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Abstract—In recent years, data-driven speech animation approaches have achieved significant successes in terms of animation

quality. However, how to automatically evaluate the realism of novel synthesized speech animations has been an important yet

unsolved research problem. In this paper, we propose a novel statistical model (called SAQP) to automatically predict the quality of on-

the-fly synthesized speech animations by various data-driven techniques. Its essential idea is to construct a phoneme-based, Speech

Animation Trajectory Fitting (SATF) metric to describe speech animation synthesis errors and then build a statistical regression model

to learn the association between the obtained SATF metric and the objective speech animation synthesis quality. Through delicately

designed user studies, we evaluate the effectiveness and robustness of the proposed SAQP model. To the best of our knowledge, this

work is the first-of-its-kind, quantitative quality model for data-driven speech animation. We believe it is the important first step to

remove a critical technical barrier for applying data-driven speech animation techniques to numerous online or interactive talking avatar

applications.

Index Terms—Facial animation, data-driven, visual speech animation, lip-sync, quality prediction, statistical models
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1 INTRODUCTION

DURING the past several decades, plenty of research efforts
have been focused to generate realistic speech anima-

tion given novel spoken or typed input [1]. In particular,
state-of-the-art data-driven speech animation approaches
have achieved significant successes in terms of animation
quality. One of the main reasons is that these techniques
heavily exploit the prior knowledge encoded in precollected
training facial motion data sets, by concatenating preseg-
mented motion samples (e.g., triphone or syllable-based
motion subsequences) [2], [3], [4], [5], [6], [7], [8] or learning
facial motion statistical models [9], [10], [11].

On the other side, all the above data-driven approaches
are only empirically tested, that is, researchers first generate
a small number of novel speech animations based on
selected texts (or speech) and then evaluate the animations
via tedious user studies. It is obvious that such user studies
can only be used to evaluate offline synthesized speech
animations, since it is infeasible to use offline user studies to
assess the quality of on-the-fly synthesized speech anima-
tions. Therefore, can we automatically predict the quality of
dynamically synthesized speech animations without conducting
actual user studies?

In addition, a number of different data-driven speech
animation algorithms are available these days (e.g., assum-
ing all these algorithms run at the back end of an online or

interactive talking avatar application), and their online

performances could be varied depending on specific inputs.

Here is a simple yet conceptual example: for a specific

inputted sentence, maybe the first algorithm generates a

better speech animation than the second one; while for

another sentence input, this situation could be reversed,

that is, the second algorithm could outperform the first one.

Thus, an interesting question is: Can we dynamically compare

and determine which algorithm (among them) can synthesize the

best speech animation for specific text or speech input? Indeed, in

spite of the practical importance of the automated evalua-

tion of data-driven speech animations, no plausible solution

has yet been proposed and validated to date.
Inspired by the above challenge, in this work, we propose

a novel statistical model to automatically predict the quality

of synthesized speech animations on-the-fly generated by

various data-driven algorithms. Fig. 1 is a schematic

illustration of the proposed approach. In the training stage,

we construct a phoneme-based, Speech Animation Trajectory

Fitting (SATF) metric to describe speech animation synthesis

errors. Then, we build a statistical regression model, called

the Speech Animation Quality Prediction (SAQP) model, to

learn the association between the obtained SATF metric and

the ground-truth speech animation synthesis quality. At the

end, given any new text/voice input (i.e., a phoneme

sequence with timing information) and a given training

facial motion data set, the constructed SAQP model can be

used to predict the quality of on-the-fly synthesized data-

driven speech animations. We also conduct delicately

designed user studies to evaluate the effectiveness and

robustness of our SAQP model.
To the best of our knowledge, this work is the first-of-its-

kind, automated quality model for data-driven speech

animation. We believe it is the important first step to

remove a critical technical barrier for applying wealthy
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data-driven speech animation techniques to numerous
online or interactive talking avatar applications.

It is noteworthy that, although various data-driven
speech animation approaches had been proposed, in
general, they can be roughly classified into the following
two categories: sample-based and learning-based. As such, we
select representative algorithms from each of the two
categories to evaluate our SAQP model. From existing
sample-based speech animation approaches [2], [3], [4], [5],
[6], [7], we choose the Anime-Graph approach [5] and the
eFASE approach [6]. Among current learning-based ap-
proaches [9], [10], [11], we extend the classical Multi-
dimensional Morphable Model (MMM) proposed by Ezzat
et al. [10] from 2D to 3D for 3D lip-sync generation. Section 4
encloses more technical and implementation details of the
three chosen approaches. We believe that a methodology
successfully applied to the above three chosen data-driven
approaches [5], [6], [10] can be soundly generalized to other
data-driven speech animation algorithms.

The remainder of this paper is organized as follows.
Section 2 briefly reviews recent related research efforts.
Section 3 describes how we collect and process a facial
motion data set used in this work. Section 5 details how we
construct the proposed SAQP statistical model. Section 6
presents the application of our SAQP model and user study
results. Finally, discussion and concluding remarks are
given in Section 7.

2 RELATED WORK

Researchers have conducted extensive research efforts on
facial animation including face modeling [12], [13], [14],
[15], [16], [17], deformation [18], [19], [20], [21], [22], and
expression transferring and editing [23], [24], [25], [26], [27].
Comprehensively reviewing these efforts is beyond the
scope of this paper (interested readers can refer to the recent
facial animation survey by Deng and Noh [28]). Here, we
only briefly review recent efforts most related to this work.

2.1 Speech Animation

Traditional speech animation approaches typically require
users to design visemes (i.e., key mouth shapes), and then
empirical smooth functions [29], [30], [31] or coarticulation

rules [32] are used to synthesize novel speech animations.
For example, in the early era, a linear prediction model is
employed to generate lip-sync animations given novel sound
track [29]. In the Cohen-Massaro coarticulation model [30]
and its various extensions [31], a viseme shape is defined via
hand-crafted dominance functions in terms of certain facial
measurements such as the width and height of the mouth. In
this way, final mouth shapes at animation time are
determined as the weighted sum of dominance values.

In recent years, a large variety of data-driven speech
animation approaches utilize a precollected facial motion
data set to produce realistic lip-sync animations corre-
sponding to new inputted texts [2], [9], [10], [3], [4], [5], [6],
[7], [11]. For example, Brand [9] learns Hidden Markov
Models (HMMs) from aligned video and audio tracks
through an entropy minimization learning algorithm. In his
approach, facial motions can be directly synthesized by
inputting audio track into the learned HMMs. Ezzat et al.
[10] learn a multidimensional morphable model from a set
of mouth prototype images (corresponding to basic vi-
semes) and then generate facial motion trajectories in the
constructed MMM space for any desired utterance.

Meanwhile, Bregler et al. [2] proposed the concept of
recombining triphone segments, extracted from precol-
lected video footages, to generate new speech animations.
Along this line, different semantic speech-motion segments
such as syllable motions [3] and multiphoneme motions [4],
[5], [6], [7], [8] have also been explored. Also, various search
strategies including greedy search [5] and constraint-guided
dynamic programming [6], [8] are adapted in these
algorithms. The above data-driven facial animation ap-
proaches often focus on the accuracy or efficacy of their
generation algorithms, while little attention has been paid
to automatically evaluate the quality of their synthesized
speech animations.

2.2 Perceptual Approaches for Animation

In computer graphics and animation community, many
approaches have been proposed to determine the visual
quality of an image [33], [34] or a clip of animation [35],
[36]. Quality metrics or heuristics have also been developed
to measure or predict the fidelity of images and rendering
for character animations in recent years. For instance,
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Fig. 1. The introduced speech animation quality prediction model can automatically predict the quality of synthetic speech animations that are
generated by a data-driven algorithm based on novel text or speech input.



Hodgins et al. [37] explored the perceptual effect of
different geometric models for character animation. O’Sul-
livan et al. [38] evaluated the visual fidelity of physically
based animations. Nonetheless, the above approaches still
need time-consuming and delicately designed subjective
user studies.

Exploiting human perception and psychophysical insight
for graphics and animation applications has attracted a lot of
attention in recent years [39]. For example, researchers
conducted extensive psychophysical experiments to evalu-
ate the perceptual quality of animated facial expressions or
talking heads [40], [41], [42], [43], [44]. Geiger et al. [41]
performed two types (implicit and explicit) of perceptual
discrimination tasks to tell whether a video-realistic speech
animation clip is real or synthetic. Cosker et al. [42] evaluated
the behavioral quality of synthetic talking heads based on the
“McGurk Effect” test. In addition, Wallraven et al. conducted
a series of psychophysical experiments to study the
perceptual quality of animated facial expressions [44] or
stylized facial expression representations [40].

Ma et al. [45] quantitatively analyze how human
perception is affected by audio-head motion characteristics
of talking avatars, specifically, quantifying the correlation
between perceptual user ratings (obtained via user study)
and joint audio-head motion features as well as head
motion patterns in the frequency-domain. Recently, Deng
and Ma [46] proposed a computational perceptual metric to
evaluate synthetic facial expressions such as expression
type and scale. However, the same methodology cannot be
straightforwardly applied to the case of evaluating syn-
thetic speech animations. Arguably, one of the main reasons
is that audio-motion synchronization and speech coarticu-
lation pose additional technical challenges to the task.

3 EXPERIMENTAL DATA SET

To quantify data-driven speech animation, we need to
experiment with a collection of facial motion data (as the
training facial motion data set). In this work, we acquired a
facial motion capture data set for this purpose. Specifically,
natural speaking of a chosen native English female speaker
was recorded, with a 120 Hz sampling rate, by an optical
motion capture system.

As pointed out in the existing literature [47], talking might
affect the entire facial regions (e.g., the cheek moves when
mouth is opened). Thus, we captured facial motion of the
whole face instead of the lip region only. A total of 95 facial
markers were put on the face and head (90 markers on the
face and 5 markers on the head, refer to Fig. 2). The captured
subject was directed to speak a custom phoneme-balanced
corpus consisting of 237 sentences. In addition, the facial
marker motions and aligned acoustic speech were recorded
simultaneously. Subsequently, we removed the 3D rigid
head motion of each frame by computing a rotation matrix
based on the markers on the head, and performed phoneme-
alignments (i.e., align each phoneme with its corresponding
motion capture subsequence) using the Festival system [48].

3.1 Region-Based Reduced Facial Motion
Representation

In order to train our statistical quality model, we need to
transform the original, high-dimensional facial motion data

to a compact, low-dimensional representation. In this work,
we choose to transform the original 3D facial motion to a
region-based, reduced representation. Its basic idea is to
partition the whole face into different facial regions using a
physically motivated facial segmentation scheme [49] and
then apply Principal Component Analysis (PCA) to motions
of the markers in each region, separately. The region-based
PCA representation encodes more intuitive correspon-
dences between PCA eigen-vectors and localized facial
movements than applying a single PCA to the whole face
[50]. Fig. 2 shows the facial region segmentation result in
this work.

Based on the above facial region segmentation, we obtain
the following six facial regions: forehead, eye, the left cheek,
the right cheek, mouth, and nose. For each facial region, we
apply Robust Principal Component Analysis (RPCA) [51] to
reduce its dimension and construct a truncated PCA space.
Though a part-based PCA parameterization of facial
motions is essentially linear, we choose PCA parameteriza-
tion over other forms of nonlinear deformer-based facial
motion parameterization schemes (e.g., face rigging [27])
due to its efficiency and characteristic of localized facial
movement mapping [50], [46]. In this work, to retain more
than 95 percent of the motion variations, the retained
dimension is 4 for the forehead region, 4 for the eye region,
3 for the left cheek region, 3 for the right cheek region, 8 for
the mouth region, and 5 for the nose region. In this way, we
can transform any facial motion capture frame into a
region-based, reduced representation. In follow-up sec-
tions, our model mainly deals with this reduced facial
motion representation.

4 SELECTED DATA-DRIVEN ALGORITHMS FOR

EVALUATION

To increase the readability of this paper, we briefly describe
the three data-driven speech animation approaches chosen
in this work: the Anime-Graph approach [5], the eFASE
approach [6], and 3D extension of the MMM-based
approach [10], as follows: for more technical details of the
three approaches, please refer to their original publications
[5], [6], [10].

It is noteworthy that this work is only focused on speech
animation, and emotion is not its main focus. In addition,
among the three chosen algorithms, the MMM-based
approach [10] cannot deal with “emotional visual speech”
while the other two [5], [6] can deal with it. Therefore, to
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Fig. 2. Illustration of the facial region segmentation result in this work.
Different marker colors represent distinct regions.



this end, in our implementations we intentionally did not
utilize the emotion part in the Anime-Graph and eFASE
approaches [5], [6] in order to have sound and fair
evaluations on the three algorithms. We are aware that
evaluating the quality of emotional visual speech would be
an important future research topic to explore.

. The anime-graph approach [5]. It first constructs a
large set of interconnected anime-graphs from a
precollected facial motion data set, and each anime-
graph essentially encloses aligned facial motion,
acoustic features, emotion label and phoneme
information. During the synthesis process, given
novel speech input, its algorithm searches for an
optimal concatenation of anime-graphs using a
greedy search strategy.

. The eFASE approach [6]. At the offline data proces-
sing stage, it extracts facial motion nodes (or called
viseme segments) from a precollected facial motion
data set, and each motion node represents the facial
motion of a phoneme. Then, its algorithm further
clusters and organizes the motion nodes based on
their phoneme labels. At runtime, its algorithm
searches for a minimal cost path to optimally
concatenate viseme segments through a constraint-
based dynamic programming algorithm, and various
constraints can be interactively specified by users.

. 3D extension of the MMM-based approach [10].
The original MMM-based approach first trains a
multidimensional morphable model from a small set
of 2D talking face video clips. At runtime, a novel
trajectory (i.e., facial motion and texture parameters)
in the MMM space is optimized based on novel
phoneme sequence input. The original MMM-based
approach is only for 2D talking face generation. In
this work, we straightforwardly extend it from 2D to
3D for 3D lip-sync generation.

5 SPEECH ANIMATION QUALITY MODEL

In this section, we describe how we construct a phoneme-
based, Speech Animation Quality Prediction model for data-
driven speech animation. Assuming an inputted phoneme
sequence to a data-driven synthesis algorithm, �, is P ¼
fP1;P2; . . . ;PTg and the used facial motion data set is
denoted as M, we aim to construct an SAQP model Q ¼
F�ðP;MÞ that can automatically predict the quality of
synthesized speech animation corresponding to P, based on
the training facial motion data set M, by using the data-
driven speech animation algorithm �.

We use the following main steps to construct the SAQP
model (refer to Fig. 1).

1. As described in follow-up Section 5.1, we first
construct a Speech Animation Trajectory Fitting metric
(denoted as T ) to quantify the speech animation
synthesis trajectory fitting error, Epm, of any in-
putted P based on the given M. The SATF metric
does not depend on any specific speech animation
synthesis algorithm since it is computed solely based
on the inputted P and the used training data set M.
Hence, Epm ¼ T ðP;MÞ.

2. We also compute the ground-truth speech animation
synthesis quality Qpm of the inputted P based on the
given M as the Root Mean-Squared-Error (RMSE)
between the prerecorded facial motions (i.e.,
ground-truth) and synthetic motions by the data-
driven algorithm �.

3. Then, as described in Section 5.2, given a small
number (n) of training samples randomly selected
from the prerecorded facial motion data set, we learn
a Gaussian Process Regression (GPR) model, F�, to
connect the SATF metric, E ¼ fE1;E2; . . . ;Epm; . . . ;
Eng, and the ground-truth speech animation synth-
esis quality, Q ¼ fQ1;Q2; . . . ;Qpm; . . . ;Qng. In other
words, Q ¼ F�ðEÞ.

4. Finally, F� can be employed to predict the speech
animation synthesis quality, Q0, of any new inputted
phoneme sequence, P 0, based on a new facial motion
training data set, M0, that is, Q0 ¼ F�ðT ðP0;M0ÞÞ.
Note that M0 is expected to be captured on the same
subject as the one in M, with the same facial marker
layout.

5.1 Speech Animation Trajectory Fitting Metric

Our Speech Animation Trajectory Fitting metric is built on
the concept of speech animation synthesis trajectory fitting.
Specifically, we modify the trajectory fitting technique
proposed by Ezzat et al. [10] to compute the SATF metric
due to the following reasons: 1) it does not depend on any
specific speech animation synthesis algorithm, and 2) it is
phoneme-based so that phoneme contexts can be naturally
exploited in the SATF metric.

The goal of speech animation trajectory fitting is to
quantify the synthesis error of an inputted phoneme
sequence P based on the given M (the training facial
motion data set). P is a stream of phonemes fPig that
represent the phonetic data of the utterance. Since the audio
and facial motion are aligned, we have all the region-based
PCA coefficients/parameters (Section 3.1) for any particular
phoneme. Inspired by the Ezzat et al.’s work [10], we
represent the facial motion characteristics of each phoneme
Pi mathematically as a multidimensional Gaussian with
mean and variance of all the facial motion frames.

A viseme is defined as the visual representation of a
phoneme (i.e., the motion subsequence of a phoneme). In
this work, the means and variances of all the visemes in P
are computed based on a given data set M as follows: the
middle frame of a viseme, precisely, the region-based PCA
representation of the middle frame (Section 3.1), is chosen
as the viseme’s representative sample. Since the mean and
variance of each viseme depend on its phoneme context
(i.e., its preceding/following phonemes), its means and
variances are computed by only considering its representa-
tive samples with the same phoneme context.

In this work, two basic phoneme contexts are considered:
triphone and diphone. To compute the mean and variance of
a phoneme Pi, we first find and compute the mean and
variance of all the visemes of Pi with the triphone context
ðPi�1;Pi;Piþ1Þ in M; otherwise, consider its diphone
context ðPi;Piþ1Þ; and, the last alternative would be its flat
mean and variance (considering all the representative
samples of Pi regardless their phoneme contexts).
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Basically, the trajectory fitting problem can be mathe-
matically formed as a regularization problem [52]. As
described in the work of [10], for a given phoneme sequence
P, the following objective function (1), called the SATF
metric in this work, is minimized to find the best fitting
facial motion sequence, y.

Epm ¼ ðy�UÞTDTV�1Dðy�UÞ
þ �yTWTWy:

ð1Þ

Here, D is the time duration matrix for all the phonemes
in P; W is a difference operator (i.e., a matrix) used for
smoothing the fitted result, y; U and V are the mean and
variance matrices estimated from the facial motion se-
quences of phonemes, and the coefficient � balances the
tradeoff between the fitting errors of individual phonemes
and the smoothness of phoneme transitions. How to
construct U, V, D, and W and how to solve for y are
detailed in follow-up Section 5.1.1. Finally, we can obtain
Epm by plugging y into the above (1).

Although there is no explicit dynamic modeling of co-
articulation effect in the phoneme sequence, the V
(variances) matrix implicitly generates coarticulation effect.
As reported in the work of [10], a small variance indicates
that the synthesized trajectory for a particular phoneme is
more likely to only pass its own parameter space, and thus
this phoneme has little coarticulation effect. Meanwhile, a
large variance indicates that the synthesized trajectory for
the phoneme is more likely to pass through the neighboring
phonemes’ parameter spaces, and thus the coarticulation
effect of this phoneme can be modeled.

5.1.1 Computing Means and Variances of Visemes

through Trajectory Fitting

Assuming P is the inputted phoneme sequence and M is a
given facial motion data set, the computed mean and
variance elements of all the visemes in P are diagonally
packed into vector U and matrix V, respectively. U is a
vertical concatenation of the mean vector Ui for Pi in
phoneme sequence, and each Ui vector is a concatenation of
the 27 region-based PCA coefficients (described in Section 3).
Here, K is the total number of the used PCA coefficients
(K ¼ 27 in this work).

U ¼

U1

U2

:
:

Ui

:
:

UT

2
66666666664

3
77777777775

Ui ¼

U1
i

U2
i

:
:

UK
i

2
66664

3
77775: ð2Þ

V is a diagonal concatenation of the variance matrix Vi

(for Pi in the phoneme sequence P). Each Vi matrix isK �K.

V ¼

V1 : : : :
: V2 : : :
: : : : :
: : Vi : :
: : : : :
: : : : VT

2
6666664

3
7777775
; ð3Þ

Vi ¼
V1
i : : :
: V2

i : :
: : : :
: : : VK

i

2
664

3
775:

After U and V are obtained, we compute the fitted
result, y, by minimizing (1) (i.e., setting @Epm=@y ¼ 0). At
the end, we obtain the following equation:

ðDT V�1 Dþ � WT WÞy ¼ DT V�1D U: ð4Þ

Since all the frames are represented as region-based PCA
coefficients; therefore, y is a vertical concatenation of the
region-based PCA coefficient vector yi at each time step
(refer to (5)).

y ¼

y1

y2

:
:
yi
:
:

yT

2
66666666664

3
77777777775

yi ¼

y1
i

y2
i

:
:
:

yKi

2
6666664

3
7777775
: ð5Þ

The time duration matrix D is a diagonal duration-
weighted matrix that emphasizes shorter phonemes and de-
emphasizes longer ones [10]. The purpose of the duration-
weighted matrix is to relieve the impact of extremely long
phonemes. In this work, we use the following form for each
diagonal element of Di in the time duration matrix

D :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�DPi

DP

r

(Here, DPi
denotes the duration of Pi in time frames, and

DP denotes the length of the entire utterance P in time
frames), and each Di is K �K. Thus, D is formulated as
follows:

D ¼

D1 : : : :

: D2 : : :

: : : : :

: : Di : :

: : : : :

: : : : DT

2
666666664

3
777777775
;

Di ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DPi

DP

q
: : :

:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DPi

DP

q
: :

: : : :

: : : :

: : :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� DPi

DP

q

2
6666666664

3
7777777775
:

ð6Þ

The matrix W is the first order difference operator [53]
(Section 5.1.2 describes how we determine the optimal
order of W is 1), and it is used to smooth the fitted result y.
Each I is a K �K identity matrix
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W ¼

�I I : : : :
: �I I : : :
: : �I I : :
: : : : : :
: : : : : :
: : : : �I I

2
6666664

3
7777775
: ð7Þ

The coefficient � in (4) balances the tradeoff between the
fitting errors of individual phonemes and the smoothness of
phoneme transitions. In this work, we experimentally set it
to 0.5. How to determine the optimal � as well as the order
of W is described in follow-up Section 5.1.2.

5.1.2 Determining Optimal Parameters

In the above W, higher orders of smoothness are formed by

repeatedly multiplying W with itself: second order

WTWTWW, third order WTWTWTWWW, and so on.

Fig. 3 shows how the cross-validation Root Mean Squared

Error is changed when the order of W and the coefficient � in

Eq. (1) are varied (also refer to Section 5.3). As shown in Fig. 3,

for all the three chosen approaches [5], [6], [10], the optimal

order of W is 1 (that is, the optimal W is a matrix

corresponding to the first-order difference operator) and

the optimal � is 0.5, thus we empirically set � to 0.5 in this

work.

In order to understand how the combination of
triphones, diphones, and monophones in the inputted
phoneme sequence P could affect the trajectory fitting error
of the constructed SATF metric, we randomly select

and analyze six test sentences. Table 1 shows the detailed
phoneme contexts of the six selected test sequences and
their average (per phoneme) fitting errors computed by our
introduced SATF metric (i.e., Epm=T ). As shown in this
table, since the percentages of combined triphones and
diphones in the six test sentences are close, their resultant
fitting errors are numerically close accordingly. Also, the

direct correlation between triphone/diphone combination
and the resultant fitting error is not straightforward.
However, quantitatively analyzing and modeling this issue
could be an interesting future study.

5.2 Statistical Quality Prediction Model

We split the prerecorded facial motion data set (described
in Section 3) into a training subset, Mt (80 percent,
189 sentences), and a test/validation subset, Mv (20 percent,

48 sentences). Then, we use Mt to train the SAQP statistical
model that can predict speech animation synthesis quality
based on the SATF metric. We detail its modeling
procedure in this section.

The construction of our SAQP model is based on the

cross-validation mechanism. As illustrated in Fig. 4, we first

split the whole training motion data set (Mt) into tenfolds,

and each fold has less than 20 sentences. In this phase, we
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Fig. 3. Illustration of how the cross-validation RMSE error is changed
when � and the order of W are varied: the anime-graph approach [5]
(Top), the eFASE approach [6] (Middle), and the 3D extension of the
MMM-based approach [10] (Bottom).

TABLE 1
The Phoneme Contexts of the Six Selected Test Sentences and
Their Average (per Phoneme) Fitting Errors Computed by Our

Introduced SATF Metric

Fig. 4. Illustration of the SAQP modeling process.



keep the split of Mt in a phoneme-balanced manner. In other

words, each of the folds covers facial motions for all the

phonemes used in this study. Subsequently, we randomly

pick and combine k folds (1 � k � 9) into a submotion data

set, SMj. In this work, a total of 56 submotion data sets are

constructed. Then, for each of the submotion data sets, SMj,

we use Mt � SMj as the training data to compute the SATF

metric for each sentence in SMj based on Eq. (1). In other

words, if the ith sentence (i.e., phoneme sequence) in SMj is

denoted as SMi
j, and its corresponding SATF metric is

denoted as Ei
j, then Ei

j ¼ T ðSMi
j;Mt � SMjÞ. In this way,

we obtain a total of 484 SATF metrics. For the sake of a clear

explanation, we use fE1;E2; . . . ;Eng (n ¼ 484) to denote

these obtained SATF metrics.
Meanwhile, for each of the above 484 synthesis tasks

such as Ei
j, we also know its corresponding prerecorded

(ground-truth) facial motion in Mt. As such, we can
compute its ground-truth synthesis error, Qi

j, by calculating
the RMSE error between the synthesized facial motion and
the prerecorded ground truth.

The used RMSE error is determined by computing the
differences of both the positions and velocities between the
synthesized facial motion and the prerecorded ground
truth. In this work, we choose a set of facial markers over
the whole facial geometry to compute the RMSE error due
to the following main reasons: 1) 3D facial meshes of
various persons or even the same person typically have
different topologies (i.e., the number of vertices) such as
the widely used multiresolution mesh representation.
Thus, if the RMSE error is computed based on the
difference of all the deformed facial mesh vertices, it will
directly depend on the used facial mesh representation (as
an additional factor to the SAQP model). By contrast, the
marker-based RMSE error is independent to the used facial
mesh. 2) Computing the marker-based RMSE error is
much more efficient than computing all the mesh vertices
based RMSE error. In addition, marker-driven facial
deformation (e.g., the thin-shell linear deformation model
[54], [21]) has been proven to be effective to soundly
produce realistic and high-fidelity facial deformations. In
this work, we also choose the thin-shell linear deformation
model to deform the face mesh based on the displacements
of a set of markers.

Specifically, to compute the RMSE error in this work, we
consider not only the first-order effect (positions of facial
markers), but also the second-order effect (velocities of
facial markers) towards and away from the targets.
Equation (8) gives the formula to compute the RMSE error
Qi
j as the ground-truth synthesis error.

Qi
j ¼ �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t ð!ðXS

t �XG
t ÞÞ

2

F

s

þ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
t ð!ð _XS

t � _XG
t ÞÞ

2

F

s
;

ð8Þ

Here F denotes the total frame number of the ith facial
motion sequence in the training data set; XS

t and XG
t denote

the marker positions of the tth frame of the synthesized

facial motion and the prerecorded ground truth motion,
respectively; _Xt denotes the marker velocities of the tth
facial motion frame; ! denotes the weights/importances of
facial markers; and �1 and �2 are the weights to balance the
position part and the velocity part. In this work, we
empirically set �1 and �2 to 0.64 and 0.36, respectively.

When computing the above Qi
j, we apply a higher

weight to the facial markers in the mouth region than those
in other facial regions. Its underlying rationale is that when
perceiving lip-sync animations, humans tend to put more
attention/emphasis on the mouth region than other facial
regions. As such, we assign a higher weight, !m, to the
markers in the mouth region, while assign 1 as the default
weight to the other facial markers. In Section 5.3, we will
describe how to determine the optimal !m via cross-
validation. Fig. 5 illustrate how the facial markers are
partitioned to two categories (the mouth region and the
other) for weight assignment.

Finally, we use a linear mapping to transform the
computed RMSE error Qi

j to the range of 1 to 5 in order
to make it consistent with the five-point Likert scale
(employed in the user study described in Section 6), where
1 represents the worst quality and 5 represents the best
quality. This linear mapping can be constructed straight-
forwardly: assuming the largest synthesis error in our data
set is �, then the mapped value of Qi

j is 5� 4 � ðQi
j=�Þ.

5.2.1 Gaussian Process SAQP Model

Given the above obtained SATF metrics, E (¼ fE1; . . . ;
Ei; . . . ;EngÞ, and their corresponding ground-truth synth-
esis errors, Q (¼ fQ1; . . . ;Qi; . . . ;Qng), we train a Gaussian
Process Regression model to learn the mapping from E to
Q. We choose the GPR model for this learning due to the
following reasons: first, the GPR model is nonparametric, so
it does not require extensive manual efforts for parameter
tuning to achieve good training results. Second, the GPR
model is context-dependent; hence, it is capable of
automatically and robustly handling SATF metrics with
different characteristics.

Mathematically, a GPR model is characterized by its
hyperparameter vector � that includes a characteristic
length-scale parameter �1 and a signal magnitude para-
meter �2. Training a GPR model is to learn the hyperpara-
meter vector �. In this work, we learn the hyperparameter
vector � by optimizing the following marginal log-like-
lihood function (9).
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Fig. 5. The used facial marker partition scheme for weight assignment.



LGP ¼ � logP ðQjE; �Þ

¼ 1

2
log jKþ �2Ij þ 1

2
QT ðKþ �2IÞ�1Q

þN
2

log 2�:

ð9Þ

Here LGP is the negative log-posterior of the model, �2 is

the variance of noise (0.014 in this work), and K is a used

kernel function. In this work, the used kernel function is an

ARD covariance function [55] (refer to (10))

Ki;j ¼ kðEi;EjÞ ¼ �2 exp � 1

2�1
2
kEi �Ejk2

� �
: ð10Þ

Then, Rasmussen’s minimization algorithm [56] is
chosen to optimize LGP due to its efficiency. The maximum
number of iterations is experimentally set to 1,024. After � is
optimally solved, the trained GPR model yields a likelihood
function for any predicted output. Concretely, for any new
SATF metric (i.e., a scalar value), e, we can compute a
probabilistic distribution of its predicted synthesis quality
error, q. In addition, we can evaluate the negative log
probability of the predicted output. This log-likelihood
function is shown in (11)

LS ¼ � logP ðqje; �Þ

¼ 1

2
logð2�ðV ðeÞ þ �2ÞÞ þ kq� UðeÞk

2

2ðV ðeÞ þ �2Þ ;
ð11Þ

UðeÞ ¼ �ðeÞTðKþ �2IÞ�1Q;

V ðeÞ ¼ kðe; eÞ � �ðeÞTðKþ �2IÞ�1�ðeÞT :

Here �ðeÞ is a vector in which the ith entry is kðe;EiÞ,
function U returns the mean of the posterior distribution of
the learned model given new input e, and function V
returns the variance of the learned posterior distribution. In
sum, we just need to minimize LS to obtain the predicted
output q.

5.3 SAQP Model Cross-Validation

We validate the accuracy of our SAQP model by applying it
to three chosen data-driven speech animation synthesis

algorithms [5], [6], [10]. Specifically, in the model training

step, each of the three chosen algorithms is used to generate
its own set of ground-truth synthesis errors fQ1;Q2; . . . ;Qng
(n ¼ 484, refer to Section 5.2), though the same SATF metrics

fE1;E2; . . . ;Eng are used. We train three different SAQP
models for the three algorithms, respectively.

As mentioned in Section 5.2, the facial motion subset Mv

(total 48 sentences) is specifically retained for cross-
validation purpose. Therefore, in the validation step, we
first compute the SATF metrics of the 48 validation
sentences, fEv1

;Ev2
; . . . ;Ev48

g. Meanwhile, each of the three
chosen algorithms [5], [6], [10] is used to compute its own
set of speech animation synthesis errors (ground-truth) for
the 48 validation sentences, denoted as fQv1

;Qv2
; . . . ;Qv48

g.
Finally, we use the trained GPR model to predict the speech
animation synthesis qualities based on the inputted Evi

(1 � i � 48), that is, Q̂vi ¼ F�ðEviÞ.
Our cross-validation procedure consists two steps: the

first step determines the optimal !m (i.e., the weight for
facial markers in the mouth region, refer to (8)) via cross-
validation, and the second step performs the cross-valida-
tion comparison over the selected test sentences by using
the determined optimal !m. The reason is that the learned
GPR hyperparameters in the SAQP model depends on the
chosen value of the !m parameter, and thus it is necessary
to determine the optimal !m in the first step.

Fig. 6 shows how the cross-validation RMSE error is
changed when !m varies. In this figure, X-axis denotes !m,
and Y -axis denotes the averaged cross-validation error
(total 48 cross-validation sentences). As clearly shown in
Fig. 6, the optimal !m for both [6] and [10] is 3, and the
optimal !m for [5] is 4. The constructed SAQP model in the
remaining writing uses the optimal values of !m.

Fig. 7 plots the SATF metrics Ev versus the cross-
validation RMSE errors Qv by the three chosen approaches
and the ground-truth RMSE errors of the cross-validation
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Fig. 6. Plotting of how the cross-validation RMSE is changed when !m is
increased.

Fig. 7. Plotting of the SATF metrics Ev versus the cross-validation
RMSE errors Qv by the three chosen approaches and the ground-truth
RMSE errors. The bottom panel is a zoomed version of a selected
portion in the top panel.



data set. From this figure, we can observe that the overall
trend of the three approaches is approximately close to the
ground-truth, although noticeable fluctuations exist.

Fig. 8 shows cross-validation comparison results (Qvi

versus Q̂vi ) of the retained 48 validation sentences (the
above optimally determined !m is used). As shown in this
figure, we can observe that the predicted speech animation
synthesis qualities of the three chosen approaches [5], [6],
[10] are measurably close to the ground-truth, considering
the intrinsic difficulty of this problem. Note that in Fig. 8, in
order to make the plotting easier to understand, we
intentionally rearrange the animation clip indexes by the
ground-truth synthesis quality in the ascending order.

6 RESULTS AND EVALUATIONS

In this work, we conducted a user study to evaluate the
effectiveness of our proposed SAQP model. In the effec-
tiveness user study, we choose three recent representative

data-driven speech animation approaches [5], [6], [10] to

evaluate its effectiveness (refer to Section 4). In the above

Section 5.3, we performed cross-validation on the three

approaches. However, it still remains unclear whether the

proposed SAQP model can be soundly accurate and robust

when arbitrary texts from real-world applications or voices

from different subjects (i.e., different from the subjects

whose facial motion data are acquired for SAQP model

training, refer to Section 3) are inputted. In particular, in

many online or interactive applications, it is technically

infeasible to acquire the ground-truth speech motions in

advance (e.g., via preplanned facial motion acquisition). As

such, we focus on quantifying the performance of the SAQP

model in these scenarios.

6.1 Effectiveness User Study

We first randomly extracted 17 sentences from CNN News,
Yahoo News, and Internet speech as the test sentences, and
then recorded the voice of a male human subject when he
spoke the chosen 17 sentences. Note that this male subject is
different from the motion capture female subject in Section 3.
After that, we used the Festival system [48] to extract their
corresponding phoneme sequences with timing information
from the recorded voices. Based on the obtained 17 phoneme
sequences, each of the three chosen data-driven speech
animation approaches [5], [6], [10] was used to generate 17
speech animation clips (in other words, a total of 51 synthetic
speech animation clips with aligned audio) by using the
same facial motion data set as detailed in Section 3. In our
user study, the resolution of all the synthetic speech
animation clips is 640� 480. Fig. 9 shows four randomly
selected frames in one synthetic clip. To suppress the
potential influences of other visual factors on user percep-
tion, eye gaze in these clips stays still (looking straight
ahead), and there is no head movements in the clips. For
animation results, please refer to the enclosed demo video.

We conducted a user study on the above 51 clips. A total

of 16 student volunteers participated in the study and they

were specifically instructed to only rate the “lip-sync

quality” (that is, not other visual factors such as rendering,

eye movements, and head movements) of the clips one by

one. We used a five-point Likert scale, where 1 represents

“extremely poor,” and 5 represents “realistic like a real

human.” In particular, the participants were allowed to

assign any real number (not restricted to integer numbers,

e.g., he/she can give a 4.3 rating) between 1.0 and 5.0 as

their rating. To counter balance the display order of the

visual stimuli in the study, the animation clips were

displayed in a random order for each participant.
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Fig. 8. Cross-validation comparison results of all the 48 sentences in our
validation data set: the Anime-Graph-based approach [5] (Top), the
eFASE approach [6] (Middle), and 3D extension of the MMM-based
approach [10] (Bottom).

Fig. 9. Four selected frames in one synthetic speech animation clip used
in our user study.



6.2 Analysis of User Study Results

We analyze the user study results using two different ways.

First, we statistically analyze the obtained user ratings to

check the rating consistency. Second, we perform compar-

ison analysis on the user-rated (i.e., ground-truth) outcomes

and the algorithm outcomes predicted by our SAQP model

in order to evaluate its accuracy and robustness.
Statistics of the ground-truth (user-rated) perceptual

outcomes. The averaged user ratings of the 51ð¼17 � 3Þ
synthetic clips are called the ground-truth perceptual outcomes

in this work. As shown in Fig. 10, we observe that despite

some outliers, most of the participants had certain agree-

ments on the perceptual ratings of all the synthetic clips. In

particular, such a rating consistency is more obvious at

those lowly rated and highly rated clips.
We also computed the standard deviations of the

obtained ground-truth perceptual outcomes. Fig. 11 plots

the standard deviations as blue error-bars. We can observe
that, only 8 (i.e., 23.53 percent) out of the used 51 clips have
their standard deviations larger than 0.5, and only 1 out of
51 has its standard deviation larger than 0.7. This indicates
majority of the obtained user ratings are consistent, to a
certain extent.

Comparison analysis of the user study results. In this
writing, the quality outcomes computed/predicted by our
SAQP model (Section 5.2) are called the predicted perceptual

outcomes. Fig. 11 plots the comparison between the ground-
truth and the predicted perceptual outcomes. As shown in
this figure, we can observe that regardless which of the
three algorithms [5], [6], [10] is used, at most cases, the
predicted perceptual outcomes computed by the SAQP
model are sufficiently close to the ground-truth perceptual
outcomes (user ratings).
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Fig. 10. The obtained user ratings (the ground-truth perceptual
outcomes) of the 51 synthetic speech animation clips: the anime-graph
approach [5] (Top), the eFASE approach [6] (Middle), and the 3D
extension of the MMM-based approach [10] (Bottom). To better visualize
the user ratings, we rearrange the animation clip indexes by the
averaged ground-truth perceptual outcomes in the ascending order.

Fig. 11. Comparisons between the ground-truth perceptual outcomes
(the averaged user ratings) and the predicted perceptual outcomes by
our SAQP model: the anime-graph approach [5] (Top), the eFASE
approach [6] (Middle), and the 3D extension of the MMM-based
approach [10] (Bottom). To better visualize the results, we rearrange
the animation clip indexes by the ground-truth perceptual outcomes in
the ascending order. The blue lines in the figure denote the standard
deviations.



We also computed the quantitative errors of our
predictions. Table 2 shows the computed RMSE errors. As
shown in the table, for the three chosen approaches [5], [6],
[10], the quantitative errors of our SAQP model are
reasonably small: RMSE for [5] is 0.44, RMSE for [6] is
0.39, and RMSE for [10] is 0.48. We also used Canonical
Correlation Analysis (CCA) [57] to measure the correlation
between the ground-truth perceptual outcomes and the
predicted perceptual outcomes. The computed CCA coeffi-
cients: r1 ¼ 0:86 for [5], r2 ¼ 0:90 for [6], and r3 ¼ 0:87 for
[10], are reasonably close to 1.0 (perfectly linear). This
shows there is an approximately linear correlation between
the ground-truth perceptual outcomes and the predicted
outcomes by our SAQP model.

In sum, through the quantitative analysis of the prediction
errors by our SAQP model (i.e., RMSE and CCA), our user
study results showed that the proposed SAQP model is able
to soundly predict the qualities of synthetic data-driven
speech animations, and the algorithm predictions are
measurably close to the ground-truth user ratings. We
believe, with relatively minor modifications, the proposed
SAQP model can be generalized and used as a quantified
quality predictor for other existing data-driven speech
animation approaches such as the work of [3], [4], [5], [11], [7].

7 DISCUSSION AND CONCLUSIONS

In this paper, we introduce a novel speech animation
quality prediction model that can robustly predict the
quality of synthetic speech animations dynamically gener-
ated by data-driven approaches. Its core element is a trained
statistical regression model that bridges the Speech Anima-
tion Fitting Trajectory (SATF) metric with the ground-truth
synthesis measure.

To the best of our knowledge, this work is the first
reported, automated, quantitative quality predictor for
data-driven speech animation approaches. In particular, at
runtime it does not need to conduct offline, costly, and
tedious user studies. Our user study results showed that the
SAQP model is able to soundly predict the synthesis quality
of data-driven speech animation approaches and the
predictions are reasonably close to the ground-truth user
ratings. Moreover, we also believe with straightforward
modifications or extensions, our SAQP model can be
plausibly generalized and used as a quantified quality
predictor for other existing data-driven speech animation
approaches [3], [4], [11], [7].

As in general automatically predicting the visual quality
of synthetic animations (in particular, facial and character
animations) is a challenging problem, our current work has
a number of limitations, described as follows:

. First, the accuracy of the current SAQP model still
needs to be further improved. For example, as shown
in Fig. 11, the predictions by the SAQP model are less
accurate when the ground-truth perceptual qualities
of synthetic speech animations are low.

. Second, since the used SATF metric utilizes phoneme
contexts, a reasonably large training data set would
be needed to construct and train a well-behaviored
SAQP model. For instance, if the training facial
motion data set cannot provide a good coverage of
various diphones and triphones, then the con-
structed SAQP model might not be able to make
accurate predictions when the inputted phoneme
sequence contains a significant portion of uncovered
diphone or triphone contexts.

. Third, in our current work, the RMSE error is used
to measure the ground-truth synthesis error (qual-
ity) in the SAQP model construction step (refer to
Section 5.2). However, we are aware that the RMSE
error may not be the ideal metric to represent
ground-truth perceptual outcomes of those synthetic
speech animation clips. Ideally, extensive subjective
user studies need to be conducted to consistently
rate the hundreds (about 500 in this work) of visual
speech animation clips to obtain the true perceptual
outcomes, and if such obtained user ratings (not the
computed RMSE errors in the current work) are
used to train the proposed SAQP model, we
anticipate that the prediction accuracy of the SAQP
model could be significantly improved. Neverthe-
less, in reality, such large-scale user studies are often
impractical. Therefore, our current work selects the
RMSE error as the economical alternative to the
user-rated perceptual outcome.

. Fourth, if our proposed SAQP model is trained based
on one subject’s facial motion data set, without model
retraining, it cannot be directly used as a quality
predictor for data-driven synthetic speech animations
that are based on another different subject’s facial
motion data set. The main reasons include: 1) in
reality, it is practically difficult to put the identical
facial marker layout for different motion capture
subjects; 2) even if the facial marker layouts of
different motion capture subjects are identical, dif-
ferent subjects typically have distinct facial geome-
tries (that is, the transformed region-based PCA
representation based on one subject cannot be directly
used to describe another subject) and have idiosyn-
crasies of mouth movements even when speaking the
same utterance (that is, different persons typically
have distinct sets of visemes and expressions).
Therefore, both the region-based PCA representation
and the computed ground-truth synthesis error
essentially depend on the idiosyncrasy of the parti-
cular subject in the training data set, while both of
them are used in the SAQP model training step
(Section 5.2). In addition, the optimized SAQP model
parameters (e.g., those optimized in Section 5) might
be also data set-specific, to a certain extent.

Another potential application of the proposed SAQP
model is to on-the-fly compare and evaluate the online
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TABLE 2
Summary of the Quantitative Prediction Errors

by the Proposed SAQP Model



performance of various data-driven speech animation
algorithms. For example, assuming a number of different
data-driven speech animation algorithms run at the back
end, and then based on the SAQP predictions, an online
system (e.g., taking arbitrary text or speech input from users
and generate a corresponding talking avatar) can automa-
tically pick and display the best animation clip among all the
clips generated by those back end algorithms.

Along a similar direction, our proposed SAQP model
could also be potentially used to compare different data-
driven speech animation approaches in a systematic
manner. For example, researchers can input the sentences
in some widely used corpora (e.g., the UPenn LDC Corpora
[58]) to some existing data-driven speech animation ap-
proaches and then quantitatively compare the quality of the
synthetic speech animations by those approaches, based on
our SAQP model. In this way, those different data-driven
approaches can be systematically compared and analyzed.

In the future, we plan to evaluate the SAQP model in
real-world online applications such as online news virtual
presenters, and thus we will be able to further quantify and
improve the current model such as dynamically relearning
the statistical model based on online user feedback. Second,
as the future work, we are interested in exploring the
direction of expanding and generalizing the current model.
For example, it could be extended to predict the quality of
synthetic speech animations generated not only by data-
driven techniques, but also by any other speech animation
approaches such as traditional yet well-liked key viseme
based or blendshape animation techniques. In addition,
eyebrow movement could be an important factor to the
realism of synthetic speech animation, and we plan to
explore how to effectively incorporate the eyebrow move-
ment as well as emotional visual speech into statistical
quality prediction models in the future.
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