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Abstract

In this paper, by using the new parametric resolvent operator technique associated with (A, η)-accretive mappings, we analyze
and establish an existence theorem for new nonlinear parametric multi-valued variational inclusion systems involving (A, η)-
accretive mappings in Banach spaces. Our results generalize sensitivity analysis results of other recent works on strongly
monotone quasi-variational inclusions, nonlinear implicit quasi-variational inclusions and nonlinear mixed quasi-variational
inclusion systems.
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1. Introduction

It is well known that variational inequality type methods have been applied widely to problems arising from
model equilibria problems in economics, optimization and control theory, operations research, transportation network
modelling, and mathematical programming. Further, sensitivity analysis of solutions for variational inequalities with
single-valued mappings have been studied by many authors via quite different techniques. For example, by using the
project technique, Ding [3], Ding et al. [4], Moudafi [13] and Salahuddin [17] dealt with the sensitivity analysis of
solutions for variational inequalities and nonlinear project equations in Hilbert spaces. By using the implicit function
approach, Jittorntrum [8], Kyparisis [9], Robinson [16] studied the sensitivity analysis of solutions for variational
inequalities under suitable second-order and regularity assumptions.

On the other hand, Dong et al. [5] analyzed solution sensitivity analysis for variational inequalities and variational
inclusions by using the resolvent operator technique. Very recently, using the concept and technique of resolvent
operators, Agarwal et al. [1] and Jeong [7] introduced and studied a new system of parametric generalized nonlinear
mixed quasi-variational inclusions in a Hilbert space and in L p (p ≥ 2) spaces, respectively. For some related work,
we refer the reader to [2,6,15] and the references therein.
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Inspired and motivated by the above works, we intend in this paper to study the behavior and sensitivity analysis of
the solution set for a new nonlinear parametric multi-valued variational inclusion system involving (A, η)-accretive
mappings in Banach spaces. The results obtained generalize and improve the results on the sensitivity analysis
for generalized nonlinear mixed quasi-variational inclusions [1,7] and others. For more details, we recommend
[1–11,17–19].

2. Preliminaries

Let B be a real Banach space with dual space B∗, 〈·, ·〉 be the dual pair of B and B∗, C B(B) denote the family of
all nonempty closed bounded subsets of B and 2B denote the family of all the nonempty subsets of B. The generalized
duality mapping Jq : B → 2B

∗

is defined by

Jq(x) = { f ∗
∈ B∗

: 〈x, f ∗
〉 = ‖x‖

q , ‖ f ∗
‖ = ‖x‖

q−1
}, ∀x ∈ B,

where q > 1 is a constant. In what follows we shall denote the single-valued generalized duality mapping by jq .

Lemma 2.1 ([20]). Let B be a real uniformly smooth Banach space. Then B is q-uniformly smooth if and only if there
exists a constant cq > 0 such that for all x, y ∈ B,

‖x + y‖
q

≤ ‖x‖
q

+ q〈y, jq(x)〉 + cq‖y‖
q .

In the sequel, let Υ be a nonempty open subset of B in which the parameter ς takes values.

Definition 2.1. Let B be a q-uniformly smooth Banach space and A : B → B be a single-valued mapping. Then a
mapping T : B × B × Υ → B is said to be

(i) m-relaxed accretive in the first argument if there exists a positive constant m such that

〈T (x, u, ς) − T (y, u, ς), jq(x − y)〉 ≥ −m‖x − y‖
q ,

for all (x, y, u, ς) ∈ B × B × B × Υ ;
(ii) s-cocoercive in the first argument if there exists a constant s > 0 such that

〈T (x, u, ς) − T (y, u, ς), jq(x − y)〉 ≥ s‖T (x, u, ς) − T (y, u, ς)‖q ,

for all (x, y, u, ς) ∈ B × B × B × Υ ;
(iii) γ -relaxed cocoercive with respect to A in the first argument if there exists a positive constant γ such that

〈T (x, u, ς) − T (y, u, ς), jq(A(x) − A(y))〉 ≥ −γ ‖T (x, u, ς) − T (y, u, ς)‖q ,

for all (x, y, u, ς) ∈ B × B × B × Υ ;
(iv) (ε, α)-relaxed cocoercive with respect to A in the first argument if there exist positive constants ε and α such that

〈T (x, u, ς) − T (y, u, ς), jq(A(x) − A(y))〉 ≥ −α‖T (x, u, ς) − T (y, u, ς)‖q
+ ε‖x − y‖

q ,

for all (x, y, u, ς) ∈ B × B × B × Υ ;
(v) µ-Lipschitz continuous in the first argument if there exists a constant µ > 0 such that

‖T (x, u, ς) − T (y, u, ς)‖ ≤ µ‖x − y‖, ∀(x, y, u, ς) ∈ B × B × B × Υ .

In a similar way, we can define (relaxed) cocoercivity and Lipschitz continuity of the mapping T (·, ·, ·) in the second
and third arguments.

Definition 2.2. Let B be a q-uniformly smooth Banach space, η : B × B → B and A, H : B → B be single-valued
mappings. Then multi-valued mapping M : B → 2B is said to be

(i) accretive if

〈u − v, jq(x − y)〉 ≥ 0, ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(ii) η-accretive if

〈u − v, jq(η(x, y))〉 ≥ 0, ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);
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(iii) strictly η-accretive if M is η-accretive and equality holds if and only if x = y;
(iv) r -strongly η-accretive if there exists a constant r > 0 such that

〈u − v, jq(η(x, y))〉 ≥ r‖x − y‖
q , ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(v) α-relaxed η-accretive if there exists a constant α > 0 such that

〈u − v, jq(η(x, y))〉 ≥ −α‖x − y‖
q , ∀x, y ∈ B, u ∈ M(x), v ∈ M(y);

(vi) m-accretive if M is accretive and (I + ρM)(B) = B for all ρ > 0, where I denotes the identity operator on B;
(vii) generalized m-accretive if M is η-accretive and (I + ρM)(B) = B for all ρ > 0;

(viii) H -accretive if M is accretive and (H + ρM)(B) = B for all ρ > 0;
(ix) (H, η)-accretive if M is η-accretive and (H + ρM)(B) = B for every ρ > 0.

In a similar way, we can define strict η-accretivity and strong η-accretivity of the single-valued mapping A.

Remark 2.1. When X = H, (i)–(ix) of Definition 2.3 reduce to the definitions of monotone operators, η-monotone
operators, strictly η-monotone operators, strongly η-monotone operators, relaxed η-monotone operators, maximal
monotone operators, maximal η-monotone operators, H -monotone operators and (H, η)-monotone operators,
respectively.

Definition 2.3. Let F : B × Υ → 2B be a multi-valued mapping. Then F is called τ -Ĥ-Lipschitz continuous in the
first argument if there exists a constant τ > 0 such that

Ĥ(F(x, ς), F(y, ς)) ≤ τ‖x − y‖, ∀x, y ∈ B, ς ∈ Υ ,

where Ĥ : 2B × 2B → (−∞, +∞) ∪ {+∞} is the Hausdorff metric, i.e.,

Ĥ(A, B) = max{sup
x∈A

inf
y∈B

‖x − y‖, sup
x∈B

inf
y∈A

‖x − y‖}, ∀A, B ∈ 2B.

In a similar way, we can define Ĥ-Lipschitz continuity of the mapping F(·, ·) in the second argument.

Lemma 2.2 ([12]). Let (X , d) be a complete metric space and T1, T2 : X → C B(X ) be two set-valued contractive
mappings with the same contractive constant t ∈ (0, 1), i.e.,

Ĥ(Ti (x), Ti (y)) ≤ td(x, y), ∀x, y ∈ X , i = 1, 2.

Then

Ĥ(F(T1), F(T2)) ≤
1

1 − t
sup
x∈X

Ĥ(T1(x), T2(x)),

where F(T1) and F(T2) are fixed point sets of T1 and T2, respectively.

Definition 2.4. Let A : B → B, η : B × B → B be two single-valued operators. Then a multi-valued mapping
M : B → 2B is called (A, η)-accretive if

(i) M is m-relaxed η-accretive, (ii) (A + ρM)(B) = B for every ρ > 0.

Remark 2.2. For appropriate and suitable choices of m, A, η and B, it is easy to see that Definition 2.4 includes a
number of definitions of monotone operators and accretive mappings (see [11]).

Proposition 2.1 ([11]). Let A : B → B be an r-strongly η-accretive mapping, M : B → 2B be an (A, η)-accretive
mapping. Then the operator (A + ρM)−1 is single-valued for every ρ > 0.

Definition 2.5. Let A : B → B be a strictly η-accretive mapping and M : B → 2B be an (A, η)-accretive mapping.
For any given constant ρ > 0, the resolvent operator Jρ,A

η,M : B → B is defined by

Jρ,A
η,M (u) = (A + ρM)−1(u), ∀u ∈ B.
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Proposition 2.2 ([11]). Let B be a q-uniformly smooth Banach space and η : B×B → B be τ -Lipschitz continuous,
A : B → B be a r-strongly η-accretive mapping and M : B → 2B be an (A, η)-accretive mapping. Then the resolvent
operator Jρ,A

η,M : B → B is τq−1

r−ρm -Lipschitz continuous, i.e.,

‖Jρ,A
η,M (x) − Jρ,A

η,M (y)‖ ≤
τ q−1

r − ρm
‖x − y‖, ∀x, y ∈ B,

where ρ ∈ (0, r
m ) is a constant.

Let B1 and B2 be two real Banach spaces, let Ω and Λ be two nonempty open subsets of B1 and B2 in
which the parameter ω and λ take values, respectively, E : B1 × B2 × Ω → B1, F : B1 × B2 × Λ → B2,
S : B1 × Ω → 2B1 and T : B2 × Λ → 2B2 are multi-valued mappings, f : B1 × Ω → B1, g : B2 × Λ → B2,
η1 : B1 × B1 × Ω → B1 and η2 : B2 × B2 × Λ → B2 single-valued mappings. Suppose that A1 : B1 → B1,
A2 : B2 → B2, M : B1 × B1 × Ω → 2B1 and N : B2 × B2 × Λ → 2B2 are any nonlinear mappings such that for all
(z,Ω) ∈ B1 ×Ω , M(·, z, ω) : B1 → 2B1 is an (A1, η1)-accretive mapping with f (B1, ω)∩ dom(M(·, z, ω)) 6= ∅ and
for all (t, λ) ∈ B2 × Λ, N (·, t, λ) : B2 → 2B2 is an (A2, η2)-accretive mapping with g(B2, λ) ∩ dom(N (·, t, λ)) 6= ∅,
respectively. Throughout this paper, unless otherwise stated, we shall consider the following generalized parametric
(A, η)-accretive variational inclusion systems.

For each fixed (ω, λ) ∈ Ω × Λ, find (x(ω), y(λ)) ∈ B1 × B2 such that u(ω) ∈ S(x(ω), ω), v(λ) ∈ T (y(λ), λ) and{
0 ∈ E(x(ω), v(λ), ω) + M( f (x(ω), ω), x(ω), ω),

0 ∈ F(u(ω), y(λ), λ) + N (g(y(λ), λ), y(λ), λ).
(2.1)

Example 2.1. Let S : B1 × Ω → B1 and T : B2 × Λ → B2 be single-valued mappings. Then for each fixed
(ω, λ) ∈ Ω × Λ, the problem (2.1) reduces to finding (x(ω), y(λ)) ∈ B1 × B2 such that{

0 ∈ E(x(ω), T (y(λ), λ), ω) + M( f (x(ω), ω), x(ω), ω),

0 ∈ F(S(x(ω), ω), y(λ), λ) + N (g(y(λ), λ), y(λ), λ).
(2.2)

Example 2.2. Suppose that B1 = B2 = B, f = g = I , M(x, y, ω) = M(x, ω) for all (x, y, ω) ∈ B × B × Ω
and N (x, y, λ) = N (x, λ) for all (x, y, λ) ∈ B × B × Λ. Then there exist two constants ρ, µ > 0 and
nonlinear mappings Gi , Vi (i = 1, 2) such that E(x, T (y, λ), ω) =

1
ρ
(x − y) + (G1(y, ω) + V1(y, ω)) and

F(S(x, ω), y, λ) =
1
µ
(y − x) + (G2(x, λ) + V2(x, λ)) for all (x, y, ω, λ) ∈ B × B × Ω × Λ; then the problem (2.2)

is equivalent to the following system of parametric general nonlinear mixed quasi-variational inclusions in Banach
spaces: find (x(ω), y(λ)) ∈ B × B such that{

0 ∈ x(ω) − y(λ) + ρ(G1(y(λ), ω) + V1(y(λ), ω)) + ρM(x(ω), ω),

0 ∈ y(λ) − x(ω) + µ(G2(x(ω), λ) + V2(x(ω), λ)) + µN (y(λ), λ),
(2.3)

which was studied by Jeong [7] for when M, N are m-accretive mappings in (2.3). Further, the problem (2.3) was
introduced and studied by Agarwal et al. [1] for when B = H is a Hilbert space, M, N are two maximal monotone
mappings, x(ω) = x for all ω ∈ Ω and y(λ) = y for all λ ∈ Λ in (2.3).

Remark 2.3. For appropriate and suitable choices of E, F, M, N , S, T, f, g, Ai , ηi and Bi for i = 1, 2, it is easy to
see that the problem (2.1) includes a number (systems) of (parametric) quasi-variational inclusions, (parametric)
generalized quasi-variational inclusions, (parametric) quasi-variational inequalities, (parametric) implicit quasi-
variational inequalities studied by many authors as special cases; see, for example, [1–13,15–19] and the references
therein.

Now, for each fixed (ω, λ) ∈ Ω × Λ, the solution set Q(ω, λ) of the problem (2.1) is denoted as

Q(ω, λ) = {(x(ω), y(λ)) ∈ B1 × B2 : ∃u(ω) ∈ S(x(ω), ω), and v(λ) ∈ T (y(λ), λ),

such that 0 ∈ E(x(ω), v(λ), ω) + M( f (x(ω), ω), x(ω), ω)

and 0 ∈ F(u(ω), y(λ), λ) + N (g(y(λ), λ), y(λ), λ)}.
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In this paper, our main aim is to study the behavior of the solution set Q(ω, λ), and the conditions on
these mappings E, F, S, T, N , M, f, g, η1, η2, A1, A2 under which the function Q(ω, λ) is continuous or Lipschitz
continuous with respect to the parameter (ω, λ) ∈ Ω × Λ.

3. Sensitivity analysis results

In the sequel, let B1 and B2 be two real Banach spaces, Ω and Λ be two nonempty open subsets of B1 and B2 in
which the parameters ω and λ take values, respectively. We shall first transform the problem (2.1) into a problem of
finding the parametric fixed point of the associated (A, η)-resolvent operator.

Lemma 3.1. For each fixed (ω, λ) ∈ Ω × Λ, an element (x(ω), y(λ)) ∈ Q(ω, λ) is a solution to (2.1) if and only if
there are (x(ω), y(λ)) ∈ B1 × B2, u(ω) ∈ S(x(ω), ω) and v(λ) ∈ T (y(λ), λ) such that{

f (x(ω), ω) = J M(·,x(ω),ω)
ρ,A1

(A1( f (x(ω), ω)) − ρE(x(ω), v(λ), ω)),

g(y(λ), λ) = J N (·,y(λ),λ)
%,A2

(A2(g(y(λ), λ)) − %F(u(ω), y(λ), λ)),
(3.1)

where J M(·,x(ω),ω)
ρ,A1

= (A1 + ρM(·, x(ω), ω))−1 and J N (·,y(λ),λ)
%,A2

= (A2 + %N (·, y(λ), λ))−1 are the corresponding
resolvent operators in the first argument of an (A1, η1)-accretive mapping M(·, ·, ·) and an (A2, η2)-accretive
mapping N (·, ·, ·), respectively, Ai is an ri -strongly monotone mapping for i = 1, 2 and ρ, % > 0 are two constants.

Proof. The fact directly follows from Definition 2.5 and some simple arguments. �

Theorem 3.1. Let B1 be a q1-uniformly smooth Banach space and B2 be a q2-uniformly smooth Banach space,
Ai : Bi → Bi be ri -strongly monotone and si -Lipschitz continuous for all i = 1, 2, S : B1 × Ω → C B(B1) be κ1-Ĥ-
Lipschitz continuous in the first variable, T : B2 × Λ → C B(B2) be κ2-Ĥ-Lipschitz continuous in the first variable,
f : B1 × Ω → B1 be δ1-strongly monotone and σ1-Lipschitz continuous in the first variable, g : B2 × Λ → B2 be
δ2-strongly monotone and σ2-Lipschitz continuous in the first variable, M : B1 ×B1 ×Ω → 2B1 be (A1, η1)-accretive
with constant m1 in the first variable and N : B2 × B2 × Λ → 2B2 be (A2, η2)-accretive with constant m2 in the
first variable. Let η1 : B1 × B1 → B1 be τ1-Lipschitz continuous, η2 : B2 × B2 → B2 be τ2-Lipschitz continuous,
E : B1 × B2 × Ω → B1 be (γ1, α1)-relaxed cocoercive with respect to f1 and µ1-Lipschitz continuous in the first
variable, F : B1 ×B2 ×Λ → B2 be (γ2, α2)-relaxed cocoercive with respect to g2 and µ2-Lipschitz continuous in the
second variable, and let E be β2-Lipschitz continuous in the second variable, and F be β1-Lipschitz continuous in the
first variable, where f1 : B1 × Ω → B1 is defined by f1(x) = A1 ◦ f (x, ω) = A1( f (x, ω)) for all (x, ω) ∈ B1 × Ω ,
g2 : B2 × Λ → B2 is defined by g2(x) = A2 ◦ g(x, λ) = A2(g(x, λ)) for all (x, λ) ∈ B2 × Λ. If

‖J M(·,x,ω)
ρ,A1

(z) − J M(·,y,ω)
ρ,A1

(z)‖ ≤ ν1‖x − y‖, ∀(x, y, z, ω) ∈ B1 × B1 × B1 × Ω , (3.2)

‖J N (·,x,λ)
%,A2

(z) − J N (·,y,λ)
%,A2

(z)‖ ≤ ν2‖x − y‖, ∀(x, y, z, λ) ∈ B2 × B2 × B2 × Λ (3.3)

and there exist constants ρ ∈ (0,
r1
m1

), % ∈ (0,
r2
m2

) such that

k1 = ν1 +
q1

√
1 − q1δ1 + cq1σ

q1
1 < 1, k2 = ν2 +

q2

√
1 − q2δ2 + cq2σ

q2
2 < 1,

q1

√
sq1

1 σ
q1
1 − q1ργ1 + cq1ρ

q1µ
q1
1 + q1ρα1µ

q1
1 < τ

1−q1
1 (r1 − ρm1)

(
1 − k1 −

%β1κ1τ
q2−1
2

r2 − %m2

)
,

q2

√
sq2

2 σ
q2
2 − q2%γ2 + cq2%

q2µ
q2
2 + q2%α2µ

q2
2 < τ

1−q2
2 (r2 − %m2)

(
1 − k2 −

ρβ2κ2τ
q1−1
1

r1 − ρm1

)
,

(3.4)

where cq1 , cq2 are the constants as in Lemma 2.1, then for each (ω, λ) ∈ Ω × Λ, the following results hold:

(1) the solution set Q(ω, λ) of the problem (2.1) is nonempty;
(2) Q(ω, λ) is a closed subset of B1 × B2.

Proof. In the sequel, from (3.1), we first define mappings Φρ : B1 × B2 × Ω → B1 and Ψ% : B1 × B2 × Λ → B2 as
follows:
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Φρ(x, v, ω) = x − f (x, ω) + J M(·,x,ω)
ρ,A1

(A1( f (x, ω)) − ρE(x, v, ω)),

Ψ%(u, y, λ) = y − g(y, λ) + J N (·,y,λ)
%,A2

(A2(g(y, λ)) − %F(u, y, λ))
(3.5)

for all (x, y, ω, λ) ∈ B1 × B2 × Ω × Λ.
Now define ‖ · ‖1 on B1 × B2 by

‖(x, y)‖1 = ‖x‖ + ‖y‖, ∀(x, y) ∈ B1 × B2.

It is easy to see that (B1 × B2, ‖ · ‖1) is a Banach space (see [6]). By (3.5), for any given ρ > 0 and % > 0, define
G : B1 × B2 × Ω × Λ → 2B1 × 2B2 by

Gρ,%(x, y, ω, λ) = {(Φρ(x, v, ω),Ψ%(u, y, λ)) : ∀u ∈ S(x, ω), v ∈ T (y, λ), and

(x, y, ω, λ) ∈ B1 × B2 × Ω × Λ}.

For any (x, y, ω, λ) ∈ B1 ×B2 ×Ω ×Λ, since S(x, ω) ∈ C B(B1), T (y, λ) ∈ C B(B2), f, g, A1, A2, η1, η2, E, F ,
J M(·,x,ω)
ρ,A1

, J M(·,x,λ)
ρ,A are continuous, we have Gρ,%(x, y, ω, λ) ∈ C B(B1 × B2). Now for each fixed (ω, λ) ∈ Ω × Λ,

we prove that Gρ,%(x, y, ω, λ) is a multi-valued contractive mapping.
In fact, for any (x, y, ω, λ), (x̂, ŷ, ω, λ) ∈ B1 × B2 × Ω × Λ and any (a1, a2) ∈ Gρ,%(x, y, ω, λ), there exist

u ∈ S(x, ω), v ∈ T (y, λ) such that

a1 = x − f (x, ω) + J M(·,x,ω)
ρ,A1

(A1( f (x, ω)) − ρE(x, v, ω)),

a2 = y − g(y, λ) + J N (·,y,λ)
%,A2

(A2(g(y, λ)) − %F(u, y, λ)).

Note that S(x̂, ω) ∈ C B(B1), T (ŷ, λ) ∈ C B(B2); it follows from Nadler’s result [14] that there exist û ∈ S(x̂, ω) and
v̂ ∈ T (ŷ, λ) such that

‖u − û‖ ≤ Ĥ(S(x, ω), S(x̂, ω)), ‖v − v̂‖ ≤ Ĥ(T (y, λ), T (ŷ, λ)). (3.6)

Setting

b1 = x̂ − f (x̂, ω) + J M(·,x̂,ω)
ρ,A1

(A1( f (x̂, ω)) − ρE(x̂, v̂, ω)),

b2 = ŷ − g(ŷ, λ) + J N (·,ŷ,λ)
%,A2

(A2(g(ŷ, λ)) − %F(û, ŷ, λ)),

we have (b1, b2) ∈ Gρ,%(x̂, ŷ, ω, λ). It follows from (3.2) and Proposition 2.2 that

‖a1 − b1‖ ≤ ‖x − x̂ − [ f (x, ω) − f (x̂, ω)]‖

+ ‖J M(·,x,ω)
ρ,A1

(A1( f (x, ω)) − ρE(x, v, ω)) − J M(·,x̂,ω)
ρ,A1

(A1( f (x, ω)) − ρE(x, v, ω))‖

+ ‖J M(·,x̂,ω)
ρ,A1

(A1( f (x, ω)) − ρE(x, v, ω)) − J M(·,x̂,ω)
ρ,A1

(A1( f (x̂, ω)) − ρE(x̂, v̂, ω))‖

≤ ‖x − x̂ − [ f (x, ω) − f (x̂, ω)]‖ + ν1‖x − x̂‖ +
ρτ

q1−1
1

r1 − ρm1
‖E(x̂, v, ω) − E(x̂, v̂, ω)‖

+
τ

q1−1
1

r1 − ρm1
‖A1( f (x, ω)) − A1( f (x̂, ω)) − ρ[E(x, v, ω) − E(x̂, v, ω)]‖. (3.7)

By the assumptions on f, E, A1, T and (3.6), we have

‖x − x̂ − [ f (x, ω) − f (x̂, ω)]‖q1 ≤ (1 − q1δ1 + cq1σ
q1
1 )‖x − x̂‖

q1 , (3.8)

‖E(x̂, v, ω) − E(x̂, v̂, ω)‖ ≤ β2‖v − v̂‖ ≤ β2Ĥ(T (y, λ), T (ŷ, λ)) ≤ β2κ2‖y − ŷ‖, (3.9)

‖A1( f (x, ω)) − A1( f (x̂, ω)) − ρ[E(x, v, ω) − E(x̂, v, ω)]‖q1

≤ ‖A1( f (x, ω)) − A1( f (x̂, ω))‖q1 + cq1ρ
q1‖E(x, v, ω) − E(x̂, v, ω)‖q1

− q1ρ〈E(x, v, ω) − E(x̂, v, ω), A1( f (x, ω)) − A1( f (x̂, ω))〉

≤ (sq1
1 σ

q1
1 − q1ργ1 + cq1ρ

q1µ
q1
1 + q1ρα1µ

q1
1 )‖x − x̂‖

q1 , (3.10)
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where cq1 is a constant as in Lemma 2.1. Combining (3.8)–(3.10) with (3.7), we infer

‖a1 − b1‖ ≤ θ1‖x − x̂‖ + ϑ1‖y − ŷ‖, (3.11)

where

θ1 = ν1 +
q1

√
1 − q1δ1 + cq1σ

q1
1 +

τ
q1−1
1

r1 − ρm1

q1

√
sq1

1 σ
q1
1 − q1ργ1 + cq1ρ

q1µ
q1
1 + q1ρα1µ

q1
1 ,

ϑ1 =
ρβ2κ2τ

q1−1
1

r1 − ρm1
.

On the other hand, by the assumptions of g, S, A2, F and (3.6), we can obtain

‖y − ŷ − [g(y, λ) − g(ŷ, λ)]‖q2 ≤ (1 − q2δ2 + cq2σ
q2
2 )‖y − ŷ‖

q2 ,

‖F(u, y, λ) − F(û, y, λ)‖ ≤ β1κ1‖x − x̂‖,

‖A2(g(y, λ)) − A2(g(ŷ, λ)) − %(F(û, y, λ) − F(û, ŷ, λ))‖q2

≤ (sq2
2 σ

q2
2 − q2%γ2 + cq2%

q2µ
q2
2 + q2%α2µ

q2
2 )‖y − ŷ‖

q2 ,

and

‖a2 − b2‖ ≤ ‖y − ŷ − [g(y, λ) − g(ŷ, λ)]‖

+ ‖J N (·,y,λ)
%,A2

(A2(g(y, λ)) − %F(u, y, λ)) − J N (·,ŷ,λ)
%,A2

(A2(g(y, λ)) − %F(u, y, λ))‖

+ ‖J N (·,ŷ,λ)
%,A2

(A2(g(y, λ)) − %F(u, y, λ)) − J N (·,ŷ,λ)
%,A2

(A2(g(ŷ, λ)) − %F(û, ŷ, λ))‖

≤ θ2‖x − x̂‖ + ϑ2‖y − ŷ‖, (3.12)

where cq2 is a constant as in Lemma 2.1 and

θ2 =
%β1κ1τ

q2−1
2

r2 − %m2
,

ϑ2 = ν2 +
q2

√
1 − q2δ2 + cq2σ

q2
2 +

τ
q2−1
2

r2 − %m2

q2

√
sq2

2 σ
q2
2 − q2%γ2 + cq2%

q2µ
q2
2 + q2%α2µ

q2
2 .

It follows from (3.11) and (3.12) that

‖a1 − b1‖ + ‖a2 − b2‖ ≤ υ(‖x − x̂‖ + ‖y − ŷ‖), (3.13)

where

υ = max{θ1 + θ2, ϑ1 + ϑ2}.

It follows from condition (3.4) that υ < 1. Hence, from (3.13), we get

d((a1, a2), Gρ,%(x̂, ŷ, ω, λ)) = inf
(b1,b2)∈Gρ,%(x̂,ŷ,ω,λ)

(‖a1 − b1‖ + ‖a2 − b2‖)

≤ υ‖(x, y) − (x̂ − ŷ)‖1.

Since (a1, a2) ∈ Gρ,%(x, y, ω, λ) is arbitrary, we obtain

sup
(a1,a2)∈Gρ,%(x,y,ω,λ)

d((a1, a2), Gρ,%(x̂, ŷ, ω, λ)) ≤ υ‖(x, y) − (x̂ − ŷ)‖1.

By using the same argument, we can prove

sup
(b1,b2)∈Gρ,%(x̂,ŷ,ω,λ)

d(Gρ,%(x, y, ω, λ), (b1, b2)) ≤ υ‖(x, y) − (x̂ − ŷ)‖1.

It follows from the definition of the Hausdorff metric Ĥ on C B(B1 × B2) that

Ĥ(Gρ,%(x, y, ω, λ), Gρ,%(x̂, ŷ, ω, λ)) ≤ υ‖(x, y) − (x̂, ŷ)‖1
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for all (x, x̂, ω) ∈ B1 ×B1 ×Ω , (y, ŷ, λ) ∈ B2 ×B2 ×Λ, i.e., Gρ,%(x, y, ω, λ) is a multi-valued contractive mapping,
which is uniform with respect to (ω, λ) ∈ Ω × Λ. By a fixed point theorem of Nadler [14], for each (ω, λ) ∈ Ω × Λ,
Gρ,%(x, y, ω, λ) has a fixed point (x(ω), y(λ)) ∈ B1 × B2, i.e., (x(ω), y(λ)) ∈ Gρ,%(x(ω), y(λ), ω, λ). By the
definition of G, we know that there exist u(ω) ∈ S(x(ω), ω) and v(λ) ∈ T (y(λ), λ) such that (3.1) holds. Thus, it
follows from Lemma 3.1 that (x(ω), y(λ)) ∈ Q(ω, λ) is a solution of the problem (2.1) and so Q(ω, λ) 6= ∅ for all
(ω, λ) ∈ Ω × Λ.

Next, we prove the conclusion (2). For each (ω, λ) ∈ Ω × Λ, let {(xn, yn)} ⊂ Q(ω, λ) and xn → x0, yn → y0 as
n → ∞. Then we have (xn, yn) ∈ Gρ,%(xn, yn, ω, λ) for all n = 1, 2, . . . . By the proof of conclusion (1), we have

Ĥ(Gρ,%(xn, yn, ω, λ), Gρ,%(x0, y0, ω, λ)) ≤ υ‖(xn, yn) − (x0, y0)‖1, ∀(ω, λ) ∈ Ω × Λ.

It follows that

d((x0, y0), Gρ,%(x0, y0, ω, λ)) ≤ ‖(x0, y0) − (xn, yn)‖1 + d((xn, yn), Gρ,%(xn, yn, ω, λ))

+ Ĥ(Gρ,%(xn, yn, ω, λ), Gρ,%(x0, y0, ω, λ))

≤ (1 + υ)‖(xn, yn) − (x0, y0)‖1.

Hence, we have (x0, y0) ∈ Gρ,%(x0, y0, ω, λ) and (x0, y0) ∈ Q(ω, λ). Therefore, Q(ω, λ) is a nonempty closed
subset of B1 × B2. �

Theorem 3.2. Under the hypotheses of Theorem 3.1, we suppose additionally

(i) for any x ∈ B1, ω → S(x, ω) is lS-Ĥ-Lipschitz continuous (or continuous) and for any y ∈ B2, λ → T (y, λ) is
lT -Ĥ-Lipschitz continuous (or continuous);

(ii) for any x, z ∈ B1 and y, t ∈ B2, ω → E(x, y, ω), ω → f (x, ω), ω → J M(·,x,ω)
ρ,A1

(z), λ → F(x, y, λ),

λ → g(y, λ) and λ → J N (·,y,λ)
%,A2

(t) are Lipschitz continuous (or continuous) with Lipschitz constants lE , l f ,
lJ1 , lF , lg and lJ2 , respectively.

Then, the solution map Q of the problem (2.1) is Lipschitz continuous (or continuous) from Ω × Λ to B1 × B2.

Proof. From the hypotheses of the theorem and Theorem 3.1, for any (ω, λ), (ω̄, λ̄) ∈ Ω × Λ, we know that Q(ω, λ)

and Q(ω̄, λ̄) are both nonempty closed subsets. By the proof of Theorem 3.1, Gρ,%(x, y, ω, λ) and Gρ,%(x, y, ω̄, λ̄)

are both multi-valued contractive mappings with the same contraction constant υ ∈ (0, 1) and have fixed points
(x(ω, λ), y(ω, λ)) and (x(ω̄, λ̄), y(ω̄, λ̄)), respectively. From Lemmas 3.1 and 2.2, we get

x(ω, λ) = x(ω, λ) − f (x(ω, λ), ω) + J M(·,x(ω,λ),ω)
ρ,A1

(A1( f (x(ω, λ), ω)) − ρE(x(ω, λ), v(ω, λ), ω)),

y(ω, λ) = y(ω, λ) − g(y(ω, λ), λ) + J N (·,y(ω,λ),λ)
%,A2

(A2(g(y(ω, λ), λ)) − %F(u(ω, λ), y, λ)),

x(ω̄, λ̄) = x(ω̄, λ̄) − f (x(ω̄, λ̄), ω̄) + J M(·,x(ω̄,λ̄),ω̄)
ρ,A1

(A1( f (x(ω̄, λ̄), ω̄)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω̄)),

y(ω̄, λ̄) = y(ω̄, λ̄) − g(y(ω̄, λ̄), λ̄) + J N (·,y(ω̄,λ̄),λ̄)
%,A2

(A2(g(y(ω̄, λ̄), λ̄)) − %F(u(ω̄, λ̄), y(ω̄, λ̄), λ̄))

(3.14)

and

Ĥ(Q(ω, λ), Q(ω̄, λ̄))

≤
1

1 − υ
sup

(x,y)∈B1×B2

Ĥ(Gρ,%(x(ω, λ), y(ω, λ), ω, λ), Gρ,%(x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄)). (3.15)

Setting any (a1, a2) ∈ Gρ,%(x(ω, λ), y(ω, λ), ω, λ), there exist u(ω, λ) ∈ S(x(ω, λ), ω), v(ω, λ) ∈ T (y(ω, λ), λ)

such that

a1 = x(ω, λ) − f (x(ω, λ), ω) + J M(·,x(ω,λ),ω)
ρ,A1

(A1( f (x(ω, λ), ω)) − ρE(x(ω, λ), v(ω, λ), ω)),

a2 = y(ω, λ) − g(y(ω, λ), λ) + J N (·,y(ω,λ),λ)
%,A2

(A2(g(y(ω, λ), λ)) − %F(u(ω, λ), y, λ)).
(3.16)
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Since S(x(ω, λ), ω), S(x(ω̄, λ̄), ω̄) ∈ C B(B1), T (y(ω, λ), λ), T (y(ω̄, λ̄), λ̄) ∈ C B(B2), it follows from Nadler’s
result [14] that there exist u(ω̄, λ̄) ∈ S(x(ω̄, λ̄), ω̄) and v(ω̄, λ̄) ∈ T (y(ω̄, λ̄), λ̄) such that

‖u(ω, λ) − u(ω̄, λ̄)‖ ≤ Ĥ(S(x(ω, λ), ω), S(x(ω̄, λ̄), ω̄)),

‖v(ω, λ) − v(ω̄, λ̄)‖ ≤ Ĥ(T (y(ω, λ), λ), T (y(ω̄, λ̄), λ̄)).

Let

b1 = x(ω̄, λ̄) − f (x(ω̄, λ̄), ω̄) + J M(·,x(ω̄,λ̄),ω̄)
ρ,A1

(A1( f (x(ω̄, λ̄), ω̄)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω̄)),

b2 = y(ω̄, λ̄) − g(y(ω̄, λ̄), λ̄) + J N (·,y(ω̄,λ̄),λ̄)
%,A2

(A2(g(y(ω̄, λ̄), λ̄)) − %F(u(ω̄, λ̄), y(ω̄, λ̄), λ̄)).
(3.17)

Then we have (b1, b2) ∈ Gρ,%(x(ω̄, λ̄), y(ω̄, λ̄), ω̄, λ̄). It follows from the assumptions on f, J M(·,·,·)
ρ,A1

, E, A1, T ,
(3.16) and (3.17) that

‖a1 − b1‖ ≤ ‖x(ω, λ) − f (x(ω, λ), ω) + J M(·,x(ω,λ),ω)
ρ,A1

(A1( f (x(ω, λ), ω)) − ρE(x(ω, λ), v(ω, λ), ω))

− {x(ω̄, λ̄) − f (x(ω̄, λ̄), ω) + J M(·,x(ω̄,λ̄),ω)
ρ,A1

(A1( f (x(ω̄, λ̄), ω)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω))}‖

+ ‖ f (x(ω̄, λ̄), ω) − f (x(ω̄, λ̄), ω̄)‖

+ ‖J M(·,x(ω̄,λ̄),ω)
ρ,A1

(A1( f (x(ω̄, λ̄), ω)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω))

−J M(·,x(ω̄,λ̄),ω̄)
ρ,A1

(A1( f (x(ω̄, λ̄), ω)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω))‖

+ ‖J M(·,x(ω̄,λ̄),ω̄)
ρ,A1

(A1( f (x(ω̄, λ̄), ω)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω))

− J M(·,x(ω̄,λ̄),ω̄)
ρ,A1

(A1( f (x(ω̄, λ̄), ω̄)) − ρE(x(ω̄, λ̄), v(ω̄, λ̄), ω̄))‖

≤ θ1‖x(ω, λ) − x(ω̄, λ̄)‖ + ϑ1‖y(ω, λ) − y(ω̄, λ̄)‖ + k1‖ω − ω̄‖, (3.18)

where θ1 and ϑ1 are the same as in (3.11), and

k1 = l f + lJ1 +
(ρlE + s1l f )τ

q1−1
1

r1 − ρm1
.

Similarly, by the assumptions on g, J N (·,·,·)
ρ,A2

, F, A2, S, (3.16) and (3.17), we have

‖a2 − b2‖ ≤ θ2‖x(ω, λ) − x(ω̄, λ̄)‖ + ϑ2‖y(ω, λ) − y(ω̄, λ̄)‖ + k2‖λ − λ̄‖, (3.19)

where θ2 and ϑ2 are the same as in (3.12), and

k2 = lg + lJ2 +
(%lF + s2lg)τ

q2−1
2

r2 − %m2
.

It follows from (3.16)–(3.19) and (3.14) that

‖a1 − b1‖ + ‖a2 − b2‖ ≤ (θ1 + θ2)‖x(ω, λ) − x(ω̄, λ̄)‖ + (ϑ1 + ϑ2)‖y(ω, λ) − y(ω̄, λ̄)‖

+ k1‖ω − ω̄‖ + k2‖λ − λ̄‖

≤ υ(‖a1 − b1‖ + ‖a2 − b2‖) + k1‖ω − ω̄‖ + k2‖λ − λ̄‖, (3.20)

where υ is the same as in (3.13). (3.20) implies that

‖a1 − b1‖ + ‖a2 − b2‖ ≤ Θ(‖ω − ω̄‖ + ‖λ − λ̄‖), (3.21)

where

Θ =
1

1 − υ
max{k1, k2}.

Hence, from (3.21), we obtain

sup
(a1,a2)∈Gρ,%(x,y,ω,λ)

d((a1, a2), Gρ,%(x, y, ω̄, λ̄)) ≤ Θ‖(ω, λ) − (ω̄, λ̄)‖1.



1766 H.-y. Lan / Nonlinear Analysis 69 (2008) 1757–1767

By using a similar argument to the above, we get

sup
(b1,b2)∈Gρ,%(x,y,ω̄,λ̄)

d(Gρ,%(x, y, ω, λ), (b1, b2)) ≤ Θ‖(ω, λ) − (ω̄, λ̄)‖1.

It follows that

Ĥ(Gρ,%(x, y, ω, λ), Gρ,%(x, y, ω̄, λ̄)) ≤ Θ‖(ω, λ) − (ω̄, λ̄)‖1,

for all (x, y, ω, ω̄, λ, λ̄) ∈ B1 × B2 × Ω × Ω × Λ × Λ. Thus, (3.15) implies

Ĥ(Q(ω, λ), Q(ω̄, λ̄)) ≤
Θ

1 − υ
‖(ω, λ) − (ω̄, λ̄)‖1.

This proves that Q(ω, λ) is Lipschitz continuous with respect to (ω, λ) ∈ Ω × Λ. If each mapping in conditions (i)
and (ii) is assumed to be continuous with respect to (ω, λ) ∈ Ω × Λ, then by a similar argument to the above, we can
show that Q(ω, λ) is continuous with respect to (ω, λ) ∈ Ω × Λ. �

Remark 3.1. If B1 and B2 are both 2-uniformly smooth Banach space, and % = ρ > 0 is a constant such that

k1 = ν1 +

√
1 − 2δ1 + c2σ

2
1 < 1, k2 = ν2 +

√
1 − 2δ2 + c2σ

2
2 < 1,

s2
1σ 2

1 − 2ρ(γ1 − α1µ
2
1) + c2ρ

2µ2
1 <

(r1 − ρm1)
2

τ 2
1

(
1 − k1 −

ρβ1κ1τ2

r2 − ρm2

)2

,

s2
2σ 2

2 − 2ρ(γ2 − α2µ
2
2) + c2ρ

2µ2
2 <

(r2 − ρm2)
2

τ 2
2

(
1 − k2 −

ρβ2κ2τ1

r1 − ρm1

)2

,

then (3.4) holds. We note that Hilbert space and L p (or lp) (2 ≤ p < ∞) spaces are 2-uniformly smooth Banach
spaces.

Remark 3.2. In Theorems 3.1 and 3.2, if E, F are strongly accretive in the first and second variables, i.e., when
γi = 0 (i = 1, 2) in Theorems 3.1 and 3.2, respectively, then we can obtain the corresponding results. Our results
improve and generalize the known results from [1,3–5,7,9,10,17–19].
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