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Accurate and highly efficient calculation of the highly excited pure OH
stretching resonances of O (!D)HCI, using a combination of methods

Wensheng Bian and Bill Poirier®
Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, Lubbock,
Texas 79409-1061

(Received 6 May 2004; accepted 15 June 2004

Accurate calculation of the energies and widths of the resonances of HOCl—an important
intermediate in the GD)HCI reactive system—poses a challenging benchmark for computational
methods. The need for very large direct product basis sets, combined with an extremely high density
of states, results in difficult convergence for iterative methods. A recent calculation of the highly
excited OH stretch mode resonances using the filter diagonalization method, for example, required
462 000 basis functions, and 180 000 iterations. In contrast, using a combination of new methods,
we are able to compute the same resonance states to higher accuracy with a basis less than half the
size, using only a few hundred iterations—although the CPU cost per iteration is substantially
greater. Similar performance enhancements are observed for calculations of the high-lying bound
states, as reported in a previous pg@deMheo. Comput. Chenz, 583(2003]. © 2004 American
Institute of Physics.[DOI: 10.1063/1.1779577

I. INTRODUCTION and Duttonet al® However, this state does not appear as a

. . . resonance untiJ=19.

It is well-known that local mode vibrations, and mode- . 5 . .

- . . In 2001, Callegarit al’ extended the previous experi-
specific features of molecules, are of great importance in . o
bond-selective chemistfy? Experimentally, the first success- me_ntal |r_1vest|gat|ons up to ther,0,0 and_ (8’030 _sta_tes,
ful example of bond-selective chemistry was observed in th(¥Vh'Ch exist as resonances dO.WMt? O.' Their mam findings
HDO molecule!~3 for which local mode overtone vibration 2r€: (1) the HOCI-OH-+Cl dissociation dynamics are not
of the OH stretch mode was realized. Mode-specific feature@d€duately described by statistical models—even for the
are also found in HOCI, or hypochlorous acid, an important.8:0,0 state, which is around 5000 C,rh above the dissocia-
intermediate in the GD)HCI reactive system. Recent ex- tion threshold;(?) the average rate increases by about two
perimental studies of th# andK state-resolved dissociation Orders of magnitude fron,0,0 to (7,0,0 and another two
of HOCI, excited to high OH overtones, reveal highly state-0rders of magnitude fron7,0,0 to (8,0,0; (3) the fluctua-
specific and mode-specific properties for this molecule. It idions of the resonance widths with rotational quantum num-
found that the dissociation rates deviate very substantiallferJ. for (7,0,0, are considerably less pronounced than for
from the predictions of statistical theories such as RRKM, (6,0,0, whereas a clear peak &t 15 is observed fof8,0,0.
and in particular, the resonance states with many quanta in  The main purpose of this paper is to present an accurate
the OH stretch mode are particularly long-lived. Despite theand highly efficient calculation of the highly excited pure
small size of the molecule, this behavior is evidently due toOH stretching resonance states of HOCI, with respect to both
slow intramolecular vibrational redistributioflVR) in  energies and width&elated to lifetimes, decay rates, etc.
HOCI, owing to weak intramolecular coupling between theBoth the vibrational §=0) and rovibrational {>0) states
OH stretch mode and the other two degrees of freedomare considered. This kind of calculation is quite challenging,
when there is little to no excitation of the latter modes. since the vibrational8,0,0 state lies around 24 200 crh

Following precedertt,we denote the zeroth-order vibra- above the ground stat€,0,0, and there are around 800
tional states in HOCI asify,v,,v3), where ;) is associ- vibrational bound states lying below the GHCI dissocia-
ated with the ©—H stretch mode, it,) with the H—O—ClI tion threshold. Moreover, close to and above the dissociation
bend, and {3) with the O—CI stretch. The unimolecular threshold, the density of statéis a numerical sengds ex-
dissociation dynamics of HOCI in the highly excited OH tremely high, and increases quickly with increasing energy.
stretching states, i.e.»(,0,0), have recently been investi- |terative method$!~?°such as are used here, are notoriously
gated by Rizzo's group’ and Sinha's groupy'® using  hard to converge at high energies, or when the density of
overtone-overtone double resonance spectroscopy. The teckates is otherwise larg8-%? Consequently, the HOCI sys-
nique enabled these groups to selectively deposit vibrationgkm serves as a useful benchmark for testing iterative meth-
quanta into the OH stretch coordinate. The decay rate of thgds under adverse conditions.
rovibrational (6,0, resonance states, for many differeht On the other hand, the particular iterative scheme used in
andK values, were carefully studied by both Callegatrel”  this paper is by design very well suited to this kind of state-

specific and mode-specific investigation. Regarding the
dElectronic mail: Bill.Poirier@ttu.edu former, the preconditioned inexact spectral transfoRiST)
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techniqué'~3® energetically selects out states in small previously performed on SPB$8;% SPB99% and Cor-
groups, or even individually. Optimal separable basis plusected SPB99?°9%45°Mussaet al®® and Skokovet al®?
Wyatt (OSBW) preconditioning®?2:30343 drastically re- performed some calculations for selected vibrational reso-
duces the number of iterations required. To capture bondrance states of HOGRefs. 62 and 6Busing SPB98. Weiss
selective features of particular vibrational modes, the phaset al*® performed large-scale dynamics calculations to inves-
space optimized discrete variable representdtich (PSO  tigate the unimolecular dissociation of the OH stretching
DVR) is used. Finally, complex absorbing potenti€@APS states of HOCI, using the FD method and the Corrected
deal with the continuum aspects of the resonancésPB99 PES. Good agreement with the experimental reso-
calculation®®4° nance widths was obtained, and the main experimental

Besides displaying mode-specificity and state-specificitypbservationé,i.e., the tremendous increase of the dissocia-
HOCI is of great importance to the chemistry of the strato-tion rate fromv,=6 to 8 by about four orders of magnitude,
sphere and upper troposphété? and the reaction products were quantitatively reproduced. Zeet al>® calculated the
OH, CI, and OCI, resulting from HOCI photodissociation, vibrational resonance states of HOCI for the sixth and sev-
are implicated in catalytic cycles participating in ozoneenth overtones of the OH stretch, using a standzfcap-
depletion processes. Consequently, HOCI has attracted grow¥roach on the Corrected SPB99 PES.

ing attention from both theorists and experimentafidts.> Our group has also performed extensive dynamical cal-
On the experimental side, there have been a number of stugulations for the vibrational bound states of HOCI, using the
ies on the spectroscopy’®and dissociatiotr*° of HOCI. Corrected SPB99 PES. This was the focus of a previous

On the theoretical front, severab initio potential en- pape?6—_referred to here as “Paper I.” In the present paper,
ergy surfacefPES$ for the O¢D)HCI (or HOCI) system  calculations are performed for th&,0,0 and(8,0,0 reso-
have been constructed, and several detailed dynamical calcoance states of HOCI, using the same Corrected SPB99 PES.
lations have been performed on the available PESs. As HOd3oth vibrational and rovibrational states are considered, un-
is an important intermediate in the &) +HCI reaction, a  like the previous gffort, for which only viprational bound
distinction is made between two kinds of PESs for thestates were considered. The methodologies employed are
O(*D)HCI system—one designed for &§) + HCl reactive ~ Similar, except that the resonance calculation requires the use
scattering studies, and the other for HOEICIO) spectro- Of CAPs(Secs. II1B and I1IB3. The present work also dif-
Scopic and resonance studies. Of course, there are PE@S from the pl’eViOUS inVeStigation in that each calculation
which claim to be suitable for both kinds of investigation. As Performed here is designed to compute the energy and width
for the reactive scattering PE&3°" the first was pub- Of asingleresonance state only.
lished in 1984 by Schinket al*®* These PESs are for the

ground, or £A’ electronic state. Recently, globab initio  !l- THEORETICAL CONSIDERATIONS
PESs for the two excited electronic stateSA1and 2A’, A Phase space optimization
have been constructed by Naneual® and physical considerations

The first PES of near-spectroscopic accuracy in the
HOCI well region was constructed by Skokov, Peterson, an . N ;
Bowman in 1%98“5 which we refer to gs “SPB98.” SPB98 is (aDVR) treatment is  the ‘variational basis repre-

. ; . ' . sentation”®”~" (VBR)—i.e., the eigenstates of some
a highly accurate semiglobal PES, computed using thé o ; N oo
MRCI+ Q/CBS method; a year later, based upon SPB98, thatrongly separable approximate Hamiltonidg, Wh'ACh ISa
same three authors constructed a more glabainitio PES ~ sum  of - one-dimensional(1D) - Hamiltonians, H=Ty
which also correctly describes the HCIO isorffeFor con-  + Vi(8). The potential-optimizedPO) DVR approach™
venience, this PES is referred to as SPB99. To further imenables one to tailor th¥,(qy) to the particular system of
prove the accuracy of SPB99, an adjustment was appliedterest, thus reducing the overall basis side,required to
using a perturbative inversion procedure to “exactly” repro-achieve a given level of accuracy in the computation—
duce the 22 known experimental bound vibrational energy?!though the method does not specify how the effective po-
levels, and the rotational constants for nine low-lying statestentials,Vi(dx), should be chosen, so as to minimige
for HO®CI (J=0).*” This corrected PES is the best avail- Indeed, the standard choice of taking 1D “slices” of the
able for the purpose of spectroscopic and resonance studi€ES through the equilibrium geometry can lead to disas-
of HOCI: we refer to it as “Corrected SPB99.” trously inefficient results, as discussed in Paper I. It is not the

Recently, Weis®t al5®® have also published two high- PO DVR ideaper sethat is flawed; rather, it is the way that
quality semiglobakab initio PESs, which are well suited to this is implemented via PES slices. To make headway, a
the study of HOCI spectroscopy and dissociation dynamicsTOre rigorous approach is required—one which derives the
The ab initio level of these PESs is comparable to that of€fféctive potentials using a trugptimizationprocedure. The

SPB98 and SPB99, but they do not reproduce the experimer>C DVR method achieves the desired goal, using a simple
tally known vibrational energies as well. Weiesal®° also glassmal phase space picture that gives rise to nearly optimal
performed quantum mechanical calculations of the HOCI vi-H ('s.%07%

brational bound states on the Ref. 60 PES, using the filter In previous PSO DVR implementations, the “optimal”
diagonalization(FD) method?>~2% These authors provide a H, was defined using the variational principfeln practice,
detailed analysis of the vibrational states. however, this is not the best approach, because it weights the

Some detailed vibrational dynamical studies have beehighest and lowest computed eigenvalues equally. In Paper |,

The starting point of any discrete variable representation
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a new optimization criterion was proposed that better reflectextent, whereas finite matrix methods necessarily extend
the actual numerical situation. The optintdl, is now de-  only over a finite region of configuration space. Sufficiently
fined to be that which minimizes the value Mfrequired to  far from the interaction region, any given resonance behaves
compute all eigenstates 6F below some maximum energy like a plane wave, suggesting that finite truncation of the
of interest,E . The optimal classical solutions &fe configuration space grid should in principle be possible. In
- practice, however, any naive implementation of this idea

Hi @) =MinH (G101 lg om0 @ gives rise to reflections off of the implicit hard wall at the
i.e., the minimum oH(q,,p;....) with respect to all but the grid edge, which then propagate unphysically back into the
kth phase space coordinates. interaction region.

We now apply Eq(1) to the three-atom vibrational prob- On the other hand, the above idea can be made to work,
lem in Jacobi coordinatest (R, y), wherer is the separation  provided that the original Hamiltonian is modified so as to
between two of the atom® is the separation between the giye rise to a complex-symmetric matrix representation. One
diatom center of mass and the third atom, gnié the angle  yha computes resonance energies and widths directly, as the
between the two Jacobi vectors. The results for the rad'afleal and imaginary parts of the matrix eigenvalues. Methods
degrees of freedom are shown t’be . . . e

that operate in this fashion are known as “direct
methods’2’4"®The two most important direct methods for
computing resonances are the complex scaling method,
) (2) and the CAP methot:** We make use of the latter, for
Hr(R,pr) = Eerin[V(r,R,y)]r ' which the or|g|.nal Hamiltonian is modified via the addition
2m 7 of the CAP, —ie. The effect of the CAP is to damp out
The y situation is complicated; in the HOCI case, however, a0utgoing flux, so that by the time it reaches the edge of the
nearly optimal substitute 8 grid, there is very little probability left to be reflected back.
This simple explanation is presented in time-dependent lan-

2

p .
H.(r,p,)= ﬁ+m|n[V(r,R,y)]R'7,

AP mi
H,(7:0y) = AR, FMInV(r,R, y)]r v, © guage, but is easily “translated” to the present time-

where A is some effective value for[1/(2ur?) independent context.

+1/(2mR¥)]. For instance, equilibrium values forand R Note that in principle, issues of numerical instability

might be used, although this is rarely the best choice excephay arise when iterative algorithms are applied to complex-
at very low energies. A better approa(ﬁd%gted hereis to symmetric matrices. In the particular case of the PIST
use the phase space averaged valuq\fé?' _ method, the related issue of inexactness also comes into play.
AS drI]SCUSSGd in Paper |, ':che mh'n'mil potent:gl ENeIG)n practice, however, the CAP contribution is always so
?;narggce;f gg?gfg:?gé?;) Itsheraqtg z;t'vc\)”r: Sﬁ(;/reer?h;mpgtzm.gpall that the matrices involved are nearly real-symmetric,
veats. S situation whe P '3hd the convergence is anticipated to be numerically stable.
V(Q4,...) hasmore than one local minimum with respect to __, . C o . .
This expectation is certainly borne out for the present inves-

the q; ., for fixed gi. In general, the optimal solution of . ™. Sec. V- detailed | di .
Eq. (1) is with respect to thglobal minimum. However, this tigation ( .ec. V) a morg etal e- » genera |sgu53|on may
be found in Ref. 32, particularly in the Appendix.

may hop discontinuously from one local minimum to an-

other, as the coordinatg, is varied, which will result in a In any event, CAP methods have some important advan-
kink in the effectiveV,(qy) curve, giving rise to less effi- tages:(1) there is no need to impose scattering boundary
cient DVRs’3 conditions on the solutiong?) it is usually straightforward

On the other hand, PIST and other spectral window apto determine energies and widths, even for very closely
proaches are designed to compute only one stata small  spaced and/or broad resonances. The latter property holds by
number of statgsat a time. In keeping with this philosophy, virtue of the fact that different resonances correspond to dis-
a better approach is to restrict the minimization of the potentinct eigenvalues of the modified Hamiltonian matrix, al-
tial over just that region of configuration space which is rel-though it should be stated that many nonresonance eigenval-
evant for the statg) in question. The resultant effective po- yes are also present. The primary disadvantage of CAPs is
tentials will thus give rise to basis sets that are tailor-madepat they substantially increase the size of the basis or DVR
for the desireq statg). In the pres'erlt HOCI context, this grid needed to perform the calculation, along the direction of
amounts to using the relevalotal minimum to generate the e gissociation coordinateR( in the present cageThis is

Vi{gy) curve—even forgy regions where this is no longer because(R) may only be nonzero outside of the interaction
the global minimum. This procedure has the added advan- . . . : .

. region(in order not to interfere substantially with the correct
tage that the resultant,(q,) curves are free of kinks.

dynamicg, and moreover, requires a certain number of

wavelengths over which to damp the outgoing wave.

B. Complex absorbing potentials There has therefore been a considerable effort in recent
The computation of resonance energies, and especiallygars to develop optimized CAPs, which require a minimal

widths, poses certain special difficulties if finite basis repreamount of space over which to operate. The present work

sentations are used. This has to do with the fact that resasses an optimal 14th-order polynomial compkR), with

nances exist in the continuum, and are technically of infiniteno linear term, as follow$®"®
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e( R)=AEcar[2F(R)+iF(R)2], solver iterations per Lanczos iteration. The linear solver al-
gorithm utilized is QMRE! with an (inexac) stopping
F(R)zf( R—Ry ) ) parametett of 3.0< 1073, The value ofL is determined by
Rmax— Ro/’ the preconditioner used, in this case OSBW.

Although HOCI exhibits a range of different resonance
behaviors, for purposes of the present paper, we are inter-
—58.4754@°+ 96.364 475— 134.785 0%’ ested solely in the OH CI dissociation resonances corre-
sponding to high excitations in the OH stretch. This applica-
tion serves as an ideal test bed for the method used here,

f(z)=4.7220%%—12.947 23°+31.021 5@¢*

+164.065 66°— 169.256 33°+ 148.346 371

—105.659 65114+ 59.971 0612— 23.919 2§13 which as compared with other methods, is anticipated to be
most efficient when small numbers of highly excited, mode-
+6.018634 specific states are desired. The present application has just

In Eq. (4) above E,,is an estimate for the resonance energythree such vibrational resonance€Z,0,0, (8,0,0, and
along the dissociation coordinate, aAd Ry, and R, are (9,0,0. The first two WI!| serve as .the focus of the present
convergence parameters. It is understood #&) is non- work. The (9,0,0 case is not considered here, because the

zero only in the rang®,<R=<R.4,. PES used is not expected to be valid in this energy regime
(Sec. IVA).
IIl. NUMERICAL DETAILS For each of the two V|bra_t|onal resonances considered, a
_ completely separate calculation was performed. Thus, we are
A. Overview applying the “one-at-a-time” version of PISTPaper | and

Resonance calculations were performed for®f@D us- Ref. 32 for the first time. In addition to the two vibrational
ing the 'A’ Corrected SPB99 PES.The Hamiltonian is '€Sonance states, separate calculations were also conducted
represented in Jacobi coordinatesR, ), as per Sec. [1A, for the corresponding rovibrational resonances with0.
where r is the OH stretch, andy=0 describes linear For simplicity, and to enable comparisons with experiment
CIOH. In atomic units, the masses are as@nd previous calculations, only tike=0 case is considered,
follows: my,=1837.1526327; mp=29156.947092; mg,  [of variousJ values up taJ=20.
=63744.321041.

The Hamiltonian matriXd was constructed from a PSO B. Potentials
DVR basis, as described in Secs. Il A and IlIB1. The coor-
dinate ranges used to generate the VBR are as follows: - Effective potentials for J =0

1.0<r<6.0 bohr, For the most part, minimum effective potentials were
used, as per Sec. Il A. However, the HOCI PES topography
2.0<R<14.0 bohr, (5 is rather complex, with a second local minimum for HCIO

(see Paper)] and various other features that complicate this
basic strategy. Fov,(r), the global minimum oV(r,R,y)
Some calculations with coordinate ranges other than thoseith respect toR and y (at fixedr), jumps discontinuously
reported above were also considered, but Ggwas found from the HOCI to the HCIO local minimum, at arourrd
necessary to obtain the high level of convergence reported i 3.15 bohr. The latter is not important for the resonance
Sec. IV A. The coordinate ranges forand y are identical to  states considered here; consequently, we adopt the strategy
those of the most accurate bound state calculations peof Sec. Il A, and continue to follow the HOCI local minimum
formed in Paper I; howeveR,,,=14.0 is somewhat larger, up tor,,,=6.0 bohr. This yields the smooth, solid curve of

Oo<sy=<m.

owing to the presence of the CAP. Fig. 1(a), which is used in all calculations performed here,
Eigenvalues ofH were computed using the PIST and in Paper I.
method, together with OSBW preconditioniri§ec. II1 C. For Vi(R), there are three local minima; one for HOCI,

PIST is a nested iterative technique for efficiently computingone for HCIO, and another for linear CIHO, which is the

all eigenstates within a given spectral window, centered omglobal minimum for sufficiently largk. The HCIO mini-

the energ)E. In effect, PIST applies the Lanczos algorifffm mum is once again ignore@ven if it were included, there

to the matrix €l—H) %, rather than toH itself, with the  would be just a slight distortion of thég(R) curve at inter-

result that only a small number of Lanczos iteratidvis,are ~ mediate R valugs However, there is a small kink Mg(R)

required. TypicallyM~3Xthe number of computed eigen- at R=6.65 bohr, where the HOCI and linear CIHO curves

values; however, the ratio for the number of computsb-  join together. At the crossing point, the potential value is

nancestates is somewhat higher, as nonresonance eigenvalk(R)=0.090 399 hartree, whereas the two geometries are

ues are also computéd. (r=1.836y=1.570) and (=1.838,=3.142), respec-
For all of the calculations performed here, the Lanczogively. The kink is barely perceptible in Fig(ld), and does

stopping criterion used is convergence of the desired resaiot appear to cause any numerical difficulties. This potential

nance energandwidth to 10 # cm™? or better. Each Lanc- is the same as that used in Paper I, except that it extends out

zos iteration is itself implemented via an iterative linearto R=14.0 bohrs rather thaR=12.0 bohrs.

solver, so that the total number of matrix-vector prodults, For H,, we use Eq.(3), as justified in Paper I. The

is aroundKk =ML, whereL is the average number of linear constantA was obtained from a phase space average of the
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(¥
G

2. Effective potentials for J >0

by
(=3

Note that, strictly speaking, the above analysis applies
only to the vibrational resonance calculations. For ihe0
case, the true potentid¥(r,R, y), should be replaced with a
J-dependent “effective” potentialin the sense of angular
momentun, V’(r,R,y).882-84Accordingly, the 1D effec-
tive potentials that results from Eq®) and(3) should bel
dependent. This is, in principle, very beneficial, from the
standpoint of the present one-at-a-time computational phi-
losophy, in that each of th&>0 resonances would be com-
puted using its own customized basis set.

On the other hand, th&dependence turns out to be very
slight, over theJ values considered here. UsiMJ(r,R, )
as defined in Ref. 82, variousdependent curves were com-
puted, as presented in Figgalt-1(c). From the figures, it is
clear that apart from an immaterial energy shift in the most
relevant regions of configuration space, the curves are all
very similar; forJ<20 in particular, the deviations are very
slight indeed. Accordingly, th@=0 effective potentials and
basis sets were also utilized for ai-0 calculations.

—_
(¥

—
(=1
i LR RN LR RN RN

=3
brs

gd
Potential V° (r) (hartrees)

e
[=1
S

Potential V'o(R)(hartrees)

3. Complex absorbing potentials

b

In keeping with the philosophy of the present approach,
the CAPs for the7,0,0 and (8,0,0 calculations were con-
verged separately. The energy valuesEgy, were obtained
as the differences between ttepproximate resonance en-
ergies, and the OH Cl dissociation energy—where the latter
FIG. 1. Effective potentials for the HECI system in Jacobi coordinates IS defme_d afs the_threShOId for_dISSOCIatlon Into G)H(O)
(Rir.7), and atomic unitsta) V2(r); (b) VA(R); (©) V(). Differentval- T Cl- This gives rise to respectivic,p values of 0.011108
ues ofJ yield different potentials, as indicated in the legend. and 0.022 254 hartree.

Note that this presumes that all available energy is in the
dissociation coordinate, which is of course incorrect, owing
to the fact that the OH stretch is highly excited. This is

. S ag . accounted for by converging the calculation with respect to
classical Hamﬂtomaﬁ. T,h's .Ied to the res.ul-t A the strength paramated [Eq. (4)]. It is well-known that
=0.000085 967 33'_” atomic unity. Although the_mlnlmal unless extremely high accuracy is desired, one may ¥ary
Vil 7), CUrve 1s str.alghtfor'ward to obtam—espemally Fhe !0- by one or two orders of magnitude, without substantially
cal minimum version, which would automatically avoid dis- .j,5n4ing the computed resonance eigenvalues, if all other
sociation Conflgqratlon$5ec. .”A)__We have opted for an parameters are converged. In fact, we conducted several con-
even more efficient customization &f,(y), based upon o qence tests with values between 0.2 and 3.0, and found

practical cons_iderations._ For the present resonance calculﬁ,ie variation to be substantially less than the desired accu-
tions, we are interested in the{(,0,0) states, for which the racy. Accordingly, the valu\=1.0 was used in the final

energy in the HOCI bending mode is very small. Conse-|culations.

quently, th de system does Ir']_?:' reacrll tl)arg(;?/aluels (7?2'4 Convergence tests were also applied for the remaining
corresponds o a very sma Cl bend angle, whereas two parametersRy and Ry, Qiving rise to the final con-

the equilibr.ium value for the_Iattgr is 102°). verged values used heiRy=11.0 andR,,,,=14.0. Note that
According to the discussion in Sec. Il A, we construct anNR is a bit less than th&,,,=12.0 value needed for the
max .

improvedV,(y) customized for calculitions of the'{,0.0)  pound state calculations of Paper I, as is expected for the
states, in the following way. For9vy=< /2, the minimal present linear-free polynomial CAP.

potential value is used. Ay= /2, the minimal potential
value is 0.00635304 hartree, obtained foR C. Optimal ble basis plus Wvatt ditioni
—3.267 36 bohrs and=1.82998 bohrs. These radial values —* ~Prmal separable basis pius ¥Wyall preconditioning

are then used to generate a “slice” potential Yoy(y) in the OSBW preconditioning is employed to reduce the num-
m/2<ys<m range—i.e., V,(y)=V(1.82998,3.267 3. ber of QMR iterationsL, required per Lanczos iteration,
The result is presented in Fig(cl, and is seen to be smooth Since H and the inverse preconditioner matrix are both
in the vicinity of the join aty= /2. In any event, the modi- sparse, the CPU cost of each QMR iteration matrix-vector
fied V,(y) so obtained was found to be much more efficientproduct is small, although higher than it would be for a non-
for the resonance calculations performed here than was thereconditioned calculation. In any event, OSBW was previ-
unmodified potential. ously shown to reducé& by orders of magnitude in high-

Potential V* (y)(hartrees)
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TABLE I. PIST/OSBW parameters used in our calculations of the*¥@Dresonances. The inexact QMR
stopping parameter isX310~2; the Lanczos stopping criterion is convergence of the desired resofemengy

and width to 10 4 cm™ ! or better. State label; refers to OH stretch mode. Basis set parameters are in terms
of the three Jacobi coordinatéd r, and y; Wyatt parameters: window half-widthDY); block size V).
Column VIII: number of Lanczos iterationdW). Last two columns: number of QMR iterations, averager
Lanczos iterationand total.

Window Basis set parameters Wyatt parameters Iterations
. . QMR
Energy Radial Radial Angular D Lanczos

Label (hartreey Ng \§ N, (hartrees W M Average Total
(7,00 0.099 002 140 30 50 0.075 17 549 14 13.14 184
(8,000 0.110142 150 30 50 0.070 20341 14 23.07 323
Weisset al.

220 30 70 180 000

energy calculatior$*2—including that of the bound states IV. RESULTS AND DISCUSSION
of HOCI near the dissociation threshdleaper }—where all
other standard preconditioners fHi?2303380ne goal of
the present work is thus to test the effectiveness of the Separate PIST calculations were performed for the two
OSBW preconditioner for the even more extreme task off =0 resonance states of interest. The central enefgies
computing HOCI resonances. the two PIST resonance windows are 0.099 002 hartrees for

The first step in the construction of the OSB precondi-the (7,0,0 state, and 0.110 142 hartree for &&0,0 state
tioner is to partition the degrees of freedom into “inner” (Table I, Column I). Energies are relative to th@,0,0
(fast and “outer” (slow) categories. For technical reasonys, ground state for J=0, which has the energy of
must be an outer coordinate. Whereas previous implement2865.317 cm* with respect to the classical minimum. For
tions have tended to use bathandR as inner coordinates, each calculation, only @ingle resonance state is desired.
for the HOCI system, it is better to treRtas the only inner Note that since we do not know the resonance energies
coordinate(Paper J. Accordingly, all calculations reported priori, the central energieE do not correspond exactly to
here useR as the sole inner coordinate, and botandy as  the desired resonance energies, but are merely estimates.
outer coordinates. Using this partitioning scheme, the bottle€Consequently, a few additional nonresonance eigenvalues,
neck step of each QMR iteration scalesNﬁ\lfNi, where  which are energetically near the desired resonance, are also
Ng is the 1D PSO VBR basis size f&, etc. computed with each calculation.

The OSB preconditioner is greatly improved by combin- A variety of test calculations were performed to ensure
ing it with a scheme due to Wyatt,whereby coupling in the the convergence of the computed results. First, we performed
vicinity of the desired energf is incorporated explicitly calculations using different ranges f& andr than those
into the preconditioner. The coupling manifests as a diagonaieported in Eq.(5). We found that an extended range is
block of matrix elements, which we term a “Wyatt block.” very important for the convergence of states with high over-
The number of iterationd decreases monotonicaliiand  tones in the OH stretching mode. In particular, these calcu-
arbitrarily) with the size of the Wyatt block, which we denote lations reveal that the full range X0 <6.0 is absolutely
W. Ideally, W is small compared to the total basis sipé, necessary for achieving sub-wave-number accuracy; calcula-
=N;NgN,,. In such cases, the overhead associated with th#ons usingr ,=3.5 Or I'=4.5 lead to computed reso-
use of Wyatt preconditioning is negligible compared to thenance energies that are around 5¢noo high. This is sig-
total CPU cost. nificant for Sec. IV C. In addition to the above parameters,

This was true of all previous OSBW applications, for and those already described in Sec. Ill, we also va(sepa-
which L was reduced to around three, regardless of the marately for each resonance statbe basis truncation param-
trix size, energy, or density of stat¥s**®thereby demon- etersNg, N,, andN,,, as well as the Wyatt window half-
stratingideal scaling>?%(i.e., CPU cost per eigenvalue is width parameteD (which determines\®). The converged
independent of spectral locationFor the highest energy parameters for each resonance window are presented in
bound state calculations of Paper |, however, we encounteretable |.

a case where quite large&/ values were required. In any To demonstrate the precision of the computed resonance
event, such eventualities require that an additioialterm  energies and widths, we present some of the results for dif-
be added to the CPU cost per iteration. A one-time LU deferent basis sizes in Table Il. The table indicates that the
composition of the Wyatt block, requiring//3 operations, (7,0,0 resonance energies are converged to about 0.1 cm
must also be considered. For larg¢ this can contribute whereas the resonance widths are converged to about
significantly to the total CPU cost; the appropriate formula is0.0003 cm . For the(8,0,0 resonance calculation, the con-
thus vergence is not as high; the estimated errors are 0.2 and

0.3 cmi ! for the computed energy and width, respectively.

No. of ops=K(NgNFN3+W?)+W?/3. (6) Our J=0 calculational results fof7,0,0 and (8,0,0,

A. J=0 calculation and convergence



4473

J. Chem. Phys., Vol. 121, No. 10, 8 September 2004 OH stretching resonances of O(* D)HCI

TABLE 1. Comparison of the energieE and widthsI" for the vibrational ¢,0,0) resonances of HECI,
computed using different basis sets. The inexact QMR stopping parametzrli8 8; the Lanczos stopping
criterion is convergence of the desired resonafereergy and widthto 1074 cm ! or better. State labet;
refers to OH stretch mode. Basis set parameters are in terms of the three Jacobi codrjinatsd y.

Window Basis set parameters Resonance energies and widths
Energy Radial Radial Angular E r

Label (hartree$ Ng N, N, (cm™1) (cm™1)

(7,0,0 0.099 002 140 30 50 21725.56 2.688)
160 30 50 21725.56 2.68(3)
160 30 60 21725.56 2.46(3)
140 35 50 21725.64 2.53(3)

(8,0,0 0.110142 150 30 50 24174.43 2.39
140 30 50 24174.48 2.36
140 35 50 24 174.49 2.42
140 30 60 24 174.60 2.66
160 35 50 24174.35 2.36

together with results from experiménand two previous differences between the three calculations are small, but in
calculations’®*° are presented in Table Ilall energies are some casefe.g., the(7,0,0 resonance widthquite signifi-
relative to the zero point energyAll three of the calcula- cant relevant to the errors estimated from Table II; accord-
tions were performed on the same Corrected SPB994PES,ingly, we believe our calculations to be slightly more accu-
presumably using the same masses, so the results shouldrige.
principle agree exactly. However, the three calculations used Good agreement between the theoretical and experimen-
very different numerical schemes. Weistsal:*® applied the  tal resonance widths is obtained, and the primary experimen-
filter diagonalization method in connection with a sparsetg| observation—i.e., the tremendous increase of the disso-
DVR matrix representation, and a pure imaginary CAP, agiation rate fromy;=7 to 8 by more than two orders of
described in Ref. 86; Zoet al> used a customized” basis  magnitude—is quantitatively reproduced. This stark behavior
from truncation recoupling, and a cubic pure imaginary CAPhas been attributed to a combination of two features of the
From Table I, we do indeed observe very good agreejoc| systent' (1) weak coupling between the OH stretch
ment among the three different calculations, especially fopng other vibrational modeg2) large disparity in the mode
the resonance energies. For both {A€,0 and the(8,0,0 frequencies.
resonances, the computed energies agree to the level of ac- The resonance energies obtained from the calculations
curacy reported in Refs. 49 and 50. As for the resonancge in reasonably good agreement with the experimental
widths, the(7,0,0 value computed here lies right in the ones, although they are systematically higher. For(The,0
middle (in a geometric sen$édetween the Weisst al. and resonance, the computed energies are around I7 bigher
Zou et al. values—although the range of the computed,[han the experimental one, whereas 80,0, they are
widths is qui'te large, and well outside our converged oL, out 71 et higher. These discrepancies—and especially,
bars. There is better agreement among the computed W'dﬂfﬁe trend with increasing energy—are in stark contrast to

Iﬁr tlhe (8,(1,0oresonan|(t:e, for Whic.?hotl;]r gong v;/ic:th is those of the bound vibrational states not far below the disso-
e largest. Our result agrees with that o =L 19 ciation limit, such ag6,0,0, (4,4,2, (5,2,1), for which the

within th_e error bars, put does not agree with that_of ZOucomputed energy values are in almost complete agreement
et al,, which is substantially smaller. Generally speaking, theWith experimental ond&® (i.e., to within 0.1 cm?). Of

course, the Corrected SPB99 PES was designed to match the
TABLE IIl. Comparison between present calculation and literature values bound states only, and so a substantially larger discrepancy is
for the energiesE and widthsI" of the vibrational ¢,,0,0) resonances of expected for the resonances. Nevertheless, the magnitudes
HOCl. and trend of the errors suggest there may be more to the
story.

We offer the following possible explanation: As dis-

Literature results Present calculations

State label E (cm™) T (cm®)  E(cm ) I (em™) cussed in Paper |, we discovered a small flaw in the code
(7,0,0 217259 4.98(-4) 2172556:0.08 2.68 0.28(—3) used to generate the Corrected SPB®&f. 47 values,
21728 0.01 whereby the actual potential minimum is 5.317 ciower
217092 001 than what had been presumed previo#Iyhis discrepancy
(800 241733 1.9 2417443017  2.3%:0.27

originates from an unexpected small negative contribution of
tails of Gaussians used in the correction potential. In any
event, given that the perturbative inversion correction still

24172 0.6
24102.1 1-3

#The energies are measured with respedt6,0 andJ=0.

From Ref. 49.
‘From Ref. 50.
YExperimental results: from Ref. 5.

reproduces selected bound states to much higher accuracy
than 5cm?, this discrepancy may have adversely affected
the determination of parameter values obtained in the correc-
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tion procedure. In particular, in order to accurately reproducdABLE IV. Comparison between present calculation and literature values
the 22 known vibrational energies up to jUSt below the dis_(Weisset al) for the energie€ and widthsI” of the rovibrational(7,0,0

. . .. . . resonances od>0, K=0 HO®CI, for various values ofl. All quantities
sociation limit, the original PESbefore correctionmight 5. c'in ot
have been artificially distorted upwards in the correction pro
cess. Since this process did not make use of the resonanctngular momentum

states, we would expect the distortion of the PES to lead to

Present calculations Literature results

J E r E r

increasingly large overestimates for the computed resonance
i the energy increases. Thus, the comR&6) 0 2172556 2.68(3) 217259  4.98( 4)
energies, as ay - , 5 2174059 9.47¢4) 217410 1.3¢3)
resonance energy could be too high by hundreds of wave- 10 21780.66 1.79¢3) 21781.3 12(3)
numbers, although experimental measurements for the 13 21816.68 7.54¢3) 218175 3.7¢3)
(9,0,0 resonance are currently unavailable. 14 ;1 230-22 2-2665) 21 232-2 3-2('2)
For our previous bound state calculatioifaper J, we 12 21 82?'58 ;leggzg 21 822'7 l'ggzg
showed that near iQeaIity is achieved for the -Iow energy cal- 17 2187835 5.812) 21879.7 3.0(2)
culations; for the highest bound state energies, even a very 18 21897.21 2.75(2) 21897.6 8.1¢2)
large Wyatt block W=14361) is only able to reduce the 19 21916.11 1.64¢2) 219176 85(2)
20 21936.07 1.22¢2) 219375 3.4(2)

average number of QMR iterations per Lanczos iteration to
aroundL~30. This can be attributed to a sudden increase in
spectral density near the dissociation threshold, and to the
fact that when iterative methods start to “fai{lin the sense
of requiring many iterations performance deteriorates
quickly. The(7,0,0 and(8,0,0 states of the present work are
at even higher energies afidumerical density of states. In
this and all cases, the “rule” for determining the appropriateg, ;>0 calculation for (7,0,0) and (8,0,0) resonances
Wyatt block size is simply to choosel for which the total

CPU time required is reasonably small. This is not expected Ve also performed a series of calculations for(e,0
to be difficult, as previous experier‘?‘&éz’%suggests a very and (8,0,0 rovibrational resonance states fbr 0, for vari-

tions, as the Krylov subspace does not yet overlap much with
the numerically problematic eigenstates near

slight dependence ob in the vicinity of the optimal value.

For the calculations performed here, we did not expen
undue effort trying to locate the optimBl; we merely tried
a few different values before settling on those presented i
Table I. It is clear, however, that we are in a laiyeregime
for which the computational bottleneck is the linear algebr
manipulations associated with the Wyatt block itself, which
implies loss of ideal scaling. For th&,0,0 calculation, the
valueW=17 549 was used, which reduces the average nu
ber of QMR iterations to just ~13. An even larger Wyatt
block (W=20341) was used fai8,0,0, for which the aver-
age number of QMR iterations was orlly=23. Despite the
fact that such larg®V values increase the CPU costs substan
tially [as per the Eq(6) formulal, the current calculation is
still remarkably efficient. Moreover, it is reassuring to ob-
serve thatw andL are comparable to those of the highest
energy bound state calculation from Papef=14 361, L
=29), despite being around 5000 chabove the dissocia-
tion threshold.

As for the number of Lanczos iterationd, we found
M =14 to be sufficient for both th€7,0,0 and(8,0,0 calcu-
lations. This is reasonable for a resonance calculdfion,

ous values 0fJ<20. In these calculations, the body-fixed

dangular momentum projection quantum number,(along

the Jacobi vectoﬁ) is chosen to be zero, and Coriolis cou-
Rling is ignored. This enables comparisons with the previous
calculations, Ref. 49, where a justification for this approxi-

gmation is also provided. One important difference is that the

present calculations utilized the adiabatic rotation
approximatiofi*®3 for determining theJ>0 Hamiltonians,

mr_ather than the more conventional centrifugal suddgs)

approximation used in Ref. 49. @t al® showed, in a lim-

ited way, that the former approximation should be more gen-
eral and more accurate. The adiabatic rotation approximation
was also used to obtain th&'(r,R,y) potential function of

Sec. llIB2.

Since theV’(r,R,y) depend on the value al, one
should in principle perform detailed convergence tests for
each value of] separately. On the other hand, thelepen-
dence is rather slight, and in additiony’(r,R,y)
—V(r,R,v) is primarily positive. This suggests that the con-
vergedJ=0 basis should suffice fodJ>0 calculations to
comparable energié4. Accordingly, for a given ¢,0,0)
resonance state, the same basis set was used fbrvalues
(Table I, although some additional convergence testing for

though a bit larger than what was probably necessary. In any~ o was also applied.

event the ratio oM to the number of desired eigenvalues is
larger than in Paper | for three reasofk) extraneous non-
resonance states are computé;the choice of central en-
ergy E was not optimized, but allowed to be off by several
wave-numbers(3) several initial Lanczos iterations are re-
quired to “prime the pump,” which has a small but notice-

Some of our results for differerd values are presented
in Tables IV and V, for(7,0,0 and (8,0,0, respectively.
The corresponding results from Weissal*® are also pre-
sented. The tables indicate that the present calculations are in
very good agreement with those of Wegssal. However, a
careful inspection reveals that the rotational energy-shifting

able effect on scaling, particularly for the one-at-a-time cal-that emerges from our calculations are a little bit smaller.

culations performed here. As f@B), we also note that the
first few Lanczos iterations tend to require fewer QMR itera-

This discrepancy is almost certainly due to the different
approximations that were used for determining theO
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TABLE V. Comparison between present calculation and literature values (7,0,0) K=0
(Weisset al) for the energie€€ and widthsI" of the rovibrational(8,0,0 -
resonances od>0, K=0 HO®CI, for various values ofl. All quantities sl o
butJ are in cm'* | —e— Present work 7
. [ |o - From Ref.[49]
- - —_ === Measured lower limit
Angular momentum Present calculations Literature results ‘TE 6| ——— Measured upper limit
(3} [
J E r E r é Al
0 24 174.43 2.39 24173.3 1.9 =
2 24 177.37 2.36 24176.5 2.1 2L
4 24.184.47 2.77 241835 2.6 [
6 2419572 2.58 241946 3.3 ok L
8 24211.04 1.68 242103 3.8 o 2 4 &
10 24229.63 1.25 242300 2.7
12 24 252.25 1.54 24 252.6 2.1 5. |—e— Presentwork
14 2428015 1.46 242805 1.0 (8,0,0) K=0 o PomRetisl
16 24 310.86 641‘( 1) 24311.2 55(‘ 1) a4 ——— Measured upper limit
18 2434560 1.06(1) 243462 1.7¢1) B =
20 24384.27 3.63t1) 243852 3.7¢1) -~ r ' k
£
S
=
Hamiltonians—i.e., adiabatic rotation versus CS—which

give rise to slightly different potential®/’(r,R,y).

As further evidence for this claim, we have shown that 0 2 4 6 8 10 12 14 16 18 20
the averaged rotational constants for our calculations are Angular Momentum J
slightly smaller th?‘n the corresponding values from the IIt'FIG. 2. Comparison between present calculation and literature values
erature. The rotational constants computed from the preseqieisset al) for the widthsI" of the rovibrational resonances 30, K
calculations are 0.501 cni for (7,0,0 (determined from the =0 HO*CI, as a function of): (a) (7,0,0 resonancestb) (8,0,0 reso-
energies forJ=0 and \]25), and 0.491 cm?® for (8,0,() nances. Horizontal lines indicate the ranges of experimental measurements
(determined from the energies fd=0 and J=2). Weiss (Callegariet al).
et al*® obtained 0.503 cm* for (7,0,0, and 0.533 cm? for
(8,0,0, as computed from their Table (their reported value  gmq)| generally lie outside the convergence error bars of the
for the latter is incorregt The repqrted experimental values present calculation.
are 0.496 and 0.495 cm, respectively.

The resonance widths as computed for the differerdt
values considered here, are in good agreement with previo
experimental and theoretical results. In order to simplify It is of interest to compare the numerical performance of
comparisons and highliglttrends, the resonance width data the present PIST/OSBW method, versus that of the FD ap-
from Tables IV and V is also presented in Fig. 2. One can seproach, as used by Weiss al*® When evaluating the per-
that the general tendency and average magnitudes of our resrmance of different numerical methods, it is almost always
sults and those obtained by Weissal*® are quite similar.  difficult to define a fair comparison—owing to different phi-
Nevertheless, Fig. 2 also reveals some small differences béssophies that may underly the different approaches, idiosyn-
tween the two calculations over specilicanges. These sug- cracies of the particular application under consideration, and
gest that our results are perhaps in better agreement withhe myriad technical issues that inevitably come into play.
experimental measurements. With regard to a general comparison between PIST/OSBW, a

First, most of the data points from our calculations fall lengthy discussion of these issues is provided in Paper I, in
well within the upper and lower limits of the experimental the context of the bound state computation for HOCI, and
values. Callegarét al® reported that the experimental widths more generally, in Refs. 31 and 32.
for the(7,0,0 resonances, with=13-19, lie in the range of On the other hand, for the particular application consid-
0.015-0.035 cm?; for (8,0,0 with J=0-30, the range is ered here—i.e., the calculation of a small number of highly
0.5-2.6 cm!. These limits are indicated by the horizontal excited mode- and state-specific resonances for HOCl—a nu-
lines shown in Fig. 2. Whereas the Wekstsal. calculations  merical comparison is more straightforward than in previous
seem to have a number of significant outliers for b@j0,0  investigations’:*2®for several reasons. Moreover, we feel
and (8,0,0, our calculations appear to have only one, Jor that the present application exemplifies the differences in de-
=17 (7,0,0 (curiously,not an outlier for Weist al.). sign philosophy between the two approaches. Thus, whereas

Second, the experimental widths f§8,0,0 show a FD computes a large number of eigenstates for essentially
broad maximum atJ=157° in good agreement with the the same CPU effort as would be required for a small num-
present result$Fig. 2). In contrast, the Weisst al. results  ber of eigenstate&p to a point, the CPU effort for PIST/
are monotonically decreasing over tlisange, and exhibita OSBW is essentially linear in the number of computed
maximum at the much lower valud=8. As in theJ=0  eigenstates. The FD approach provides a great advantage if
case, the differences in computed resonance widths, thoughe spectral window of interest contains a large number of

u%' Performance comparison with filter diagonalization
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states. On the other hand, PIST/OSBW will be more efficiento the computed energiéSec. IV A). Most likely, the correct
in the limit of very narrow spectral windows at very high r . is closer to our value of 6.0.
excitation energies—the most extreme case being that for One somewhat important difference between the two
which just a single eigenstate is computed per calculation. calculations is that ours was performed to a higher level of
Thus, whereas in general, the relative improvement iraccuracy—as reflected in the slightly increased coordinate
CPU efficiency for PIST/OSBW versus FD depends prima+anges, and the convergence errors as reported in Sec. IV A.
rily on the number of states one is interested in, for theThis weights the comparison somewhat against PIST/OSBW.
present application for which “one-at-a-time” calculations On the other hand, our basis set was substantially smaller—
are performed, we expect PIST/OSBW to be favored. Sucldespite the increased accuracy—owing primarily to better
conclusions are based on theoretical argum&nts®®how-  basis optimization. The latter is more favorable for PIST/
ever, necessitating the demand for numerical comparisons ©SBW, although we emphasize once again that we regard
provide more quantitative insight for realistic applications. Inthis as being a part of the method. The increased accuracy is
this regard, the HOCI resonance application investigateanost likely also due in part due to the more efficient CAP
here is ideal. used here, although this plays a surprisingly small role in the
A second key design philosophy of the present approacpresent case, owing to an atypically small absorbing region
follows from the first: since PIST/OSBW is ideally suited to (Sec. Il1 B 3.
computing small numbers of eigenstates at a time, it is natu- The issue of basis sets merits further discussion. For our
ral to use basis representations that are customized for trealculation, we used a direct product basis with
states of interest. This has the effect of reducing the tota{Ng,N,,N,)=(150,30,50) functions, giving rise to a total
matrix size andfor resonance statesumerical level den- basis size oN=225000. In comparison, the FD calculation
sity, which lowers the CPU cost of the matrix-vector product,used(220,30,70, i.e., N=462 000%° Note that the FD basis
as well as reducing the number of linear solver iterationds alsooptimized, in that PO DVRs were used for both of the
(especially in resonance calculatiorié This idea has been radial coordinates. Curiously, the increase in basis size rela-
implemented in the present application through the use of théve to our basis is actually greater for the optimi2ég than
PSO basis representation described in Sec. Il A, and espésr the unoptimizedN . This would not be surprising if slice
cially the modifications described in Sec. 1lIB 1, designedpotentials were used to generate the PO DVRs, as discussed
specifically to exploit the mode specificity of the desiredin Sec. Il A. Although Ref. 49 does not report how these
resonance states. were generated, we note that the equivalptvalues sug-
Of course, the same sort of basis optimization could beest that similar effective potentials are being used/dr),
employed in a FD calculation. If many states were desired, awhich would also be consistent with the slice hypothesis.
in Paper |, this strategy would require splitting up a single  Several other, less important issues also come into play,
calculation into multiple state- or mode-specific calculationsyvis-avis a numerical comparison of the two approaches. One
in order to be effective. Such a multifurcation need not be thegertains to the calculation of both eigenvalues and eigen-
most efficient implementation of the FD approach, althoughfunctions, versus eigenvalues only. Using FD, the CPU cost
it would be ideally suited to a PIST/OSBW calculation. This of the former is in most cases twice that of the latter, whereas
is why we maintain that the latter approach is more amenabléor PIST/OSBW, the costs are essentially the same. On the
to basis optimization in general, which we in fact regard asother hand, FD resonance calculations can gain a factor of
being an important parf the method itself. On the other two savings in CPU cost, by exploiting a development that
hand, the present resonance application allows us to put atlonverts complex to real arithmetic, which has not yet been
such arguments aside, as the current goal is not to compuspplied to PIST/OSBW. All of this serves to emphasize, once
manystates, but rather, a very small, mode-specific few. Ac-again, that a fair CPU cost comparison depends very much
cordingly, it is in the best interest of both implementations toon precisely what and how one wishes to compute; for sim-
use a customized basis set, and indeed, the FD calculatiopdicity, we presume in the present application that these two
of Weisset al. have also done so. The primary point thoughfactors of 2 “cancel out.”
is that this leads to more direct comparisons of the two  Taking the above discussion under consideration, we
methods. now present the numerical comparison. Regarding the total
Another respect in which the comparison is more direchumber of QMR iterations, we observe a three-order-of-
pertains to the PESs used, which for the present applicatiomagnitude reduction, from 180 000 for the FD calculation to
are identicalfor purposes of comparison, onlly=0 is con- 184 for the(7,0,0 PIST/OSBW calculatio(Table ). This
sidered. This is in contrast to the bound state calculations ofdemonstrates the remarkable effectiveness of the OSBW pre-
Paper I, for which different PESs were used, leading to comeonditioner, even under very adverse circumstances, and
plications related to the ranges used for the coordindf®  even though ideal scaling is not quite attained. This reduc-
For the present comparison, the coordinate ranges appeartion, moreover, is greater than that observed in any previous
be similar, although Weiset al. usedR,,,,=2.5 instead of numerical comparison with F&3? including the bound
2.0 [see Eq.(5)]. It should be noted that they report using state HOCI calculation of Paper I. We attribute this to the
rmax=3.5, which is almost certainly incorrect, becauéB: larger matrices involved here, and also to the fact that PIST/
this is what they used for their earlier bound state calculatiotDSBW is favored in the narrow spectral window limit.
using the SPB98 PES, which does not incorporate the HCIO  On the other hand, the CPU cost per iteration is substan-
isomer®® (2) this would have resulted in a 5 crhincrease tially greater for PIST/OSBW than for FD; and moreover, the
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TABLE VI. Comparison of numerical effort required to compu@0,0 of Weisset al,*® and Zouet al,>® although our results appear
resonance state fdr=0 HOCI, using PIST/OSBW vs FD methods. Rows 3 to be somewhat more Converged Our calculations reveal that

and 4, respectively, reflect PIST/OSBW CPU costs with and without explicit]c I f stat ith high overtones of the OH
LU decomposition of the Wyatt block. Column Il is total number of CPU ull convergence or states wi '9 v

operations. Column Il is the ratio of Column Il row 1 to Column I. stretching mode requires a largg,,. In particular, we find
thatr,,,=6.0 bohrs is required, although there is pseudocon-
Number of Inverse of ratiovs  yergence in the vicinity of ,,,=3.5—4.5 bohrs, which leads
Method CPU operations _filter diagonalization y, ¢ hstantially higher computed energigec. IV A). Weiss
Filter diagonalization 2.6613) 1.0 et al* reported arr range of 1.2—3.5 bohrs for their reso-
PIST w/LU decomposition 1.9212) 13.9 nance calculations, which may not be correct, given the very
PIST w/o LU decomposition 1.1611) 232.2

good agreement with the present results.

Good agreement with previous experimérissalso ob-
served(Table Il and Fig. 2. By design, the 22 experimen-
CPU cost of théone-timg Wyatt block LU decomposition is  tally known vibrational bands are reproduced to very high
also very substantial. Accordingly, we also provide a com-accuracy by the Corrected SPB99 PE&S In contrast, the
parison of the total number of CPU operations involved. Forcomputed resonance energies (@r0,0 and (8,0,0 exceed
PIST/OSBW, this is obtained using E@); for FD, the for-  the experimental values by 17 and 71 cimrespectively. We
mula is K(N,+Ng+N,)N,NgN, . The results of this nu- believe such large discrepancies may be due to the fact that
merical comparison, both with and without the Wyatt block the actual potential minimum of the Corrected SPB99 PES is
LU decomposition, are presented in Table VI. The respective-5.317 cm'%, rather than 0cm! as presumed by the
reductions in total CPU effort are around>5and 230<.  creatorst’ 8’ From this trend, we predict that the computed
However, the true savings on our computer platfg@om-  resonance energy f@,0,0 would exceed the experimental
pagq ES45, 1200MHz CPU, 16GB RAMure in realitymany  value by hundreds of wave numbers, although so far, no
times greater because the memory and compiler architec-experimental measurements for this resonance have been
tures are much more efficient for the Wyatt block operationsonducted.
than for the matrix-vector product operations. Similar behav-  The present PIST/OSBW calculations used 184 itera-
ior has been observed on other platforthand is anticipated tions to compute thé¢7,0,0 vibrational resonance, whereas
more generally, although to an extent that must be platform180 000 iterations were used in a previous FD calcul&tion
dependent. on the same PES. We attribute this remarkable efficiency

In any event, we present data for calculations both withprimarily to the fact that PIST/OSBW is more favored in the
and without the LU decomposition step, because there arémit of narrow spectral windows at high energies, although
several simple techniques that can be used to mitigate thiae basis set and CAP are contributing factors. In any event,
CPU cost of this step—which is now the bottleneck of theit is clear that the present computational scheme is well-
entire calculation. For instance, only a single LU decompo-suited for computing state-specific and bond-selective fea-
sition is required for a large number of convergence calculatures, with “surgical precision.”
tions. Alternatively, one can avoid explicit LU decomposi- On the other hand, the computational bottleneck is now
tion altogether, by solving the linear algebra problem for theto be found in the Wyatt block manipulations, due to loss of
Wyatt block itself at each iteration. This might best be imple-ideal scaling. Consequently, the CPU cost per matrix-vector
mented using a “sub-Wyatt,” or even a “recursive Wyatt” product is somewhat larger than for the FD calculation, and
approach. As for a recursive implementation of OSB, this iSn addition, a computationally expensive, one-time LU de-
currently being investigated, as is portability to massivelycomposition procedure is required. These additional CPU

parallel computing platforms. costs are reflected in Table VI, which underestimates the per-
formance of PIST/OSBW, for reasons explained in Sec.
V. SUMMARY IV C. Techniques for mitigating the cost of LU decomposi-

Using an integrative combination of techniques, we havéion will be explored in future papers,_wherein we shall also
performed an accurate and highly efficient calculation of theaIOIOIy the r_nethod to more challenging test cases such as
(7,0,0 and(8,0,0 resonance states of HOCI, which are Statesacetylene/wnylldene.
for which the OH bond is selectively and highly excited.

This work builds on the previous effo(Paper ) in several
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