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Leaf Area Index (LAI) is an important biophysical parameter and is a critical variable in many ecology 
models, productivity models, and carbon circulation studies. To assess and compare various 
hyperspectral models in terms of their prediction power of tobacco LAI, tobacco canopy hyperspectral 
reflectance data of the root extending stage, fast growing stage, and mature stage in different water-
nitrogen conditions were collected with a FieldSpec HandHeld spectroradiometer. Based on the pot 
experiment data, an evaluation of tobacco LAI retrieval methods was conducted using four vegetation 
indices, principal component analysis (PCA), and neural network (NN) methods. The estimated effects 
of the three methods were then compared. Results indicated that all three methods have ideal effects 
on LAI estimation. Determination coefficients (R2) of the validated models of vegetation indices, PCA, 
and NN were (0.768 ~ 0.852), 0.938, 0.889, respectively. The PCA and NN methods show higher 
precision. The stability of the PCA validated model is the best because its Root Mean Square Error 
(RMSE) of 0.172 is smaller than those of  the vegetation indices (0.237 ~ 0.322) and NN (0.195). As a 
whole, the PCA and NN methods could improve the retrieval precision and were prior selection for LAI 
estimation. 
 
Key words: Hyperspectral, flue-cured tobacco, LAI, vegetation Indices, principal component analysis, neural 
network. 

 
 
INTRODUCTION 
 
Leaf Area Index (LAI) is a critical parameter for estimating 
biomass and for quantitatively analyzing the energy 
exchange characteristics of terrestrial ecosystems (Broge 
and Mortensen, 2002). Estimating crop LAI is particularly 
significant for crop-growing conditions, pest and disease 
monitoring, yield estimation, and field management. 
There is a wide range of effective methods for the small-
scale measurement of LAI. However, only the use of 
remote sensing technology is feasible  for  predicting  LAI  
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on the large or even global scale (Fassnacht et al., 1997). 
Previous studies found that green crop spectral 

reflectance shares an important relationship with LAI 
(Guan et al., 2002; Hu et al., 2004; Gupta et al., 2006). 
With the development of hyperspectral technology, more 
and more researchers have begun to take advantage of 
hyperspectral remote sensing methods to retrieve LAI 
(Broge et al., 2001; Imanishi et al., 2004; Jiang et al., 
2005). Different scholars from various perspectives and 
methods have studied the remote sensing problem of LAI 
inversion at different scales and vegetation types, and 
many studies are dedicated to building a radiative 
transfer model to improve the accuracy of LAI inversion 
(Qi et al., 1995). 
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Moderate-resolution imaging spectroradiometer 
(MODIS) LAI products based on the three-dimensional 
radiative transfer model have become a research focus, 
an application, and an important and convenient data 
source (Myneni et al., 1997; Wythers et al., 2003). 
However, the application of a physical model is limited 
because of the addition of parameters, algorithm 
complexity, and slower computations. Other works on 
spectral reflectance and vegetation index aim to improve 
the accuracy of LAI inversion (Casanova et al., 1998; 
Hansen et al., 2003; Hung et al., 2006). While the 
accuracy of a large number of statistical models between 
spectral vegetation indices and LAI established based on 
hyperspectral remote sensing technology has been 
greatly improved, the accuracy and universality of the 
vegetation index method remain difficult to guarantee.  

Many studies have shown that the relationship between 
vegetative bio-physico-chemical parameters and spectral 
reflectance is basically nonlinear (Kokaly et al., 1999; 
Curran et al., 2001). Neural networks (NN) have an 
unparalleled advantage in fitting nonlinear problems. 
Thus, some researchers have begun to introduce neural 
networks to high-spectral data analysis to improve the 
accuracy of the inversion of vegetative physiological 
parameters (Delfrate and Wang, 2001; Bacour et al., 
2006; Song et al., 2006). Hyperspectral data can provide 
a wealth of detailed spectral information, but large 
volume of data and redundant information pose a 
challenge for data processing. 

The principal component analysis (PCA) method, on 
the other hand, shows better data compression, reduces 
the amount of data dimension features, and can make full 
use of data to achieve complementary advantages 
between the different spectral bands and improve the 
accuracy of estimates (Lelong et al., 1998; Gong et al., 
2002; Yang et al., 2008). The current remote sensing 
technology is focused mainly on rice, wheat, corn and 
other major food crops (Asrar et al., 1985; Shibayama 
and Akiyama, 1989; Goel et al., 2003), but less on 
tobacco. 

As an important economic crop, tobacco is planted in 
several provinces in China and its planting area and yield 
are very large. Moreover, with its broad leaves and small 
planting density, tobacco is quite different from rice, 
wheat, and other graminaceous plants that feature 
narrow leaves and small planting densities. Chaurasia et 
al. (2006) reported an estimate of tobacco LAI with IRS-
ID LISS-III data. Li et al. (2007) systematically analyzed 
the hyperspectral characteristics of different tobacco 
types, flue-cured tobacco varieties, nitrogen, phosphorus, 
and potassium application rate treatments. They also 
established a prediction model for tobacco LAI and 
above-ground biomass via a multiple stepwise regression 
method. However, studies on the spectral characteristics 
of tobacco leaf area under different water and nitrogen 
stress are relatively rare. 

This   paper   introduces   PCA   and   NN    technology,  

 
 
 
 
estimates tobacco LAI from hyperspectral data, and 
compares several regression models constructed from 
different vegetation indices to investigate the accuracy of 
different models in retrieving change in tobacco leaf 
areas. 
 
 
MATERIALS AND METHODS 
 
Experimental design 
 
The experiment was carried out on a farm at Henan Agricultural 
University in Zhengzhou City, China (34°30�N, 113°24�E) in 2009. 
The basic properties of soil were as follows: middle level fertility, 13 
g kg-1organic matter, 0.87 g kg-1 total nitrogen, 69.74 mg kg-1 alkali 
hydrolysable N, 13.75 mg kg-1 available phosphorus, 113.00 mg kg-

1available potassium, pH 7.92, and 24.2% field moisture capacity. A 
Pot experiment was employed. Flue-cured tobacco varieties used 
for this experiment were K326 and YUN 85. 
 
 
Nitrogen treatments 
 
Each pot was filled with 20 kg soil taken from the local field and 
planted with one tobacco plant. Three nitrogen levels were applied: 
N0 meant no nitrogen was applied to the pot, N1 meant 3 g 
nitrogen was applied to each pot, and N2 meant 6 g nitrogen was 
applied to each pot. In addition, 4.5 g P2O5 and 9 g K2O were 
applied to each pot. 
 
 
Moisture treatments 
 
Three moisture levels were employed for the experiments: M0 
meant 45% of field moisture capacity was used, M1 meant 65% of 
field moisture capacity was used, and M3 meant 85% of field 
moisture capacity was used. Each treatment setting was repeated 
three times in a randomized block arrangement. The fertilizers used 
were NH4NO3, K2SO4, and Ca (H2PO4)2H2O. All P2O5, 70%N and 
70%K2O were applied to the plants before transplanting. The top-
dressing used consisted of 30%N and 30%K2O, applied 15 and 30 
d after transplanting. 

The distance between rows and plants was 120 and 60 cm, 
respectively. Transplanting was conducted on May 15. Cultivation 
was dependent on normal field management. The weighing method 
was employed to control the soil moisture content of each 
treatment. Each moisture treatment began from the root extending 
period and continued until the end of the mature period. 
 
 
Canopy spectral data acquisition 
 
To obtain spectral data, an America Analytical Spectral Device 
(ASD) FieldSpec HandHeld was used, which provided spectral 
coverage from 350 nm to 1050 nm at sampling intervals of 1.4 nm 
and a spectral resolution of 3nm. Samples were selected from 
healthy leaves at 35, 55, and 80 d after transplanting. For each 
treatment, three plants that grew consistently and reflected fertilizer 
conditions were selected. Canopy spectra reflectance was 
measured between 10:00 and 14:00 h: at these hours, the sky was 
clear. While measuring, the sensor probe was held downward 
vertically, away from the canopy top, and at a vertical height of 1 m. 

The spectrometer FOV was 25°. Whiteboard calibrations were 
performed before each measurement. Each tobacco plant was 
measured thrice from the top and 10 sets of data were recorded for 
each measurement. The last data collected were considered as  the  
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Table 1. Regression models based upon vegetation indices against LAI and its validation. 
 

Vegetation indices 
Model calibration (n = 132) Model validation (n = 30) 
Regression model R2 RMSE R2 RMSE 

RVI y = 0.011x1.760 0.796 0.251 0.768 0.322 
NDVI y = 3.424x8.061 0.813 0.241 0.798 0.281 
MSAVI y = 0.052e3.898x 0.852 0.217 0.849 0.263 
MTVI2 y = 2.911x-1.193 0.878 0.202 0.852 0.237 

 
 
 
average spectral reflectance values of the samples. 
 
 
Tobacco leaf area measurement 
 
After canopy spectral measurements, tobacco leaf areas were 
acquired by sampling three tobacco plants corresponding to the 
location where spectrum was collected. The leaves from all the 
plants were collected. Tobacco leaf area = length × width × 0.6345 
(Liu, 2003). 
 
 
Vegetation indices models 
 
Vegetation indices have emerged as important tools in the 
monitoring, mapping, and resources management of the Earth' 
terrestrial vegetation. They are radiometric measures of the 
amount, structure and condition of vegetation, which serve as 
useful indicators of seasonal and inter-annual variations in 
vegetation. This paper chooses four vegetation indices commonly 
used in the inversion of vegetation LAI. 

Normalized difference vegetation index (NDVI) and Ratio 
vegetation Index (RVI) are most commonly used in the inversion 
models of many physiological parameters (Rouse et al., 1974; 
Deering et al., 1975), while Modified soil-adjusted vegetation index 
(MSAVI) and Modified second triangular vegetation index (MTVI2) 
are vegetation indices constructed based fully on considerations of 
the impact of soil or other environmental background factors (Qi et 
al., 1994; Haboudane et al., 2004). 

To facilitate comparison, all vegetation indices were built using 
800 and 670 nm band spectral reflectance measurements. 
 
 
Principal component analysis 
 
PCA is a dimension reduction technique that uses correlated 
attributes, or variables, and identifies orthogonal linear 
recombination of the attributes that summarize the principal sources 
of variability in the data. A correlation matrix involving variables 
selected was used as an input for analysis in lieu of a covariance 
matrix, resulting in normalized PCA. There are as many PCs as 
variables included in the analysis. Generally, the first few 
components explain most of the total variance in the data set. 

In the present study, PCs with eigenvalues �1 were selected as 
new variables (Wang et al., 2009). Bands included in vegetation 
indices are usually limited, PCA have a better effect which can 
make use of complementary advantages among different spectral 
bands (Chaurasia and Dadhwal, 2004; Ray et al., 2006; Chen et al., 
2009). 
 
 
Back propagation neural networks 
 
Artificial neural network is a cutting-edge field that developed 
rapidly around the  world  from  the  mid  and  late  80s  of  the  20th 

century, Due to its good predictability and practicality, it has been 
widely used in various fields, especially in remote sensing image 
automatic classification and quantitative analysis (Diane et al., 
1995; Karkee et al., 2009; Li et al., 2009). As the back propagation 
(BP) neural network features parallel processing, nonlinearity, fault-
tolerance, adaptive and self-learning features, it has incomparable 
superiority in data fitting and simulation. 

In this paper, using hyperspectral reflectance as the input vector, 
NN are employed to predict the tobacco LAI from spectral 
reflectance changes. A BP neural network analysis in MATLAB 7.0 
was carried out using Neural Network Toolbox. 
 
 
RESULTS 
 
The hyperspectral vegetation index estimation of LAI  
 
Table 1 lists the regression models and verified results of 
the vegetation indices with tobacco LAI. With coefficients 
of determination (R2) and Root Mean Square Error 
(RMSE) as the evaluation indices, the best-fitting 
equation of the vegetation indices with tobacco LAI is 
found to be the exponential model, except for the index 
MTVI2, whose best regression model is linear. By 
comparison, the R2 of the regression model based on 
MTVI2 is found to be significantly higher than that of RVI. 
Inversion accuracy values of regression models built by 
other vegetation indices are located in-between. 

MTVI2 and MSAVI could remove the influence of soil 
and atmosphere noise. In addition, the measured and 
predicted data of the two vegetation indices agree very 
well with each other, thus significantly improving the 
inversion accuracy. Overall, the accuracy of the 
regression models established by the improved 
vegetation indices is slightly better than those of RVI and 
NDVI. Figure 1 shows the relationships between the 
measured tobacco LAI data and the predicted data of 
regression models built from the four vegetation indices. 
All the values for tobacco LAI inversion accuracy from 
different vegetation indices are different, but they all 
return satisfactory results. 
 
 
The PCA estimation of LAI hyperspectral data 
 
This paper uses the hyperspectral reflectance data of 16 
visible and near-infrared center wavelengths of the 
MODIS sensor within 1050 nm, to test the partial 
correlation coefficients of the 16 variables, a test value  of  
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Figure 1. Validated model for LAI estimation of vegetation indices: (a) RVI; (b) NDVI; (c) MSAVI and (d) MTVI2. 

 
 
 

Table 2. Principal components of hyperspectral reflectance from PCA. 
 

PC Eigenvalue Component loading (%) Cumulative loading (%) 
PC1 9.182 57.390 57.390 
PC2 6.131 38.320 95.710 

 
 
 

Kaiser-Meyer-Olkin (KMO) 0.797 was obtained. Thus, the 
original 16 variables are suitable for factor analysis. Data 
processing results show that the 10 wavelengths within 
412 ~ 678nm have higher loads in the first factor. The 
first factor mainly explains the information of the 10 
wavelengths, all of which are in the visible light range. As 
such, the first factor is interpreted as the visible light 
factor. The remaining six wavelengths have higher loads 
in the second factor, and similarly, the second factor can 
be interpreted as the near-infrared factor. 

As can be seen from Table 2, the two principal 
components retained 95.71% of the information of the 
original 16 wavelengths, and very little information was 
lost. Consequently, the two principal components can 
replace the original 16 variables. Using these two 
principal components to estimate the tobacco LAI, the 
results can be written as: 
 
Y= 0.407f1+0.285f2+1.166   R2 = 0.910   RMSE = 0.176,     
                                                                     (1) 

Where Y represents the LAI, and f1 and f2 are the visible 
and near-infrared factors obtained from the results of 
PCA analysis, respectively. The visible and near-infrared 
principal component factors derived from the principal 
component transform the hyperspectral reflectance data. 
132 sample points were randomly selected to establish 
the estimation model of LAI, and 30 samples were used 
to verify the model accuracy. Good results were 
achieved, as shown in formula 1 and Figure 2. The R2 of 
the estimation and verification models of LAI are 0.910 
and 0.938, respectively, and the corresponding RMSE of 
the two models are 0.176 and 0.172, respectively. 
Therefore, the visible light and near-infrared factors 
obtained from PCA analysis can reflect the changes of 
LAI very well and can make accurate estimates of LAI. 
 
 
Neural network estimation of LAI 
 
In  this  paper,  we  employed   the   BP   neural   network  



 
 
 
 

 
 
Figure 2. Relationship between measured LAI and simulated LAI 
by PCA model. 
 
 
 

 
 
Figure 3. Relationship between measured LAI and simulated 
LAI by BP-NN model. 

 
 
 
algorithm. The network has three layers: input layer, 
hidden layer, and output layer. The input layer has 16 
input variables, specifically, the 16 variables obtained 
from the spectral reflectance of visible and near-infrared 
center wavelengths of the MODIS sensor within 1050nm. 
The transfer functions of the hidden layer and output 
layers are designated as "tansig" and "purelin," 
respectively. The output layer exports LAI, the training 
function is Trainlm, the network error goal is 0.001, and 
the training iterations is 1000. Through multiple 
authentication, better LAI estimation results are obtained 
when the number of hidden layer neurons is 7. 132 
sample points  were   randomly   selected   to   train    BP  
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network, and 30 samples were used to verify the network 
training result, the results are shown in Figure 3. 

The R2 and RMSE of fitting between the measured LAI 
data and the NN simulated data were 0.889 and 0.195, 
respectively, indicating that the measured and simulated 
tobacco LAI values have good consistency. 
 
 
Comparison of the estimated LAI results from the 
three methods  
 
From the comparison between Figures 1 to 3 and Table 
3, it can be seen that the four kinds of vegetation index, 
PCA, and NN methods all achieved good results in 
estimating tobacco LAI. The determination coefficient of 
the estimation model of PCA reached 0.910, which is 
significantly higher than those of the vegetation indices 
method. The R2 of the validation models of the PCA and 
NN methods were 0.938 and 0.889, respectively, which 
are again better than those of the vegetation indices 
method. The R2 of the validation model of NDVI and RVI 
were 0.798 and 0.768, respectively. 

The RMSE of the PCA, NN, NDVI and RVI methods 
were 0.172, 0.195, 0.322 and 0.281, respectively. This 
indicates that the validation model accuracy of the PCA 
and NN methods is much better than those of the 
vegetation indices method. Compared with NDVI and 
RVI, the simulation accuracy of MSAVI and MTVI2 did 
increased, but it is still not as good as those of the PCA 
and NN methods, their inversion accuracy is simply in the 
middle level. From Figures 1 to 3, the same conclusions 
can be drawn. In Figure 1, the distribution of the points is 
dispersed, while the points in Figures 2 and 3 are 
relatively densely distributed near the 1:1 diagonal. In 
fact, the simulated LAI and measured values are more or 
less the same. Overall, the PCA and NN methods can 
obtain more stable and accurate LAI estimation results. 
 
 
DISCUSSION 
 
The measured tobacco hyperspectral and LAI data of 
different water and nitrogen treatments were analyzed 
under the conditions of the pot experiment, and the 
estimation effects of the vegetation indices, PCA, and NN 
methods were compared. The vegetation indices method 
generally uses information from only a few wavelengths, 
it is difficult to guarantee its model stability. The PCA and 
NN methods can fully exploit the hyperspectral 
information of each band to achieve complementary 
information between the various bands, thus significantly 
reducing random disturbances brought about by small 
numbers of bands. Using the hyperspectral data of many 
bands also results in a more reliable and universal 
estimation of tobacco LAI.  

The two main components transformed by PCA are 
interpreted as  the  visible  light  factor  and  near-infrared  
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Table 3. Validation models comparison of three methods. 
 

Methods R2 RMSE 
RVI 
NDVI 
MSAVI 
MTVI2 

0.768 0.322 
0.798 0.281 
0.849 0.263 
0.852 0.237 

PCA 0.938 0.172 
NN 0.889 0.195 

 
 
 
factor. These two factors include 95.71% of the 
information of hyperspectral data. The PCA method has 
an ideal effect in LAI estimation (estimate model 0.910) 
and its validation model's accuracy is significantly higher 
than those of the vegetation indices and NN methods. 
The application of neural networks in processing 
hyperspectral data is a relatively new field and remains 
exploratory at best. The input layer and hidden layer 
numbers, as well as the best combination between the 
input and hidden layers and learning rate, must be 
carefully selected because all of those will have great 
impact on the processing results of hyperspectral data. 
Its coherent predicted and measured values show its 
good potential for future applications. 

As for the band combination, at present, no specific 
rules can be followed. 

In this article, only the hyperspectral data of the MODIS 
of 16 bands which could be found before the 1050 nm 
wavelength were used, other bands have not yet been 
analyzed. With the PCA and NN methods, the effect of 
integrating the hyperspectral data of the bands after the 
1050 nm wavelength (for example, to 2500 nm or so) to 
estimate the tobacco LAI requires further study. 
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