
A
w

J
D

a

A
R
A

K
S
3
C
T
S

1

r
q
s
a
t
t
U
t
i
s
r
m
d
s
N
f

t
p
o
p
v

(

0
d

Optik 123 (2012) 1923– 1927

Contents lists available at SciVerse ScienceDirect

Optik

jou rna l homepage: www.elsev ier .de / i j leo

 new  approach  for  the  bundle  adjustment  problem
ith  fixed  constraints  in  stereo  vision

unpeng  Xue,  Xianyu  Su ∗

epartment of Opto-Electronics, Sichuan University, Chengdu, Sichuan 610064, China

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 4 May  2011
ccepted 2 September 2011

a  b  s  t  r  a  c  t

A  new  approach  for the  bundle  adjustment  problem  with  fixed  constraints  in  stereo  vision  is  described  in
this  paper.  Since  the  direct  application  of  traditional  bundle  adjustment  fails  to  use  the  inner  constraints
completely  which  are  maintained  by  fixating  the  orientation  and  the  baseline  between  the  left  and  right
cameras.  However,  if the  fixed  constraints  are  applied  to  the  traditional  bundle  adjustment,  we  refine
eywords:
tereo vision
D reconstruction
onstrained bundle adjustment
raditional bundle adjustment

only  the  left  camera  extrinsic  parameters  and  3D  points  for simplification  in  stereo  pairs.  The  new  method
using  the  fixed  constraints  has  superior  theoretical  3D  accuracy,  and  it can  reduce  the  matrix  dimension
of the  covariance  matrix  so  that  the total  computation  time  is  decreased.  Experiments  results  using
synthetic  and  real  data  have  shown  that  our method  is better  than  the  traditional  bundle  adjustment
algorithm  in  the  3D  accuracy  and  the  convergence  rate.
IFT

. Introduction

3D measuring technique has many practical applications in
everse engineering, online monitoring, machinery processing, and
uality testing [1–4]. Stereo vision is a typical system in 3D mea-
urement [5,6]. In this method, two cameras, viewing from different
ngles, capture the images. Corner feature points are detected in
hese images of each stereo pairs. These feature points are then
riangulated at each frame based on stereo correspondences [7,8].
sing stereo vision technique, 3D scanners that can capture the

hree-dimensional shape of objects accurately [7] are widely used
n reverse engineering. However, it remains challenging for mea-
uring large objects. When comes to large objects, it needs to
econstruct the framework of tie points using bundle adjustment
ethod, and then match every sub-shape to the framework by 3D

ata registration method [9]. But, if the framework of the recon-
truction accuracy is not high, it may  fail or do not accurately match.
ow, we study how to improve the reconstruction precision of the

ramework using bundle adjustment in stereo vision.
Bundle adjustment (BA) is the method of choice for many pho-

ogrammetry applications [10–12].  It has also come to take a
rominent role in computer vision applications as the last step

f many feature-based 3D reconstruction algorithms, for exam-
le [13–15],  for a few representative approaches. BA refines a
isual reconstruction to produce jointly optimal 3D structure and
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viewing parameters (camera pose and possibly intrinsic calibra-
tion) estimates. BA boils down to minimizing the re-projection
error between the observed and predicted image points, which is
expressed as the sum of squares of a large number of non-linear,
real-valued functions [10]. Thus, the minimization is achieved using
non-linear least squares algorithms, of which most of these articles
call on the Levenberg–Marquardt’s (LM) algorithm [16].

In this paper we present the discussion for studying how
reconstruction accuracy could be improved by employing fixed
constraints inherent in the two  cameras in stereo vision. Since the
fixed constraints are not applied into covariance matrix in tra-
ditional BA, more optimized parameters are needed and a long
calculated time is taken. By incorporating these constraints into
the traditional BA, we  obtain the superior 3D accuracy and the con-
vergence rate. Organization of the paper is as follows. Section 2
describes the theory and algorithm used in our approach. In Sec-
tion 3, we provide an experimental comparison between BA and
“constrained” BA, which clearly demonstrates the superiority of
the latter in terms of 3D accuracy and convergence rate. Finally,
in Section 4, we  conclude the work and with a brief discussion.

2. Theoretical background and algorithm

2.1. Projection model

A camera model is a mathematical formation which approx-

imates the behavior of any physical device by using a set of
mathematical equations [17]. A 2D point is denoted by m = [u, v]T .
A 3D point is denoted by M = [X, Y, Z]T. We  use homogeneous
coordinates to denote the augmented vector by adding 1 as the last
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lement: m̃ = [u, v, 1]T and M̃ = [X, Y, Z, 1]T . A camera is modeled
y the usual pinhole: the relationship between a 3D point M and its

mage projection m is approximated by means of a transformation
atrix, as shown in the equation.

m̃ = KP × M̃ (1)

here s is a scale factor. K, called the camera intrinsic matrix, is
iven by

 =

⎡
⎢⎣

fu � u0

0 fv v0

0 0 1

⎤
⎥⎦ (2)

here fu and fv represents the focal length in image u and v axes,
u0, v0) is the coordinates of the principal point, and � is the aspect
atio, which is often ignored and set to zero. The parameters s, fu, fv,
0 and v0 are the intrinsic parameters of the pinhole camera model.

 is a 4 by 4 matrix describing the mapping from world coordinate
o camera coordinate. It is decomposed as follows:

 =
[

R T

0 1

]
(3)

here T = [Tx, Ty, Tz]T describes the translation between the two
oordinates, and R is a 3 by 3 orthonormal rotation matrix which
an be defined by the three Euler angles ω, ϕ and k, we have

 =

⎡
⎢⎣

cos ϕ cos k sin ω sin ϕ cos k − cos ω sin k cos ω sin ϕ co

cos ϕ sin k sin ω sin ϕ sin k + cos ω cos k cos ω sin ϕ si

− sin ϕ sin ω cos ϕ cos 

The parameters Tx, Ty, Tz, ω, ϕ and k are called extrinsic param-
ters.

From Eq. (1),  we have

u = fu
r11X + r12Y + r13Z + Tx

r31X + r32Y + r33Z + Tz
+ u0

v = fv
r21X + r22Y + r23Z + Ty

r31X + r32Y + r33Z + Tz
+ v0

(5)

here rij is the ith row and the jth column of the rotation matrix R.
q. (5) is called collinear equation, which are based on “R–T” model,
n photogrammetry.

.2. The fixed constraints in stereo vision

As shown in Fig. 1, inner constraints are maintained by fixating
he orientation and the baseline between the left and right cameras.
e denote left and right camera by subscripts l and r. We  have

Rr = RcRl

Tr = Tc + RcTl

(6)

Fig. 1. Stereo vision position.
2012) 1923– 1927

 sin ω sin k

 sin ω cos k

s ϕ

⎤
⎥⎦ (4)

where Rc and Tc are the relationship between the left and right
cameras respectively represent the rotation and translation, this is
obtained from camera calibration [17].

Inserting Eq. (6) into Eq. (1),  we  get right camera transforma-
tion matrix represented by the left camera extrinsic parameters,
we have

s

⎡
⎢⎣

ur

vr

1

⎤
⎥⎦ = Kr ·

[
RcRl Tc + RcT

]
·

⎡
⎢⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎥⎦ (7)

2.3. The constrained bundle adjustment method

The direct application of traditional bundle adjustment does not
make full use of the constraints available. The optimized 3D points
and extrinsic parameters of the left images might not be well re-
projected on the right images in stereo vision. If the relationship
of the two cameras in stereo vision is fixed in Eq. (6),  two  images,
taken from the same point in space, can be gotten, then we have
covariance matrix:

[
BT B BT C

CT B CT C

]
·
[

ıx

ıt

]
=

[
BT L

CT L

]
(8)

where B =
[

Bl Br

]T
, C =

[
Cl Cr

]T
, L =

[
Ll Lr

]T
, ıx =

ıxl, ıt = ıtl .
Ll and Lr are the observed error in two images respectively.

Ll =
[

ul − ũl

vl − ṽl

]
, Lr =

[
ur − ũr

vr − ṽr

]

where (u, v) are the measured data, (ũ, ṽ) are the back projected
coordinates using collinear equation in Eq. (5).

(Bl, Cl) and (Br, Cr) respectively represent the partial derivative of
(u, v) in Eqs. (5) and (7) which are just for the extrinsic parameters
of the left cameras (ω, ϕ, k, Tx, Ty, Tz) and 3D points. We  have

Bl =

⎡
⎢⎣

∂ul

∂ωl

∂ul

∂ϕl

∂ul

∂kl

∂ul

∂Tlx

∂ul

∂Tly

∂ul

∂Tlz
∂vl

∂ωl

∂vl

∂ϕl

∂vl

∂kl

∂vl

∂Tlx

∂vl

∂Tly

∂vl

∂Tlz

⎤
⎥⎦

Br =

⎡
⎢⎣

∂ur

∂ωl

∂ur

∂ϕl

∂ur

∂kl

∂ur

∂Tlx

∂ur

∂Tly

∂ur

∂Tlz
∂vr ∂vr ∂vr ∂vr ∂vr ∂vr

⎤
⎥⎦
∂ωl ∂ϕl ∂kl ∂Tlx ∂Tly ∂Tlz

Cl =

⎡
⎣ ∂ul

∂X

∂ul

∂Y

∂ul

∂Z
∂vl

∂X

∂vl

∂Y

∂vl

∂Z

⎤
⎦ , Cr =

⎡
⎣ ∂ur

∂X

∂ur

∂Y

∂ur

∂Z
∂vr

∂X

∂vr

∂Y

∂vr

∂Z

⎤
⎦

When all of the 3D points are projected to the sequence pairs, we
have the covariance matrix
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Table  1
The intrinsic parameters of simulated camera.

fu (pixels) fv (pixels) u0 (pixels) v0 (pixels) s (radian)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

U

c
u
p
s

a
a
O
l
t

3

a
r
L
a
P

T
T

2500 2500 640 512 0

U1 W11 W21 · · · Wn1

U2 W12 W22 · · · Wn2

. . .
.
.
.

.

.

.
. . .

.

.

.

Um W1m W2m · · · Wnm

WT
11 WT

12 · · · WT
1m

V1

WT
21 WT

22 · · · WT
2m

V2

.

.

.
.
.
.

. . .
.
.
.

. . .

WT
n1 WT

n2 · · · WT
nm Vn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ıx1

ıx2

.
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.

ıxm

ıt1
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.

ıtn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εx1

εx2

.

.

.

εxm

εt1

εt2

.

.

.

εtn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

here n is the number of 3D points, m is the number of stereo pairs.

j =
n∑

i=1

BT
ijBij, j = 1, 2, . . . , m;  Vi =

m∑
j=1

CT
ij Cij, i = 1, 2, . . . , n;

Wij = BT
ijCij, εxj =

n∑
i=1

BT
ijLij, εtj =

m∑
j=1

CT
ij Lij

The update unknown variables

[
ıx1 ıx2 · · · ıxm ıt1

ıt2 · · · ıtn

]T

an be solved using the least squares method from Eq. (9).  Then,
pdate the extrinsic parameters of left camera and 3D points. The
rocedure is repeated until the residual error cannot be reduced
ignificantly.

It is clearly that the matrix in the left hand side of Eq. (9) is
 (6m + 3n) order symmetric matrix. If we use traditional bundle
djustment method, the order of symmetric matrix is (6 × 2m + 3n).
bviously, the constrained bundle adjustment method requires

ess computation time to solve Eq. (9) in each of iteration compared
o the traditional bundle adjustment algorithm.

. Experimental results
In this section, we compare the performance of the constrained
nd unconstrained traditional bundle adjustments by synthetic and
eal image sequences. Both methods are implemented in C, using
APACK for linear algebra numerical operations. All experiments
re conducted on a Celeron(R) CPU 3.06 GHz running Windows XP
rofessional and un-optimized BLAS.

able 2
he 3D points real values and the values computed respectively from constrained BA and

No. Real value Constrained BA 

x y z x y z 

1 −500 −500 100 −500.002 −500.074 99.7
2  −500 0 0 −499.987 −0.062 −0.3
3  −500 500 100 −500.024 500.007 100.2
4  100 −500 100 100.037 −499.916 100.0
5 100  −200 40 100.082 −200.096 40.1
6  100 0 0 100.072 0.041 0.2
7  100 200 40 99.906 200.095 40.0
8 100  500 100 100.027 500.061 99.9
9  500 −500 100 500.009 −500.082 99.8

10 500 0 0 499.971 −0.053 −0.1
11 500 500 100 499.990 499.941 100.1
Fig. 2. Scene geometry illustration, the true 3D points can be reconstructed.

3.1. Experiments on synthetic data

We use Matlab to generate a synthetic scene consisting of
66 3D points. As shown in Fig. 2, these points are generated in
1000 × 1000 × 100 “V” shape. The 3D points are viewed by stereo
cameras with identical perspective model. The vision system is
placed uniformly along a 180◦, direct towards the scene, at 10
stations bundle network [18]. The vertical distance for the stereo
systems to the XY plane is 2200 mm.  The intrinsic parameters of the
simulated camera are shown in Table 1. The baseline between the
left and right cameras is 80 cm,  so Tc = [80, 0, 0]T. The two cameras
optical axis are parallel, so the relative orientation angles ω, ϕ and
k are 0 respectively. A sequence of 20 images has been generated
from the model under perspective projection.

The constrained bundle adjustment method and the traditional
bundle adjustment algorithm were given the same measurements
and starting approximations. In each simulation, Gaussian noise
was added to the projected points, with a noise level was varied
from 0 to 2 pixels, simulating measurement errors. As it is evi-
dent from the final squared re-projection error, both approaches
converge to almost identical solutions. In each noise level, 100
independent runs were performed, and the average results of the
re-projection error and the computation time are reported here.

Table 2 shows the objects real values and the values computed
respectively from “constrained” bundle adjustment method and
the traditional bundle adjustment method at a noise level of 1
pixel added to the image points. The experimental results show
that both methods converge reliably. The value with “constrained”
BA method is more accurate than the value with traditional BA.

Fig. 3(a) compares the average 3D relative errors between the
two methods. The results for two  methods are different. The “con-
strained” BA method is clearly the better one. The constrained

method can produce a smaller residual error than the uncon-
strained method at all noise level. The constraints help to model the
object 3D points more realistically, thereby suppress over-fitting,
and produce a more accurate model.

 traditional BA method at a noise level of 1 pixel, only show 11 points (unit: mm).

Traditional BA

Error x y z Error

71 0.240 −500.002 −500.162 99.483 0.541
57 0.362 −499.957 −0.139 −0.621 0.637
64 0.265 −499.857 500.010 100.628 0.644
35 0.098 100.670 −499.844 100.066 0.691
04 0.163 100.103 −200.172 40.198 0.282
40 0.253 100.068 0.530 0.573 0.783
94 0.163 100.166 200.187 40.669 0.714
27 0.099 100.236 500.247 99.874 0.364
14 0.203 500.209 −500.610 99.726 0.700
26 0.139 499.881 −0.085 −0.199 0.247
84 0.193 499.979 499.895 100.710 0.718
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Fig. 4. One of the image pairs of the temple. The superimposed stars indicate the
selected features.

bundle adjustment method has a real advantage of the faster
computation.
ig. 3. Comparison of the accuracy and efficiency of the different methods. (a) The
esidual 3D errors; (b) the computation time.

The computation time for every noise level are shown in
ig. 3(b). It is clearly to see that the constrained method is faster
han the unconstrained method at every noise level. As the covari-
nce matrix order of the constrained method is smaller, the
omputation time are needed less in each iteration. The number
f iterations will increase with the increasing of noise level, so the
otal computation time increases with the number of iterations.

.2. Experiments on real condition

The constrained bundle adjustment method has also been tested
n real images. We  have chosen to work on the 312 images
equence “temple” of the online database [19]. In this database we
now all the intrinsic and extrinsic parameters. All the intrinsic
amera parameters are the same, and any two adjacent cameras
elative rotation and translation are the same. Therefore, we  select
4 adjacent image pairs as 14 stereo pairs of images. The feature
oints of interest are extracted using SIFT algorithm [20]. Over
000 features are successfully matched with subpixel accuracy.
he RANSAC algorithm [21], using homography as an underlying
odel, is applied to eliminate rare mismatches. Fig. 4 shows one of

he image pairs of the temple with selected features indicated by
mall stars.

As mentioned before, the actual state values are not known to
s, so it is not possible to display the errors in the reconstruction 3D.
ig. 5 shows the reconstructed view of the set of 4196 points from
ront views. Clearly visible seems to confirm that the constrained
undle adjustment method is doing a reasonably good job of the
econstructed framework.
Fig. 6 shows the actual processing time of the constrained
undle adjustment method compared with that of the traditional
undle adjustment method. The number of features as 228, 1374,
675 and 4196 select from all 3D points, while the number of frame
Fig. 5. Front view of reconstructed point set.

pairs is fixed at 14. The processing time for tracking features and
reconstruction are not included. Clearly to see that the constrained
Fig. 6. The processing time of the constrained BA method compared with that of
the  traditional BA method.
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. Conclusions

In this paper, we have made a comparison for the traditional
undle adjustment and the constrained bundle adjustment in the
D accuracy and computation time. The experiment results show
hat our method has a better 3D accuracy than the traditional
undle adjustment. Hence, in the cases when it is not possible
o improve the data, e.g. due to restricted access to the object
r poor spatial distribution of markers, the improvement in reli-
bility introduced by the constrained bundle adjustment method
ill be useful. The constrained bundle adjustment method also can

educe the matrix dimension of the covariance matrix. So the total
omputation time should also been decreased. This increases the
onvergence rate and provides a very viable option even for real
ime applications.

According to the results of synthetic and real image sequences,
e can affirm that our method is accurate and fast. Our method

hould be good for the proper implementation.

cknowledgements

The authors are thankful to the anonymous reviewers for
heir useful suggestions and comments. This work is supported
y the National Natural Science Foundation of China (Grant No.
0838002).

eferences
[1] C. Lee, Y. Lim, S. Kwon, J. Lee, Stereo vision-based vehicle detection using a road
feature and disparity histogram, Opt. Eng. 50 (2) (2011) 027004–27023.

[2] X. Llad, A. Del Bue, A. Oliver, J. Salvi, L. Agapito, Reconstruction of non-
rigid 3D shapes from stereo-motion, Pattern Recogn. Lett. 32 (7) (2011)
1020–1028.

[

[

2012) 1923– 1927 1927

[3] M.  Agrawal, K. Konolige, Real-time localization in outdoor environments using
stereo vision and inexpensive GPS, in: Proc. of the 18th IEEE International
Conference on Pattern Recognition (ICPR’06), 2006, pp. 1063–1068.

[4]  H. Hirschmüller, P.R. Innocent, J. Garibaldi, Real-time correlation-based stereo
vision with reduced border errors, Int. J. Comput. Vision 47 (1) (2002) 229–246.

[5] X. Su, Q. Zhang, L. Xiang, Optical 3D shape measurement for dynamic process,
Optoelectron. Lett. 4 (1) (2008) 55–58.

[6] X. Bian, X. Su, W.  Chen, Analysis on 3D object measurement based on fringe
projection, Optik 122 (6) (2011) 471–474.

[7] D.J. Kriegman, E. Triendl, T.O. Binford, Stereo vision and navigation in buildings
for  mobile robots, IEEE Trans. Robotics Automation 5 (6) (1989) 792–803.

[8] O. Faugeras, Stratification of three-dimensional vision: projective, affine, and
metric representations, J. Opt. Soc. Am. A 12 (3) (1995) 465–484.

[9] J. Han, N. Lu, et al., 3D data registration method based on optical location
tracking technology, Opt. Precision Eng. 17 (1) (2009) 45–51.

10] B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle adjustment – a mod-
ern synthesis, Vision Algorithms: Theory Practice 1883 (2000) 298–372.

11] M.I.A. Lourakis, A.A. Argyros, SBA: a software package for generic sparse bundle
adjustment, ACM Trans. Math. Softw. 36 (1) (2009) 1–30.

12] T. Luhmann, Close range photogrammetry for industrial applications, ISPRS J.
Photogramm. Rem. Sens. 65 (6) (2010) 558–569.

13] E. Mouragnon, M. Lhuillier, M.  Dhome, F. Dekeyser, P. Sayd, Generic and
real-time structure from motion using local bundle adjustment, Image Vision
Comput. 27 (8) (2009) 1178–1193.

14] S. Agarwal, N. Snavely, S. Seitz, R. Szeliski, Bundle adjustment in the large, in:
ECCV 2010, Part II, vol. 6312, 2010, pp. 29–42.

15] Z. Ji, M.  Boutin, D.G. Aliaga, Robust bundle adjustment for structure from
motion, in: IEEE International Conference on Image Processing, 2006, pp.
2185–2188.

16] D. Marquardt, An algorithm for the least-squares estimation of nonlinear
parameters, SIAM J. Appl. Math. 11 (2) (1963) 431–441.

17] Z. Zhang, A flexible new technique for camera calibration, IEEE Trans. Pattern
Anal. Mach. Intell. 22 (11) (2000) 1330–1334.

18] S. Mason, Expert system-based design of close-range photogrammetric net-
works, ISPRS J. Photogramm. Rem. Sens. 50 (5) (1995) 13–24.

19] S.M. Seitz, B. Curless, J. Diebel, D. Scharstein, R. Szeliski, Multiview Stereo Val-
uation, http://vision.middlebury.edu/mview/data/.
20] D.G. Lowe, Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vision 60 (2) (2004) 91–110.

21] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fit-
ting with applications to image analysis and automated cartography, Commun.
ACM 24 (6) (1981) 381–395.

http://vision.middlebury.edu/mview/data/

	A new approach for the bundle adjustment problem with fixed constraints in stereo vision
	1 Introduction
	2 Theoretical background and algorithm
	2.1 Projection model
	2.2 The fixed constraints in stereo vision
	2.3 The constrained bundle adjustment method

	3 Experimental results
	3.1 Experiments on synthetic data
	3.2 Experiments on real condition

	4 Conclusions
	Acknowledgements
	References


