ≥ k + 2. Thus, k + 1, k + 2 ∈ C.

If k + 1 ∈ Cφ(vk−1) ∩ Cφ(vk), we color vv1 with k + 2. If k + 1 /∈ Cφ(vk−1) ∪
Cφ(vk), we color vv1 with k + 1. The similar argument works for the color k + 2. If
{k + 1, k + 2} ⊆ Cφ(vk−1)\Cφ(vk) or {k + 1, k + 2} ⊆ Cφ(vk)\Cφ(vk−1), we color
vv1 with k + 1.

Now suppose that k + 1 ∈ Cφ(vk−1)\Cφ(vk) and k + 2 ∈ Cφ(vk)\Cφ(vk−1), say.
If dG(v2) = 1, we recolor (or color) vv2 with k +1 and vv1 with k +2. If dG(v2) = 2,
we recolor (or color) vv2 with a color a ∈ {k + 1, k + 2}\{φ(v2u2)}, vv1 with a color
in {k + 1, k + 2}\{a}, and v2 with a color different from 1, a,φ(u2),φ(u2v2).

(C4) G contains a 3-face [uv1v2] with dG(u) = 2 and dG(v1) = 3.

Let z �= u,v2 be the third neighbor of v1. Let y1, . . . , ym be the neighbors of v2
different from u and v1, where m ≥ 1. By the induction assumption or Theorem 9,
G − uv1 has a total-(�(G) + 2)-avd-coloring φ with C = {1,2, . . . ,�(G) + 2}.
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If m = 1, the proof is similar to the case (B3) in Theorem 9.
Assume that m ≥ 2. If dG(z) �= 3, we color properly uv1. Assume that dG(z) = 3.

If φ(z) �= φ(v1v2), we color uv1 with a color different from those of z, v1, v1v2,

zv1, uv2. Otherwise, we recolor v1 with a color a ∈ C \ (Cφ(z) ∪ {φ(v2)}), and then
color properly uv1. Since |Cφ(z) ∪ {φ(v2)}| ≤ 4 + 1 = 5 and |C| ≥ 6, the extended
coloring is feasible.

(C5) G contains two 3-faces [u1v1x] and [u2v2x] such that dG(x) = 4 and dG(u1) =
dG(u2) = 2.

Based on the proofs of (C2) and (C4), we may assume that dG(vi) ≥ 4 for i = 1,2.
Let z1, z2, . . . , zm be the neighbors of v1 different from x and u1. Let y1, y2, . . . , yn

be the neighbors of v2 different from x and u2. Then, m ≥ 2 and n ≥ 2.
If m,n ≥ 3, then any total-(�(G) + 2)-avd-coloring of G − xu1 can be easily ex-

tended to the whole graph G. Otherwise, assume that n ≥ 2 and m = 2 by symmetry.
By the induction assumption or Theorem 9, G − xu1 has a total-(�(G) + 2)-avd-
coloring φ with C = {1,2, . . . ,�(G)+2}. Let φ(v1) = 1, φ(v1z1) = 2, φ(v1z2) = 3,
φ(v1x) = 4, and φ(v1u1) = 5. This implies that 6 /∈ Cφ(v1). We need to consider two
subcases as follows:

(C5.1) n ≥ 3. If 6 /∈ {φ(x),φ(xu2),φ(xv2)}, we color xu1 with 6. Otherwise, we
properly color xu1.

(C5.2) n = 2. Since |Cφ(v2)| = 5 and |C| ≥ 6, there is some color a ∈ C \ Cφ(v2).
(i) a ≥ 6. If a /∈ Cφ(x), we color xu1 with a; Otherwise, we color properly

xu1.
(ii) 1 ≤ a ≤ 5. First, assume that a ∈ Cφ(x); especially, this is true for a = 4.

If 6 /∈ Cφ(x), we color xu1 with 6; otherwise, we color properly xu1.
Next, assume that a /∈ Cφ(x). We recolor xu2 with a and then reduce the
proof to the previous case.

�

Theorem 12 If G is an outerplane graph with �(G) ≥ 4 and without adjacent ver-
tices of maximum degree, then χ ′′

a (G) = �(G) + 1.

Proof It is evident that χ ′′
a (G) ≥ �(G)+1. It suffices to show that χ ′′

a (G) ≤ �(G)+
1 by induction on |T (G)|. If |T (G)| ≤ 5, the theorem holds clearly. Suppose that G

is a connected outerplane graph with �(G) ≥ 4 and |T (G)| ≥ 6 and without adjacent
vertices of maximum degree. We divide the proof into the following two parts:

Part 1 �(G) ≥ 5.
By Lemma 5, G contains one of the configurations (C1)–(C5). We know that |C| =

�(G) + 1 ≥ 6 in this case.
If G contains (C1), (C2), (C4) or (C5), the proof is analogous to the corresponding

case of Theorem 11.
Assume that G contains (C3), i.e., a vertex v with neighbors v1, v2, . . . , vk , k � 4,

such that dG(v1) = 1 and dG(vi) ≤ 2 for all i = 2,4, . . . , k − 2. By the induction
assumption or Theorem 11, G − v1 has a total-(�(G) + 1)-avd-coloring φ with the
color set C = {1,2, . . . ,�(G) + 1}. If k = dG(v) < �(G), then |C| = �(G) + 1 ≥
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k + 2, and hence we can give a similar proof as in the case (C3) of Theorem 11. If
k = dG(v) = �(G), then dG(vi) < �(G) for i = k − 1, k by the assumption, we only
need to color properly the edge vv1.

Part 2 �(G) = 4.
In this case, |C| = 5. By Lemma 7, G contains one of the configurations

(A1)–(A4).
If G contains (A2), then the proof is similar to the Case (B1) in Theorem 9.
If G contains (A3), the proof is similar to the case (C2) in Theorem 11.
Assume that G contains (A1), i.e., a vertex v with dG(v) �= 3 adjacent to a leaf u.

If dG(v) ≤ 2, the proof is similar to the case (C1) in Theorem 11. If dG(v) = 4, then
since every neighbor of v is not a 4-vertex, any total-5-avd-coloring of G − uv can
be extended to the whole graph G.

If G contains (A4), i.e., a 3-face [uxy] with dG(x) = 3 such that either dG(u) = 2,
or dG(u) = 3 and u is adjacent to a leaf u′, let x′ �= u,y be the third neighbor of x.
By (A3), we may assume that dG(y) ≥ 3. We consider the following two cases, de-
pending on the value of dG(y).

Case 1. dG(y) = 4

If dG(u) = 3, we let H = G − u′. Then H is an outerplane graph with �(H) = 4
and without adjacent 4-vertices. By the induction assumption, H has a total-5-avd-
coloring φ with the color set C = {1,2, . . . ,5}. Suppose that φ(x) = 1, φ(xy) = 2,
φ(xu) = 3, and φ(xx′) = 4. If 5 ∈ {φ(u),φ(uy)}, we properly color uu′; otherwise,
we color uu′ with 5.

If dG(u) = 2, we let H = G − xu and let φ be a total-5-avd-coloring of H with
the color set C = {1,2, . . . ,5}. If dG(x′) �= 3, we properly color xu. Assume that
dG(x′) = 3 and let Cφ(x′) = {1,2,3,4}. If 5 /∈ {φ(x),φ(xy),φ(uy)}, we color xu

with 5. If 5 ∈ {φ(x),φ(xy)}, we properly color xu. If 5 /∈ {φ(x),φ(xy)} and φ(uy) =
5, we exchange the colors of uy and xy, then properly color xu.

Case 2. dG(y) = 3

Let y′ �= u,x be the third neighbor of y. By the induction assumption, G−{u,xy} has
a total-5-avd-coloring φ with the color set C = {1,2, . . . ,5}. If dG(x′) = dG(y′) = 3,
the proof is similar to the case (B3) in Theorem 9. Thus, without loss of generality,
assume that dG(y′) �= 3, and let φ(x′) = 1, φ(xx′) = 2, φ(y′) = a, and φ(yy′) = b.
Moreover, if dG(x′) = 3, we suppose that Cφ(x′) = {1,2,3,4}. By symmetry, it suf-
fices to consider the following subcases, depending on the values of a and b:

(2.1) a = 1. If b = 2, we color xu with 1, {y,uu′} with 3, {x,uy} with 4, and {xy,u}
with 5. If b = 3, we exchange the colors of y and yy′ in the previous case. If
b = 5, we color uy with 1, {y,uu′} with 2, {u,xy} with 3, xu with 4, and x

with 5.
(2.2) a = 2. If b = 1, we color u with 1, uu′ with 2, {y, xu} with 3, {x,uy} with 4,

and xy with 5. If b = 3, we color {y, xu} with 1, u with 2, uu′ with 3, {x,uy}
with 4, and xy with 5. If b = 5, we color {u,xy} with 1, uy with 2, xu with 3,
{y,uu′} with 4, and x with 5.
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(2.3) a = 3. If b = 1, we color uu′ with 1, y with 2, xu with 3, {x,uy} with 4, and
{u,xy} with 5. If b = 2, we exchange the colors of y and yy′ in the previous
case. If b = 4, we color {y,uu′} with 1, uy with 2, xu with 3, x with 4, and
{u,xy} with 5. If b = 5, we color {u,xy} with 1, uy with 2, xu with 3, {y,uu′}
with 4, and x with 5.

(2.4) a = 5. If b = 1, we color u with 1, y with 2, {xy,uu′} with 3, {x,uy} with 4,
and xu with 5. If b = 2, we color uy with 1, u with 2, xy with 3, {y, xu} with 4,
and {x,uu′} with 5. If b = 3, we color xy with 1, u with 2, uu′ with 3, {y, xu}
with 4, and {x,uy} with 5.

�

By Proposition 3, Theorems 11 and 12, we complete the proof of Main Theorem
for the case �(G) ≥ 4. �
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