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1. Introduction

An autonomous system of ordinary differential equations admitting a quasi-homo-
geneous group of symmetries is called a quasihomogeneous one. The interest of
such systems lies in the existence of particular solution in the quasi-homogeneous
ray form. Yoshida considered the algebraic integrability problem for quasi-homo-
geneous systems [12]. Using a singularity analysis type method, he was able to
derive necessary conditions for algebraic integrability. Though some imperfections
in his proof was found [4], Yoshida’s ideas are quite fruitful and useful in this
field. Inspired by Yoshida’s ideas, Furta [3] made a further step in this direction.
He suggested a simple and easily verifiable criterion of non-existence of nontrivial
analytic integrals for general analytic autonomous systems. Based on his crite-
rion, he also considered the non-integrability for general semi-quasihomogeneous
systems(the definition will be given below). Some similar results related to non-
existence of polynomial integrals, rational integrals and analytic integrals can be
found in [2, 5, 6, 7, 8, 9, 10, 13].

In [11], we considered the non-existence and partial existence of Laurent polyno-
mial first integrals for a general nonlinear system of ordinary differential equations

ẋ = Ax + f̃(x), x = (x1, · · · , xn) ∈ C
n (1)

in some neighborhood of the origin x = 0, where f̃(x) = o(x). Here, A Lau-
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rent polynomial P (u) in the n variables u = (u1, · · · , un) is given by P (u) =∑
(k1,··· ,kn)∈A

Pk1···kn
uk1

1 · · ·ukn
n , where Pk1···kn

∈ C and A, the support of P (u), is a

finite subset of the integer group Z
n.

Let G = {k = (k1, · · · , kn) ∈ Z
n :

n∑
j=1

kjλj = 0}. We proved the following

results [11]:

Theorem A. If the eigenvalues λ1, · · · , λn of A are Z-independent, i.e., they do
not satisfy any resonant equality of the following type

n∑
j=1

kjλj = 0, kj ∈ Z,
n∑

j=1

|kj | > 0,

then system (1) does not have any nontrivial Laurent polynomial integral.

Theorem B. Assume system (1) has s(s < n) nontrivial Laurent polynomial
integrals P 1(x), · · · , P s(x) and matrix A is diagonalizable. If P 1

l1
(x), · · · , P s

ls
(x)

are functionally independent and rank G = s, then any other nontrivial Laurent
polynomial integral Q(x) of system (1) must be a function of P 1(x), · · · , P s(x).

In the present paper, we consider the Laurent polynomial first integrals for
general semi-quasihomogeneous systems. By using the so-called Kowalevsky expo-
nents, we will give some criteria of non-existence and partial existence of nontrivial
Laurent polynomial integrals for general semi-quasihomogeneous systems.

The paper is organized as follows. For completeness, we first describe some
elementary definitions and results for semi-quasihomogeneous systems in section 2,
which can also be found in [3]. In section 3, we discuss the partial integrability for
semi-quasihomogeneous systems. Some examples will be given in the last section
to illustrate our results.

2. Quasi-homogeneous and semi-quasihomogeneous systems

Consider a system of differential equations

u̇ = g(u), u = (u1, · · · , un) ∈ C
n, (2)

where g(u) = (g1(u), · · · , gn(u)) is a vector-valued function of dimension n.

Definition 1. System (2) is called a quasi-homogeneous one of degree m with
exponents s1, · · · , sn ∈ Z,m > 1, if for any ρ ∈ Z

+ and u = (u1, · · · , un),

gj(ρs1u1, · · · , ρsnun) = ρsj+m−1gj(u1, · · · , un), (3)

i.e., ρE−Sg(u) = (ρ1−s1g1(u), · · · , ρ1−sngn(u)) is quasi-homogeneous of degree m,
here E is the unit matrix, S = diag(s1, · · · , sn) and ρE−S = diag(ρ1−s1 , · · · , ρ1−sn).
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Definition 2. We will say that system (2) is semi-quasihomogeneous if

g(u) = gm(u) + g̃(u),

where gm(u) is a quasi-homogeneous vector field of degree m with exponents s1,
· · · , sn and ρE−S g̃(u) is the sum of quasi-homogeneous polynomials of degree all
larger than m or all less than m. In the former case (respectively, latter), we say
that (2) is positively (respectively, negatively) semi-quasihomogeneous.

Let system (2) be semi-quasihomogeneous. Then under the transformation

u → ρSu, t → ρ−αt, α =
1

m− 1
, (4)

it becomes

u̇ = gm(u) + g̃(u, ρ), (5)

where g̃(u, ρ) is a formal power series either with respect to ρ (positive semi-
quasihomogeneity) or respect to ρ−1 (negative semi-quasihomogeneity) without
any constant term.

First of all we consider the quasi-homogeneous cut of system (2)

u̇ = gm(u). (6)

System (6) has particular solutions of the quasi-homogeneous ray form

u0(t) = t−Hξ,

where H = αS and the coefficients ξ ∈ C
n are given by the algebraic equation

Hξ + gm(ξ) = 0. For a given g(u), there may exist different sets of values ξ which
will be referred to as different balances.

Make the change of variables

u = t−H(ξ + x), t = ln τ, (7)

then system (6) reads

x′ = Kx + f̃(x), (8)

where prime means the derivative with respect to τ , K = H + ∂gm

∂u (ξ) is the so-
called Kowalevsky matrix associated to the balance ξ and f̃(x) = Hξ + gm(ξ +
x)− ∂gm

∂u (ξ)x = o(x).
The following statement was shown in [12].

Lemma 1. λ = −1 is an eigenvalue of the Kowalevsky matrix K and η = Hξ is
a corresponding eigenvector.

Without loss of generality, we assume λn = −1. Our first result is the following

Theorem 1. Let system (2) be semi-quasihomogeneous system with balance ξ,
and λ1, · · · , λn be eigenvalues of Kowalevsky matrix K associated to the balance ξ.
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If λ1, · · · , λn are Z-independent, i.e., they do not satisfy any resonant condition
n∑

j=1

kjλj = 0, kj ∈ Z,

n∑
j=1

|kj | ≥ 1, (9)

then system (2) does not have any nontrivial Laurent polynomial integral.

Proof. Assume that system (2) has a Laurent polynomial first integral

Φ(u) =
∑

(k1,··· ,kn)∈A
Φk1···kn

uk1
1 · · ·ukn

n ,

where A is a finite subset of Z
n.

In the case of positive semi-quasihomogeneity, Φ(u) can be rewritten as

Φ(u) = ΦL(u) + ΦL+1(u) + · · ·+ ΦM (u), L ≤ M, L,M ∈ Z,

where

ΦL+i(u) =
∑

k1s1+···+knsn=L+i

(k1,··· ,kn)∈A

Φk1···kn
uk1

1 · · ·ukn
n

are quasi-homogeneous functions of the degree L + i, i.e., ΦL+i(ρSu) = ρL+i

ΦL+i(u). Under the transformation (4), the system (2) changes to (5), Φ(ρSu)
changes to

Φ̃(u, ρ) = ρL(ΦL(u) + ρΦL+1(u) + · · ·+ ρM−LΦM (u)),

so Φ̃(u, ρ) is an integral of the system (5). Note that this integral exists for any
value of ρ, thus the shortened system (6) has to have a quasi-homogeneous integral
Φ̃(u, 0) = ΦL(u).

In the case of negative semi-quasihomogeneity, we rewrite Φ(u) as

Φ(u) = ΦM (u) + ΦM+1(u) + · · ·+ ΦL(u), M ≤ L, M,L ∈ Z.

Then system (5) has an integral

Φ̃(u, ρ) = ρL(ΦL(u) + ρ−1ΦL−1(u) + · · ·+ ρM−LΦM (u)),

which is also defined for any ρ. Thus (6) has to have a quasi-homogeneous integral
Φ̃(u,∞) = ΦL(u).

Now we make the change of variables (7). After this transformation, (6) be-
comes (8), the integral ΦL(u) becomes

ΦL(u) = t−αLΦL(ξ + x) = e−αLτΦL(ξ + x),

So e−αLτΦL(ξ + x) is a nonautonomous integral of system(8).
Let x0 = e−ατ be a new auxiliary variable. Then the augmented system

x0
′ = −αx0, x′ = Kx + f̃(x) (10)

has a Laurent polynomial integral P (x0, x) = xL
0 ΦL(ξ + x). Write P (x0, x) as

P (x0, x) = xL
0 (Pl(x) + Pl+1(x) + · · ·+ Pp(x)), l ≤ p, l, p ∈ Z, (11)
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where Pk(x) are homogeneous Laurent polynomials of degree k in x and Pl(x) 6≡
0, Pp(x) 6≡ 0. Now we can easily see that Q(x0, x) = xL

0 Pl(x) is a homogeneous
Laurent polynomial integral of linear system

x0
′ = −αx0, x′ = Kx. (12)

By Theorem A, if there is no any resonance condition of the following type

−k0α +
n∑

j=1

kjλj = 0, k0, kj ∈ Z,

n∑
j=0

|kj | ≥ 1 (13)

is fulfilled, then system (10) does not have any Laurent polynomial integral. Note
that α = 1

m−1 and λn = −1, therefore (13) can be rewritten as

−[k0 + (m− 1)kn] + (m− 1)
n−1∑
j=1

kjλj = 0,

a contradiction.

Remark 1. In general, the balance of (2) is not unique. According to Theorem 1,
if we can find a balance such that the non-resonance condition (9) holds, then it is
enough to conclude that the system under consideration has no Laurent polynomial
first integrals.

Remark 2. If system (2) has a nontrivial Laurent polynomial integral Φ(u), then
system (10) has a Laurent polynomial integral P (x0, x), and thus the linear system
(12) has also a homogeneous Laurent polynomial integral Q(x0, x).

3. Partial integrability for semi-quasihomogeneous systems

Now we assume that system (2) has s Laurent polynomial integrals Φ1(u), · · · ,
Φs(u). By remark 1, we know that system (10) has s Laurent polynomial integrals
P 1(x0, x), · · · , P s(x0, x), and the linear systems (12) has s homogeneous Laurent
polynomial integrals Q1(x0, x), · · · , Qs(x0, x). By Theorem 1, there is at least one
resonant relationship of type (9) must be satisfied. Therefore the set

G =


(k1, · · · , kn) ∈ Z

n :
n∑

j=1

kjλj = 0




is a nonempty subgroup of Z
n.

Lemma 2. Let system (2) have s nontrivial Laurent polynomial integrals Φ1(u),
· · · , Φs(u) and let any nontrivial quasi-homogeneous integral ΦL(u) of the cut
system (6) be a smooth function of the Φ1

L1
(u), · · · ,Φs

Ls
(u), i.e., ΦL = H(Φ1

L1
, · · · ,

Φs
Ls

). Then any nontrivial Laurent polynomial integral Φ(u) of system (2) is a
smooth function of Φ1(u), · · · ,Φs(u).
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Proof. We prove the lemma only for positive semi-quasihomogeneous system. The
negative semi-quasihomogeneous case can be proved similarly.

Under the transformation (7), system (2) can be rewritten in the following form

u̇ = gm(u) +
∞∑

j=1

ρjgm+j(u), (14)

where gm+j are quasi-homogeneous vector fields.
Similarly, the integral Φi(u) and Φ(u) of system (2) can be rewritten as

Φ̃i(u, ρ) = Φi(µHu) = ρLi(Φi
Li

(u) + ρΦi
Li+1(u) + · · ·+ ρMi−LiΦi

Mi
(u)),

Φ̃(u, ρ) = Φ(µHu) = ρL(ΦL(u) + ρΦL+1(u) + · · ·+ ρM−LΦL(u)),

where Φi
Li+j(u) and ΦL+j(u) are the corresponding quasi-homogeneous functions.

Let H(0) = H. Then the function

Φ̃(1)(u, ρ) = Φ̃(u, ρ)−H(0)(Φ̃1(u, ρ), · · · , Φ̃s(u, ρ))

is an integral of system (14), since Φ̃(u, ρ) and Φ̃1(u, ρ), · · · , Φ̃s(u, ρ) are all inte-
grals of system (14).

It is not difficult to see that Φ̃(1)(u, ρ) is at least of L + 1 order with respect to
ρ, and Φ̃(1)(u, ρ) can be rewritten as

Φ̃(1)(u, ρ) = ρL̃1(Φ(1)

L̃1
(u) +

∞∑
j=1

ρjΦ(1)

L̃1+j
(u)),

where L̃1 ≥ L+1 is an integer, Φ(1)

L̃1+j
(u) is a homogeneous form of degree L̃1 + j.

Obviously, Φ(1)

L̃1
(u) is an integral of system (14) as ρ = 0, i.e., an integral of the

system (6). According to the assumptions of the lemma, Φ(1)

L̃1
(u) = H(1)(Φ1

L1
(u),

· · · , Φs
Ls

(u)). So the function

Φ̃(2)(u, ρ) = Φ̃(1)(u, ρ)−H(1)(Φ̃1(u, ρ), · · · , Φ̃s(u, ρ))

is also an integral of system (14) which is at least of order L̃1 +1 with respect to ρ.
By repeating infinitely many times this process, we obtain that

Φ̃(u, ρ) =
∞∑

j=0

H(j)(Φ̃1(u, ρ), · · · , Φ̃s(u, ρ)),

which is equivalent to the fact that

Φ(u) = F(Φ1(u), · · · ,Φs(u)),

where F is some smooth function.

Lemma 3. Assume the Kowalevsky matrix K is diagonalizable. Let Q(x0, x) be
an integral of the augmented linear system (12) which is generated by the quasi-
homogeneous integral ΦL(u) of system (6). Then Q(x0, x) does not depend on the
last variable xn.
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Proof. Without loss of generality, we assume that K has already a diagonal form
diag(λ1, · · · , λn).

Since ΦL(u) is a integral of system (6), we have〈
dΦL

du
(u), gm(u)

〉
≡ 0. (15)

Under the transformation u = ξ + x, (15) is changed to〈
dΦL

dx
(ξ + x), gm(ξ + x)

〉
≡ 0, for all x.

By (11) we get 〈
dPl

dx
(x), gm(ξ)

〉
=

〈
dPl

dx
(x),−Hξ

〉
≡ 0.

By Lemma 1, Hξ = η = (0, · · · , 0, ηn) is the eigenvector corresponding to eigen-
value λn = −1, therefore

∂Pl

∂xn
(x) ≡ 0.

So the integral Q(x0, x) = xL
0 Pl(x) of system (12) does not depend on xn.

Theorem 2. Let system (2) be a semi-quasihomogeneous system with balance
ξ, and let Φ1(u), · · · , Φs(u) be nontrivial Laurent polynomial integrals of (2).
Assume that the Kowalevsky matrix K associated to the balance ξ is diagonalizable
and rank G = s. If the integrals Q1(x0, x), · · · , Qs(x0, x) of system (12) are
functionally independent, then any other nontrivial Laurent polynomial integral
Φ(u) of system (2) is a function of Φ1(u), · · · , Φs(u).

Proof. By Lemma 2, we need only show that any quasi-homogeneous integral
ΦL(u) of (6) is a smooth function of the Φ1

L1
(u), · · · , Φs

Ls
(u). This is equivalent to

prove that any integral P (x0, x) of (10) is a smooth function of the P 1(x0, x),· · · ,
P s(x0, x).

For simplicity, we assume that K has already a diagonal form diag(λ1, · · · , λn).
By Lemma 3, the integrals Q(x0, x) and Qi(x0, x) of linear system (12) do not
depend on the last variable xn, so they are also homogeneous integrals of the
linear system

x′0 = −αx0, x′1 = λ1x1, · · · , x′n−1 = λn−1xn−1.

Let

G0 =


(k0, · · · , kn−1) ∈ Z

n : −αk0 +
n−1∑
j=1

kjλj = 0


 .

Then G0 is a nonempty subgroup of Z
n and rank G0 = s, since α = 1

m−1 , λn = −1
and rank G = s. Since Q1(x0, x), · · · , Qs(x0, x) are functionally independent, by
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Lemma 2 in [11], there exists a function H such that

Q(x0, x) = H(Q1(x0, x), · · · , Qs(x0, x)).

Now by the same method as used in the proof of Lemma 1 in [11] and using Lemma
3 in each step, we can prove that any integral P (x0, x) of (10) is a smooth function
of the P 1(x0, x),· · · , P s(x0, x), and this completes the proof.

4. Examples

Example 1. Consider the following quadratic system

u̇i = ui(ai1u1 + ai2u2 + · · ·+ ainun), i = 1, 2, · · · , n, (16)

where aij are real constants.
System (16) can be treated as semi-quasihomogeneous system with exponents

s1 = s2 = · · · = sn = 1. So S = E,m = 2, α = 1,H = E.
Note that if ajj 6= 0, then system (16) has a balance ξ = (0, · · · ,− 1

ajj
, · · · , 0),

and thus (16) has a particular solution u(t) = (0, · · · ,− 1
ajjt , · · · , 0). For simplicity,

we consider the case that j = n. In this case the Kowalevsky matrix is

K =




1− a1n

ann
0 · · · 0 0

0 1− a2n

ann
· · · 0 0

...
...

. . .
...

...
0 0 · · · 1− a(n−1)n

ann
0

− an1
ann

− an2
ann

· · · −an(n−1)

ann
−1




.

Obviously,

λ1 = 1− a1n

ann
, λ2 = 1− a2n

ann
, · · · , λn−1 = 1− a(n−1)n

ann
, λn = −1

are n eigenvalues of K.
According to Theorem 1, system (16) does not have any Laurent polynomial

integral if there is no resonance condition

k1

(
1− a1n

ann

)
+ · · ·+ kn−1

(
1− a(n−1)n

ann

)
− kn = 0, kj ∈ Z,

n∑
j=1

|kj | ≥ 1

is fulfilled. This is equivalent to that for any k̃j ∈ Z,
n∑

j=1

|k̃j | ≥ 1,

k̃1a1n + k̃2a2n + · · ·+ k̃nann 6= 0.

Corollary 1. If for some j (1 ≤ j ≤ n), a1j , a2j , · · · , anj are Z−independent,
i.e., they do not satisfy any resonant condition

k1a1j + k2a2j + · · ·+ knanj = 0, kj ∈ Z,

n∑
j=1

|kj | ≥ 1,
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then system (16) does not have any Laurent polynomial integrals.

Example 2. To illustrate the Theorem 2, we consider the following Euler-Poincaré
equations on Lie algebras [1]

ẋ1 = −s(x)(α1x1 + β1x2 + γ1x3),
ẋ2 = −s(x)(β2x2 + γ2x3),
ẋ3 = −s(x)(β3x2 + γ3x3),
ẋ4 = p(x)(α1x1 + β1x2 + γ1x3) + q(x)(β2x2 + γ2x3) + r(x)(β3x2 + γ3x3),

(17)

where p(x) = ax1 + ex2 + fx3 + gx4, q(x) = ex1 + bx2 + hx3 + ix4, r(x) = fx1 +
hx2 + cx3 + jx4, s(x) = gx1 + ix2 + jx3 + dx4.

System (17) is a quasi-homogeneous one with exponents s1 = s2 = s3 = s4 = 1.
So S = E,m = 2, α = 1,H = E. Obviously, it has an integral

T =
1
2
(x1p(x) + x2q(x) + x3r(x) + x4s(x))

=
1
2
(ax2

1 + bx2
2 + cx2

3 + dx2
4 + 2ex1x2 + 2fx1x3 + 2gx1x4

+2hx2x3 + 2ix2x4 + 2jx3x4). (18)

Notice that system (17) has a particular solution x(t) = (
1

α1gt
, 0, 0, 0) if a =

0, α1g 6= 0 . The Kowalevsky matrix of system (17) corresponding to this particular
solution is

K =




−1 − i

g
− β1

α1
− j

g
− γ1

α1
−d

g

0 1− β2

α1
− γ2

α1
0

0 −β3

α1
1− γ3

α1
0

0
α1e + β2e + β3f

α1g

α1f + γ2e + γ3f

α1g
2




with the following four eigenvalues

λ1 = 2, λ2,3 = 1− β2 + γ3 ±
√

(β2 − γ3)2 + 4β3γ2

2α1
, λ4 = −1.

According to Theorem 2, any Laurent polynomial integral of system (17) is func-
tionally dependent on T if rank G = 1, where

G = {(k1, k2, k3, k4) ∈ Z : k1λ1 + k2λ2 + k3λ3 + k4λ4 = 0}.
This is equivalent to

k̃2 · β2 + γ3

2α1
+ k̃3 ·

√
(β2 − γ3)2 + 4β3γ2

2α1
+ k̃4 6= 0.

for any k̃2, k̃3, k̃4 ∈ Z, |k̃2|+ |k̃3|+ |k̃4| ≥ 1.
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