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Accurate and highly efficient calculation of the highly excited pure OH
stretching resonances of O „

1D…HCl, using a combination of methods
Wensheng Bian and Bill Poiriera)

Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, Lubbock,
Texas 79409-1061
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Accurate calculation of the energies and widths of the resonances of HOCl—an important
intermediate in the O(1D)HCl reactive system—poses a challenging benchmark for computational
methods. The need for very large direct product basis sets, combined with an extremely high density
of states, results in difficult convergence for iterative methods. A recent calculation of the highly
excited OH stretch mode resonances using the filter diagonalization method, for example, required
462 000 basis functions, and 180 000 iterations. In contrast, using a combination of new methods,
we are able to compute the same resonance states to higher accuracy with a basis less than half the
size, using only a few hundred iterations—although the CPU cost per iteration is substantially
greater. Similar performance enhancements are observed for calculations of the high-lying bound
states, as reported in a previous paper@J. Theo. Comput. Chem.2, 583~2003!#. © 2004 American
Institute of Physics.@DOI: 10.1063/1.1779577#

I. INTRODUCTION

It is well-known that local mode vibrations, and mode-
specific features of molecules, are of great importance in
bond-selective chemistry.1,2 Experimentally, the first success-
ful example of bond-selective chemistry was observed in the
HDO molecule,1–3 for which local mode overtone vibration
of the OH stretch mode was realized. Mode-specific features
are also found in HOCl, or hypochlorous acid, an important
intermediate in the O(1D)HCl reactive system. Recent ex-
perimental studies of theJ andK state-resolved dissociation
of HOCl, excited to high OH overtones, reveal highly state-
specific and mode-specific properties for this molecule. It is
found that the dissociation rates deviate very substantially
from the predictions of statistical theories such as RRKM,4

and in particular, the resonance states with many quanta in
the OH stretch mode are particularly long-lived. Despite the
small size of the molecule, this behavior is evidently due to
slow intramolecular vibrational redistribution~IVR! in
HOCl, owing to weak intramolecular coupling between the
OH stretch mode and the other two degrees of freedom,
when there is little to no excitation of the latter modes.

Following precedent,5 we denote the zeroth-order vibra-
tional states in HOCl as (n1 ,n2 ,n3), where (n1) is associ-
ated with the OuH stretch mode, (n2) with the HuOuCl
bend, and (n3) with the OuCl stretch. The unimolecular
dissociation dynamics of HOCl in the highly excited OH
stretching states, i.e., (n1,0,0), have recently been investi-
gated by Rizzo’s group5–7 and Sinha’s group8–10 using
overtone-overtone double resonance spectroscopy. The tech-
nique enabled these groups to selectively deposit vibrational
quanta into the OH stretch coordinate. The decay rate of the
rovibrational ~6,0,0! resonance states, for many differentJ
andK values, were carefully studied by both Callegariet al.6

and Duttonet al.8 However, this state does not appear as a
resonance untilJ>19.

In 2001, Callegariet al.5 extended the previous experi-
mental investigations up to the~7,0,0! and ~8,0,0! states,
which exist as resonances down toJ50. Their main findings
are: ~1! the HOCl→OH1Cl dissociation dynamics are not
adequately described by statistical models—even for the
~8,0,0! state, which is around 5000 cm21 above the dissocia-
tion threshold;~2! the average rate increases by about two
orders of magnitude from~6,0,0! to ~7,0,0! and another two
orders of magnitude from~7,0,0! to ~8,0,0!; ~3! the fluctua-
tions of the resonance widths with rotational quantum num-
ber J, for ~7,0,0!, are considerably less pronounced than for
~6,0,0!, whereas a clear peak atJ515 is observed for~8,0,0!.

The main purpose of this paper is to present an accurate
and highly efficient calculation of the highly excited pure
OH stretching resonance states of HOCl, with respect to both
energies and widths~related to lifetimes, decay rates, etc.!.
Both the vibrational (J50) and rovibrational (J.0) states
are considered. This kind of calculation is quite challenging,
since the vibrational~8,0,0! state lies around 24 200 cm21

above the ground state,~0,0,0!, and there are around 800
vibrational bound states lying below the OH1Cl dissocia-
tion threshold. Moreover, close to and above the dissociation
threshold, the density of states~in a numerical sense! is ex-
tremely high, and increases quickly with increasing energy.
Iterative methods,11–29such as are used here, are notoriously
hard to converge at high energies, or when the density of
states is otherwise large.30–32 Consequently, the HOCl sys-
tem serves as a useful benchmark for testing iterative meth-
ods under adverse conditions.

On the other hand, the particular iterative scheme used in
this paper is by design very well suited to this kind of state-
specific and mode-specific investigation. Regarding the
former, the preconditioned inexact spectral transform~PIST!a!Electronic mail: Bill.Poirier@ttu.edu
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technique31–33 energetically selects out states in small
groups, or even individually. Optimal separable basis plus
Wyatt ~OSBW! preconditioning18,22,30,34,35 drastically re-
duces the number of iterations required. To capture bond-
selective features of particular vibrational modes, the phase
space optimized discrete variable representation36–38 ~PSO
DVR! is used. Finally, complex absorbing potentials~CAPs!
deal with the continuum aspects of the resonance
calculation.39,40

Besides displaying mode-specificity and state-specificity,
HOCl is of great importance to the chemistry of the strato-
sphere and upper troposphere,41,42 and the reaction products
OH, Cl, and OCl, resulting from HOCl photodissociation,
are implicated in catalytic cycles participating in ozone
depletion processes. Consequently, HOCl has attracted grow-
ing attention from both theorists and experimentalists.5,41–50

On the experimental side, there have been a number of stud-
ies on the spectroscopy51,52 and dissociation5–10 of HOCl.

On the theoretical front, severalab initio potential en-
ergy surfaces~PESs! for the O(1D)HCl ~or HOCl! system
have been constructed, and several detailed dynamical calcu-
lations have been performed on the available PESs. As HOCl
is an important intermediate in the O(1D)1HCl reaction, a
distinction is made between two kinds of PESs for the
O(1D)HCl system—one designed for O(1D)1HCl reactive
scattering studies, and the other for HOCl~HClO! spectro-
scopic and resonance studies. Of course, there are PESs
which claim to be suitable for both kinds of investigation. As
for the reactive scattering PESs,43,53–57 the first was pub-
lished in 1984 by Schinkeet al.43 These PESs are for the
ground, or 11A8 electronic state. Recently, globalab initio
PESs for the two excited electronic states, 11A9 and 21A8,
have been constructed by Nanbuet al.58

The first PES of near-spectroscopic accuracy in the
HOCl well region was constructed by Skokov, Peterson, and
Bowman in 1998,45 which we refer to as ‘‘SPB98.’’ SPB98 is
a highly accurate semiglobal PES, computed using the
MRCI1Q/CBS method; a year later, based upon SPB98, the
same three authors constructed a more globalab initio PES
which also correctly describes the HClO isomer.46 For con-
venience, this PES is referred to as SPB99. To further im-
prove the accuracy of SPB99, an adjustment was applied,
using a perturbative inversion procedure to ‘‘exactly’’ repro-
duce the 22 known experimental bound vibrational energy
levels, and the rotational constants for nine low-lying states,
for HO35Cl (J50).47 This corrected PES is the best avail-
able for the purpose of spectroscopic and resonance studies
of HOCl; we refer to it as ‘‘Corrected SPB99.’’

Recently, Weisset al.59,60 have also published two high-
quality semiglobalab initio PESs, which are well suited to
the study of HOCl spectroscopy and dissociation dynamics.
The ab initio level of these PESs is comparable to that of
SPB98 and SPB99, but they do not reproduce the experimen-
tally known vibrational energies as well. Weisset al.60 also
performed quantum mechanical calculations of the HOCl vi-
brational bound states on the Ref. 60 PES, using the filter
diagonalization~FD! method.25–28 These authors provide a
detailed analysis of the vibrational states.

Some detailed vibrational dynamical studies have been

previously performed on SPB98,61–63 SPB99,46 and Cor-
rected SPB99.49,50,64,65 Mussa et al.63 and Skokovet al.62

performed some calculations for selected vibrational reso-
nance states of HOCl~Refs. 62 and 63! using SPB98. Weiss
et al.49 performed large-scale dynamics calculations to inves-
tigate the unimolecular dissociation of the OH stretching
states of HOCl, using the FD method and the Corrected
SPB99 PES. Good agreement with the experimental reso-
nance widths was obtained, and the main experimental
observations,5 i.e., the tremendous increase of the dissocia-
tion rate fromn156 to 8 by about four orders of magnitude,
were quantitatively reproduced. Zouet al.50 calculated the
vibrational resonance states of HOCl for the sixth and sev-
enth overtones of the OH stretch, using a standardL2 ap-
proach on the Corrected SPB99 PES.

Our group has also performed extensive dynamical cal-
culations for the vibrational bound states of HOCl, using the
Corrected SPB99 PES. This was the focus of a previous
paper66—referred to here as ‘‘Paper I.’’ In the present paper,
calculations are performed for the~7,0,0! and ~8,0,0! reso-
nance states of HOCl, using the same Corrected SPB99 PES.
Both vibrational and rovibrational states are considered, un-
like the previous effort, for which only vibrational bound
states were considered. The methodologies employed are
similar, except that the resonance calculation requires the use
of CAPs ~Secs. II B and III B 3!. The present work also dif-
fers from the previous investigation in that each calculation
performed here is designed to compute the energy and width
of a single resonance state only.

II. THEORETICAL CONSIDERATIONS

A. Phase space optimization
and physical considerations

The starting point of any discrete variable representation
~DVR! treatment is the ‘‘variational basis repre-
sentation’’67–70 ~VBR!—i.e., the eigenstates of some
strongly separable approximate HamiltonianĤ0 , which is a
sum of one-dimensional~1D! Hamiltonians, Ĥk5T̂k

1Vk(q̂k). The potential-optimized~PO! DVR approach71,72

enables one to tailor theVk(qk) to the particular system of
interest, thus reducing the overall basis size,N, required to
achieve a given level of accuracy in the computation—
although the method does not specify how the effective po-
tentials,Vk(qk), should be chosen, so as to minimizeN.

Indeed, the standard choice of taking 1D ‘‘slices’’ of the
PES through the equilibrium geometry can lead to disas-
trously inefficient results, as discussed in Paper I. It is not the
PO DVR ideaper sethat is flawed; rather, it is the way that
this is implemented via PES slices. To make headway, a
more rigorous approach is required—one which derives the
effective potentials using a trueoptimizationprocedure. The
PSO DVR method achieves the desired goal, using a simple
classical phase space picture that gives rise to nearly optimal
Ĥk’s.36–38

In previous PSO DVR implementations, the ‘‘optimal’’
Ĥ0 was defined using the variational principle.36 In practice,
however, this is not the best approach, because it weights the
highest and lowest computed eigenvalues equally. In Paper I,
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a new optimization criterion was proposed that better reflects
the actual numerical situation. The optimalĤ0 is now de-
fined to be that which minimizes the value ofN required to
compute all eigenstates ofĤ below some maximum energy
of interest,Emax. The optimal classical solutions are66

Hk~qk ,pk!5min@H~q1 ,p1 ,...!#qj Þk ,pj Þk
, ~1!

i.e., the minimum ofH(q1 ,p1 ,...) with respect to all but the
kth phase space coordinates.

We now apply Eq.~1! to the three-atom vibrational prob-
lem in Jacobi coordinates, (r ,R,g), wherer is the separation
between two of the atoms,R is the separation between the
diatom center of mass and the third atom, andg is the angle
between the two Jacobi vectors. The results for the radial
degrees of freedom are shown to be66

Hr~r ,pr !5
pr

2

2m
1min@V~r ,R,g!#R,g ,

~2!

HR~R,pR!5
pR

2

2m
1min@V~r ,R,g!# r ,g .

Theg situation is complicated; in the HOCl case, however, a
nearly optimal substitute is66

Hg~g,pg!5Apg
21min@V~r ,R,g!# r ,R , ~3!

where A is some effective value for @1/(2mr 2)
11/(2mR2)#. For instance, equilibrium values forr and R
might be used, although this is rarely the best choice except
at very low energies. A better approach~adopted here! is to
use the phase space averaged value forA.37,66

As discussed in Paper I, the minimal potential energy
approach to generatingVk(qk) is fraught with several impor-
tant caveats. One concerns the situation where the potential
V(q1 ,...) hasmore than one local minimum with respect to
the qj Þk , for fixed qk . In general, the optimal solution of
Eq. ~1! is with respect to theglobal minimum. However, this
may hop discontinuously from one local minimum to an-
other, as the coordinateqk is varied, which will result in a
kink in the effectiveVk(qk) curve, giving rise to less effi-
cient DVRs.73

On the other hand, PIST and other spectral window ap-
proaches are designed to compute only one state~or a small
number of states! at a time. In keeping with this philosophy,
a better approach is to restrict the minimization of the poten-
tial over just that region of configuration space which is rel-
evant for the state~s! in question. The resultant effective po-
tentials will thus give rise to basis sets that are tailor-made
for the desired state~s!. In the present HOCl context, this
amounts to using the relevantlocal minimum to generate the
Vk(qk) curve—even forqk regions where this is no longer
the global minimum. This procedure has the added advan-
tage that the resultantVk(qk) curves are free of kinks.

B. Complex absorbing potentials

The computation of resonance energies, and especially
widths, poses certain special difficulties if finite basis repre-
sentations are used. This has to do with the fact that reso-
nances exist in the continuum, and are technically of infinite

extent, whereas finite matrix methods necessarily extend
only over a finite region of configuration space. Sufficiently
far from the interaction region, any given resonance behaves
like a plane wave, suggesting that finite truncation of the
configuration space grid should in principle be possible. In
practice, however, any naive implementation of this idea
gives rise to reflections off of the implicit hard wall at the
grid edge, which then propagate unphysically back into the
interaction region.

On the other hand, the above idea can be made to work,
provided that the original Hamiltonian is modified so as to
give rise to a complex-symmetric matrix representation. One
then computes resonance energies and widths directly, as the
real and imaginary parts of the matrix eigenvalues. Methods
that operate in this fashion are known as ‘‘direct’’
methods.32,74,75The two most important direct methods for
computing resonances are the complex scaling method,76,77

and the CAP method.39,40 We make use of the latter, for
which the original Hamiltonian is modified via the addition
of the CAP, 2 i e. The effect of the CAP is to damp out
outgoing flux, so that by the time it reaches the edge of the
grid, there is very little probability left to be reflected back.
This simple explanation is presented in time-dependent lan-
guage, but is easily ‘‘translated’’ to the present time-
independent context.

Note that in principle, issues of numerical instability
may arise when iterative algorithms are applied to complex-
symmetric matrices. In the particular case of the PIST
method, the related issue of inexactness also comes into play.
In practice, however, the CAP contribution is always so
small that the matrices involved are nearly real-symmetric,
and the convergence is anticipated to be numerically stable.
This expectation is certainly borne out for the present inves-
tigation ~Sec. IV!; a more detailed, general discussion may
be found in Ref. 32, particularly in the Appendix.

In any event, CAP methods have some important advan-
tages:~1! there is no need to impose scattering boundary
conditions on the solutions;~2! it is usually straightforward
to determine energies and widths, even for very closely
spaced and/or broad resonances. The latter property holds by
virtue of the fact that different resonances correspond to dis-
tinct eigenvalues of the modified Hamiltonian matrix, al-
though it should be stated that many nonresonance eigenval-
ues are also present. The primary disadvantage of CAPs is
that they substantially increase the size of the basis or DVR
grid needed to perform the calculation, along the direction of
the dissociation coordinate (R, in the present case!. This is
becausee(R) may only be nonzero outside of the interaction
region~in order not to interfere substantially with the correct
dynamics!, and moreover, requires a certain number of
wavelengths over which to damp the outgoing wave.

There has therefore been a considerable effort in recent
years to develop optimized CAPs, which require a minimal
amount of space over which to operate. The present work
uses an optimal 14th-order polynomial complexe(R), with
no linear term, as follows:78,79

4469J. Chem. Phys., Vol. 121, No. 10, 8 September 2004 OH stretching resonances of O(1D)HCl
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e~R!5AEcap@2F~R!1 iF ~R!2#,

F~R!5 f S R2R0

Rmax2R0
D , ~4!

f ~z!54.722 07z2212.947 23z3131.021 50z4

258.475 40z5196.364 47z62134.785 07z7

1164.065 66z82169.256 33z91148.346 31z10

2105.659 65z11159.971 06z12223.919 28z13

16.018 63z14.

In Eq. ~4! above,Ecap is an estimate for the resonance energy
along the dissociation coordinate, andA, R0 , andRmax are
convergence parameters. It is understood thate(R) is non-
zero only in the rangeR0,R<Rmax.

III. NUMERICAL DETAILS

A. Overview

Resonance calculations were performed for HO35Cl us-
ing the 11A8 Corrected SPB99 PES.47 The Hamiltonian is
represented in Jacobi coordinates (r ,R,g), as per Sec. II A,
where r is the OH stretch, andg50 describes linear
ClOH. In atomic units, the masses are as
follows: mH51837.152 632 7; mO529 156.947 092; mCl

563 744.321 041.
The Hamiltonian matrixH was constructed from a PSO

DVR basis, as described in Secs. II A and III B 1. The coor-
dinate ranges used to generate the VBR are as follows:

1.0<r<6.0 bohr,

2.0<R<14.0 bohr, ~5!

0<g<p.

Some calculations with coordinate ranges other than those
reported above were also considered, but Eq.~5! was found
necessary to obtain the high level of convergence reported in
Sec. IV A. The coordinate ranges forr andg are identical to
those of the most accurate bound state calculations per-
formed in Paper I; however,Rmax514.0 is somewhat larger,
owing to the presence of the CAP.

Eigenvalues of H were computed using the PIST
method, together with OSBW preconditioning~Sec. III C!.
PIST is a nested iterative technique for efficiently computing
all eigenstates within a given spectral window, centered on
the energyE. In effect, PIST applies the Lanczos algorithm80

to the matrix (EI2H)21, rather than toH itself, with the
result that only a small number of Lanczos iterations,M , are
required. Typically,M'33the number of computed eigen-
values; however, the ratio for the number of computedreso-
nancestates is somewhat higher, as nonresonance eigenval-
ues are also computed.32

For all of the calculations performed here, the Lanczos
stopping criterion used is convergence of the desired reso-
nance energyandwidth to 1024 cm21 or better. Each Lanc-
zos iteration is itself implemented via an iterative linear
solver, so that the total number of matrix-vector products,K,
is aroundK5ML, whereL is the average number of linear

solver iterations per Lanczos iteration. The linear solver al-
gorithm utilized is QMR,81 with an ~inexact! stopping
parameter31 of 3.031023. The value ofL is determined by
the preconditioner used, in this case OSBW.

Although HOCl exhibits a range of different resonance
behaviors, for purposes of the present paper, we are inter-
ested solely in the OH1Cl dissociation resonances corre-
sponding to high excitations in the OH stretch. This applica-
tion serves as an ideal test bed for the method used here,
which as compared with other methods, is anticipated to be
most efficient when small numbers of highly excited, mode-
specific states are desired. The present application has just
three such vibrational resonances:~7,0,0!, ~8,0,0!, and
~9,0,0!. The first two will serve as the focus of the present
work. The ~9,0,0! case is not considered here, because the
PES used is not expected to be valid in this energy regime
~Sec. IV A!.

For each of the two vibrational resonances considered, a
completely separate calculation was performed. Thus, we are
applying the ‘‘one-at-a-time’’ version of PIST~Paper I and
Ref. 32! for the first time. In addition to the two vibrational
resonance states, separate calculations were also conducted
for the corresponding rovibrational resonances withJ.0.
For simplicity, and to enable comparisons with experiment
and previous calculations, only theK50 case is considered,
for variousJ values up toJ520.

B. Potentials

1. Effective potentials for J Ä0

For the most part, minimum effective potentials were
used, as per Sec. II A. However, the HOCl PES topography
is rather complex, with a second local minimum for HClO
~see Paper I!, and various other features that complicate this
basic strategy. ForVr(r ), the global minimum ofV(r ,R,g)
with respect toR andg ~at fixed r ), jumps discontinuously
from the HOCl to the HClO local minimum, at aroundr
53.15 bohr. The latter is not important for the resonance
states considered here; consequently, we adopt the strategy
of Sec. II A, and continue to follow the HOCl local minimum
up to r max56.0 bohr. This yields the smooth, solid curve of
Fig. 1~a!, which is used in all calculations performed here,
and in Paper I.

For VR(R), there are three local minima; one for HOCl,
one for HClO, and another for linear ClHO, which is the
global minimum for sufficiently largeR. The HClO mini-
mum is once again ignored~even if it were included, there
would be just a slight distortion of theVR(R) curve at inter-
mediate R values!. However, there is a small kink inVR(R)
at R56.65 bohr, where the HOCl and linear ClHO curves
join together. At the crossing point, the potential value is
VR(R)50.090 399 hartree, whereas the two geometries are
(r 51.836,g51.570) and (r 51.838,g53.142), respec-
tively. The kink is barely perceptible in Fig. 1~b!, and does
not appear to cause any numerical difficulties. This potential
is the same as that used in Paper I, except that it extends out
to R514.0 bohrs rather thanR512.0 bohrs.

For Hg , we use Eq.~3!, as justified in Paper I. The
constantA was obtained from a phase space average of the

4470 J. Chem. Phys., Vol. 121, No. 10, 8 September 2004 W. Bian and B. Poirier
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classical Hamiltonian.37 This led to the result A
50.000 085 967 33~in atomic units!. Although the minimal
Vg(g) curve is straightforward to obtain—especially the lo-
cal minimum version, which would automatically avoid dis-
sociation configurations~Sec. II A!—we have opted for an
even more efficient customization ofVg(g), based upon
practical considerations. For the present resonance calcula-
tions, we are interested in the (n1,0,0) states, for which the
energy in the HOCl bending mode is very small. Conse-
quently, the system does not reach largeg values (g.2.4
corresponds to a very small HuOuCl bend angle, whereas
the equilibrium value for the latter is 102°).

According to the discussion in Sec. II A, we construct an
improvedVg(g) customized for calculations of the (n1,0,0)
states, in the following way. For 0<g<p/2, the minimal
potential value is used. Atg5p/2, the minimal potential
value is 0.006 353 04 hartree, obtained forR
53.267 36 bohrs andr 51.82998 bohrs. These radial values
are then used to generate a ‘‘slice’’ potential forVg(g) in the
p/2,g<p range—i.e., Vg(g)5V(1.829 98,3.267 36,g).
The result is presented in Fig. 1~c!, and is seen to be smooth
in the vicinity of the join atg5p/2. In any event, the modi-
fied Vg(g) so obtained was found to be much more efficient
for the resonance calculations performed here than was the
unmodified potential.

2. Effective potentials for J Ì0

Note that, strictly speaking, the above analysis applies
only to the vibrational resonance calculations. For theJ.0
case, the true potential,V(r ,R,g), should be replaced with a
J-dependent ‘‘effective’’ potential~in the sense of angular
momentum!, VJ(r ,R,g).18,82–84Accordingly, the 1D effec-
tive potentials that results from Eqs.~2! and~3! should beJ
dependent. This is, in principle, very beneficial, from the
standpoint of the present one-at-a-time computational phi-
losophy, in that each of theJ.0 resonances would be com-
puted using its own customized basis set.

On the other hand, theJ dependence turns out to be very
slight, over theJ values considered here. UsingVJ(r ,R,g)
as defined in Ref. 82, variousJ-dependent curves were com-
puted, as presented in Figs. 1~a!–1~c!. From the figures, it is
clear that apart from an immaterial energy shift in the most
relevant regions of configuration space, the curves are all
very similar; forJ<20 in particular, the deviations are very
slight indeed. Accordingly, theJ50 effective potentials and
basis sets were also utilized for allJ.0 calculations.

3. Complex absorbing potentials

In keeping with the philosophy of the present approach,
the CAPs for the~7,0,0! and ~8,0,0! calculations were con-
verged separately. The energy values forEcap were obtained
as the differences between the~approximate! resonance en-
ergies, and the OH1Cl dissociation energy—where the latter
is defined as the threshold for dissociation into OH(n50)
1Cl. This gives rise to respectiveEcap values of 0.011 108
and 0.022 254 hartree.

Note that this presumes that all available energy is in the
dissociation coordinate, which is of course incorrect, owing
to the fact that the OH stretch is highly excited. This is
accounted for by converging the calculation with respect to
the strength paramater,A @Eq. ~4!#. It is well-known that
unless extremely high accuracy is desired, one may varyA
by one or two orders of magnitude, without substantially
changing the computed resonance eigenvalues, if all other
parameters are converged. In fact, we conducted several con-
vergence tests withA values between 0.2 and 3.0, and found
the variation to be substantially less than the desired accu-
racy. Accordingly, the valueA51.0 was used in the final
calculations.

Convergence tests were also applied for the remaining
two parameters,R0 and Rmax, giving rise to the final con-
verged values used here,R0511.0 andRmax514.0. Note that
R0 is a bit less than theRmax512.0 value needed for the
bound state calculations of Paper I, as is expected for the
present linear-free polynomial CAP.79

C. Optimal separable basis plus Wyatt preconditioning

OSBW preconditioning is employed to reduce the num-
ber of QMR iterations,L, required per Lanczos iteration,
Since H and the inverse preconditioner matrix are both
sparse, the CPU cost of each QMR iteration matrix-vector
product is small, although higher than it would be for a non-
preconditioned calculation. In any event, OSBW was previ-
ously shown to reduceL by orders of magnitude in high-

FIG. 1. Effective potentials for the HO35Cl system in Jacobi coordinates
(R,r ,g), and atomic units:~a! Vr

J(r ); ~b! VR
J (R); ~c! Vg

J(g). Different val-
ues ofJ yield different potentials, as indicated in the legend.
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energy calculations31,32—including that of the bound states
of HOCl near the dissociation threshold~Paper I!—where all
other standard preconditioners fail.18,22,30,33,85One goal of
the present work is thus to test the effectiveness of the
OSBW preconditioner for the even more extreme task of
computing HOCl resonances.

The first step in the construction of the OSB precondi-
tioner is to partition the degrees of freedom into ‘‘inner’’
~fast! and ‘‘outer’’ ~slow! categories. For technical reasons,g
must be an outer coordinate. Whereas previous implementa-
tions have tended to use bothr andR as inner coordinates,
for the HOCl system, it is better to treatR as the only inner
coordinate~Paper I!. Accordingly, all calculations reported
here useR as the sole inner coordinate, and bothr andg as
outer coordinates. Using this partitioning scheme, the bottle-
neck step of each QMR iteration scales asNRNr

2Ng
2 , where

NR is the 1D PSO VBR basis size forR, etc.
The OSB preconditioner is greatly improved by combin-

ing it with a scheme due to Wyatt,35 whereby coupling in the
vicinity of the desired energyE is incorporated explicitly
into the preconditioner. The coupling manifests as a diagonal
block of matrix elements, which we term a ‘‘Wyatt block.’’
The number of iterationsL decreases monotonically~and
arbitrarily! with the size of the Wyatt block, which we denote
W. Ideally, W is small compared to the total basis size,N
5NrNRNg . In such cases, the overhead associated with the
use of Wyatt preconditioning is negligible compared to the
total CPU cost.

This was true of all previous OSBW applications, for
which L was reduced to around three, regardless of the ma-
trix size, energy, or density of states,31,32,66 thereby demon-
stratingideal scaling31,32,66~i.e., CPU cost per eigenvalue is
independent of spectral location!. For the highest energy
bound state calculations of Paper I, however, we encountered
a case where quite largeW values were required. In any
event, such eventualities require that an additionalW2 term
be added to the CPU cost per iteration. A one-time LU de-
composition of the Wyatt block, requiringW3/3 operations,
must also be considered. For largeW, this can contribute
significantly to the total CPU cost; the appropriate formula is
thus

No. of ops5K~NRNr
2Ng

21W2!1W3/3. ~6!

IV. RESULTS AND DISCUSSION

A. JÄ0 calculation and convergence

Separate PIST calculations were performed for the two
J50 resonance states of interest. The central energiesE for
the two PIST resonance windows are 0.099 002 hartrees for
the ~7,0,0! state, and 0.110 142 hartree for the~8,0,0! state
~Table I, Column II!. Energies are relative to the~0,0,0!
ground state for J50, which has the energy of
2865.317 cm21 with respect to the classical minimum. For
each calculation, only asingle resonance state is desired.
Note that since we do not know the resonance energiesa
priori , the central energiesE do not correspond exactly to
the desired resonance energies, but are merely estimates.
Consequently, a few additional nonresonance eigenvalues,
which are energetically near the desired resonance, are also
computed with each calculation.

A variety of test calculations were performed to ensure
the convergence of the computed results. First, we performed
calculations using different ranges forR and r than those
reported in Eq.~5!. We found that an extendedr range is
very important for the convergence of states with high over-
tones in the OH stretching mode. In particular, these calcu-
lations reveal that the full range 1.0<r<6.0 is absolutely
necessary for achieving sub-wave-number accuracy; calcula-
tions usingr max53.5 or r max54.5 lead to computed reso-
nance energies that are around 5 cm21 too high. This is sig-
nificant for Sec. IV C. In addition to the above parameters,
and those already described in Sec. III, we also varied~sepa-
rately for each resonance state! the basis truncation param-
etersNR , Nr , andNg , as well as the Wyatt window half-
width parameterD ~which determinesW31!. The converged
parameters for each resonance window are presented in
Table I.

To demonstrate the precision of the computed resonance
energies and widths, we present some of the results for dif-
ferent basis sizes in Table II. The table indicates that the
~7,0,0! resonance energies are converged to about 0.1 cm21,
whereas the resonance widths are converged to about
0.0003 cm21. For the~8,0,0! resonance calculation, the con-
vergence is not as high; the estimated errors are 0.2 and
0.3 cm21 for the computed energy and width, respectively.

Our J50 calculational results for~7,0,0! and ~8,0,0!,

TABLE I. PIST/OSBW parameters used in our calculations of the HO35Cl resonances. The inexact QMR
stopping parameter is 331023; the Lanczos stopping criterion is convergence of the desired resonance~energy
and width! to 1024 cm21 or better. State labeln1 refers to OH stretch mode. Basis set parameters are in terms
of the three Jacobi coordinatesR, r , and g; Wyatt parameters: window half-width (D); block size (W).
Column VIII: number of Lanczos iterations (M ). Last two columns: number of QMR iterations, average~per
Lanczos iteration! and total.

Window Basis set parameters Wyatt parameters Iterations

Label
Energy

~hartrees!
Radial

NR

Radial
Nr

Angular
Ng

D
~hartrees! W

Lanczos
M

QMR

Average Total

~7,0,0! 0.099 002 140 30 50 0.075 17 549 14 13.14 184
~8,0,0! 0.110 142 150 30 50 0.070 20 341 14 23.07 323
Weisset al.

220 30 70 180 000
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together with results from experiment5 and two previous
calculations,49,50 are presented in Table III~all energies are
relative to the zero point energy!. All three of the calcula-
tions were performed on the same Corrected SPB99 PES,47

presumably using the same masses, so the results should in
principle agree exactly. However, the three calculations used
very different numerical schemes. Weisset al.49 applied the
filter diagonalization method in connection with a sparse
DVR matrix representation, and a pure imaginary CAP, as
described in Ref. 86; Zouet al.50 used a customizedL2 basis
from truncation recoupling, and a cubic pure imaginary CAP.

From Table III, we do indeed observe very good agree-
ment among the three different calculations, especially for
the resonance energies. For both the~7,0,0! and the~8,0,0!
resonances, the computed energies agree to the level of ac-
curacy reported in Refs. 49 and 50. As for the resonance
widths, the ~7,0,0! value computed here lies right in the
middle ~in a geometric sense! between the Weisset al. and
Zou et al. values—although the range of the computed
widths is quite large, and well outside our converged error
bars. There is better agreement among the computed widths
for the ~8,0,0! resonance, for which our computed width is
the largest. Our result agrees with that of Weisset al. to
within the error bars, but does not agree with that of Zou
et al., which is substantially smaller. Generally speaking, the

differences between the three calculations are small, but in
some cases@e.g., the~7,0,0! resonance width# quite signifi-
cant relevant to the errors estimated from Table II; accord-
ingly, we believe our calculations to be slightly more accu-
rate.

Good agreement between the theoretical and experimen-
tal resonance widths is obtained, and the primary experimen-
tal observation5—i.e., the tremendous increase of the disso-
ciation rate fromn157 to 8 by more than two orders of
magnitude—is quantitatively reproduced. This stark behavior
has been attributed to a combination of two features of the
HOCl system:49 ~1! weak coupling between the OH stretch
and other vibrational modes;~2! large disparity in the mode
frequencies.

The resonance energies obtained from the calculations
are in reasonably good agreement with the experimental
ones, although they are systematically higher. For the~7,0,0!
resonance, the computed energies are around 17 cm21 higher
than the experimental one, whereas for~8,0,0!, they are
about 71 cm21 higher. These discrepancies—and especially,
the trend with increasing energy—are in stark contrast to
those of the bound vibrational states not far below the disso-
ciation limit, such as~6,0,0!, ~4,4,2!, ~5,2,1!, for which the
computed energy values are in almost complete agreement
with experimental ones47,66 ~i.e., to within 0.1 cm21). Of
course, the Corrected SPB99 PES was designed to match the
bound states only, and so a substantially larger discrepancy is
expected for the resonances. Nevertheless, the magnitudes
and trend of the errors suggest there may be more to the
story.

We offer the following possible explanation: As dis-
cussed in Paper I, we discovered a small flaw in the code
used to generate the Corrected SPB99~Ref. 47! values,
whereby the actual potential minimum is 5.317 cm21 lower
than what had been presumed previously.87 This discrepancy
originates from an unexpected small negative contribution of
tails of Gaussians used in the correction potential. In any
event, given that the perturbative inversion correction still
reproduces selected bound states to much higher accuracy
than 5 cm21, this discrepancy may have adversely affected
the determination of parameter values obtained in the correc-

TABLE II. Comparison of the energiesE and widthsG for the vibrational (n1,0,0) resonances of HO35Cl,
computed using different basis sets. The inexact QMR stopping parameter is 331023; the Lanczos stopping
criterion is convergence of the desired resonance~energy and width! to 1024 cm21 or better. State labeln1

refers to OH stretch mode. Basis set parameters are in terms of the three Jacobi coordinatesR, r , andg.

Window Basis set parameters Resonance energies and widths

Label
Energy

~hartrees!
Radial

NR

Radial
Nr

Angular
Ng

E
(cm21)

G
(cm21)

~7,0,0! 0.099 002 140 30 50 21 725.56 2.68(23)
160 30 50 21 725.56 2.68(23)
160 30 60 21 725.56 2.40(23)
140 35 50 21 725.64 2.53(23)

~8,0,0! 0.110 142 150 30 50 24 174.43 2.39
140 30 50 24 174.48 2.36
140 35 50 24 174.49 2.42
140 30 60 24 174.60 2.66
160 35 50 24 174.35 2.36

TABLE III. Comparison between present calculation and literature valuesa

for the energiesE and widthsG of the vibrational (n1,0,0) resonances of
HO35Cl.

State label

Literature results Present calculations

E (cm21) G (cm21) E (cm21) G (cm21)

~7,0,0! 21 725.9b 4.98(24) 21 725.5660.08 2.6860.28(23)
21 725c 0.01
21 709.2d 0.01

~8,0,0! 24 173.3b 1.9 24 174.4360.17 2.3960.27
24 172c 0.6
24 102.1d 1–3

aThe energies are measured with respect to~0,0,0! andJ50.
bFrom Ref. 49.
cFrom Ref. 50.
dExperimental results: from Ref. 5.
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tion procedure. In particular, in order to accurately reproduce
the 22 known vibrational energies up to just below the dis-
sociation limit, the original PES~before correction! might
have been artificially distorted upwards in the correction pro-
cess. Since this process did not make use of the resonance
states, we would expect the distortion of the PES to lead to
increasingly large overestimates for the computed resonance
energies, as the energy increases. Thus, the computed~9,0,0!
resonance energy could be too high by hundreds of wave-
numbers, although experimental measurements for the
~9,0,0! resonance are currently unavailable.

For our previous bound state calculations~Paper I!, we
showed that near ideality is achieved for the low energy cal-
culations; for the highest bound state energies, even a very
large Wyatt block (W514 361) is only able to reduce the
average number of QMR iterations per Lanczos iteration to
aroundL'30. This can be attributed to a sudden increase in
spectral density near the dissociation threshold, and to the
fact that when iterative methods start to ‘‘fail’’~in the sense
of requiring many iterations! performance deteriorates
quickly. The~7,0,0! and~8,0,0! states of the present work are
at even higher energies and~numerical! density of states. In
this and all cases, the ‘‘rule’’ for determining the appropriate
Wyatt block size is simply to choose aD for which the total
CPU time required is reasonably small. This is not expected
to be difficult, as previous experience31,32,66suggests a very
slight dependence onD in the vicinity of the optimal value.

For the calculations performed here, we did not expend
undue effort trying to locate the optimalD; we merely tried
a few different values before settling on those presented in
Table I. It is clear, however, that we are in a largeW regime
for which the computational bottleneck is the linear algebra
manipulations associated with the Wyatt block itself, which
implies loss of ideal scaling. For the~7,0,0! calculation, the
valueW517 549 was used, which reduces the average num-
ber of QMR iterations to justL'13. An even larger Wyatt
block (W520 341) was used for~8,0,0!, for which the aver-
age number of QMR iterations was onlyL'23. Despite the
fact that such largeW values increase the CPU costs substan-
tially @as per the Eq.~6! formula#, the current calculation is
still remarkably efficient. Moreover, it is reassuring to ob-
serve thatW and L are comparable to those of the highest
energy bound state calculation from Paper I (W514 361,L
529), despite being around 5000 cm21 above the dissocia-
tion threshold.

As for the number of Lanczos iterations,M , we found
M514 to be sufficient for both the~7,0,0! and~8,0,0! calcu-
lations. This is reasonable for a resonance calculation,32

though a bit larger than what was probably necessary. In any
event the ratio ofM to the number of desired eigenvalues is
larger than in Paper I for three reasons:~1! extraneous non-
resonance states are computed;~2! the choice of central en-
ergy E was not optimized, but allowed to be off by several
wave-numbers;~3! several initial Lanczos iterations are re-
quired to ‘‘prime the pump,’’ which has a small but notice-
able effect on scaling, particularly for the one-at-a-time cal-
culations performed here. As for~3!, we also note that the
first few Lanczos iterations tend to require fewer QMR itera-

tions, as the Krylov subspace does not yet overlap much with
the numerically problematic eigenstates nearE.

B. JÌ0 calculation for „7,0,0… and „8,0,0… resonances

We also performed a series of calculations for the~7,0,0!
and ~8,0,0! rovibrational resonance states forJ.0, for vari-
ous values ofJ<20. In these calculations, the body-fixed
angular momentum projection quantum number,K ~along
the Jacobi vectorRW ) is chosen to be zero, and Coriolis cou-
pling is ignored. This enables comparisons with the previous
calculations, Ref. 49, where a justification for this approxi-
mation is also provided. One important difference is that the
present calculations utilized the adiabatic rotation
approximation82,83 for determining theJ.0 Hamiltonians,
rather than the more conventional centrifugal sudden~CS!
approximation used in Ref. 49. Qiet al.83 showed, in a lim-
ited way, that the former approximation should be more gen-
eral and more accurate. The adiabatic rotation approximation
was also used to obtain theVJ(r ,R,g) potential function of
Sec. III B 2.

Since theVJ(r ,R,g) depend on the value ofJ, one
should in principle perform detailed convergence tests for
each value ofJ separately. On the other hand, theJ depen-
dence is rather slight, and in addition,VJ(r ,R,g)
2V(r ,R,g) is primarily positive. This suggests that the con-
verged J50 basis should suffice forJ.0 calculations to
comparable energies.84 Accordingly, for a given (n1,0,0)
resonance state, the same basis set was used for allJ values
~Table I!, although some additional convergence testing for
J.0 was also applied.

Some of our results for differentJ values are presented
in Tables IV and V, for~7,0,0! and ~8,0,0!, respectively.
The corresponding results from Weisset al.49 are also pre-
sented. The tables indicate that the present calculations are in
very good agreement with those of Weisset al. However, a
careful inspection reveals that the rotational energy-shifting
that emerges from our calculations are a little bit smaller.
This discrepancy is almost certainly due to the different
approximations that were used for determining theJ.0

TABLE IV. Comparison between present calculation and literature values
~Weisset al.! for the energiesE and widthsG of the rovibrational~7,0,0!
resonances ofJ.0, K50 HO35Cl, for various values ofJ. All quantities
but J are in cm21.

Angular momentum Present calculations Literature results

J E G E G

0 21 725.56 2.68(23) 21 725.9 4.98(24)
5 21 740.59 9.47(24) 21 741.0 1.3(23)

10 21 780.66 1.79(23) 21 781.3 1.2(23)
13 21 816.68 7.54(23) 21 817.5 3.7(23)
14 21 830.69 2.46(22) 21 831.5 3.2(22)
15 21 845.66 1.63(22) 21 846.6 2.5(22)
16 21 861.58 2.65(22) 21 862.7 1.6(22)
17 21 878.35 5.81(22) 21 879.7 3.0(22)
18 21 897.21 2.75(22) 21 897.6 8.1(22)
19 21 916.11 1.64(22) 21 917.6 8.5(22)
20 21 936.07 1.22(22) 21 937.5 3.4(22)
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Hamiltonians—i.e., adiabatic rotation versus CS—which
give rise to slightly different potentials,VJ(r ,R,g).

As further evidence for this claim, we have shown that
the averaged rotational constants for our calculations are
slightly smaller than the corresponding values from the lit-
erature. The rotational constants computed from the present
calculations are 0.501 cm21 for ~7,0,0! ~determined from the
energies forJ50 and J55), and 0.491 cm21 for ~8,0,0!
~determined from the energies forJ50 and J52). Weiss
et al.49 obtained 0.503 cm21 for ~7,0,0!, and 0.533 cm21 for
~8,0,0!, as computed from their Table II~their reported value
for the latter is incorrect!. The reported experimental values
are 0.496 and 0.495 cm21, respectively.5

The resonance widthsG as computed for the differentJ
values considered here, are in good agreement with previous
experimental and theoretical results. In order to simplify
comparisons and highlightJ trends, the resonance width data
from Tables IV and V is also presented in Fig. 2. One can see
that the general tendency and average magnitudes of our re-
sults and those obtained by Weisset al.49 are quite similar.
Nevertheless, Fig. 2 also reveals some small differences be-
tween the two calculations over specificJ ranges. These sug-
gest that our results are perhaps in better agreement with
experimental measurements.

First, most of the data points from our calculations fall
well within the upper and lower limits of the experimental
values. Callegariet al.5 reported that the experimental widths
for the~7,0,0! resonances, withJ513– 19, lie in the range of
0.015– 0.035 cm21; for ~8,0,0! with J50 – 30, the range is
0.5– 2.6 cm21. These limits are indicated by the horizontal
lines shown in Fig. 2. Whereas the Weisset al. calculations
seem to have a number of significant outliers for both~7,0,0!
and ~8,0,0!, our calculations appear to have only one, forJ
517 ~7,0,0! ~curiously,not an outlier for Weisset al.!.

Second, the experimental widths for~8,0,0! show a
broad maximum atJ515,5 in good agreement with the
present results~Fig. 2!. In contrast, the Weisset al. results
are monotonically decreasing over thisJ range, and exhibit a
maximum at the much lower value,J58. As in theJ50
case, the differences in computed resonance widths, though

small, generally lie outside the convergence error bars of the
present calculation.

C. Performance comparison with filter diagonalization

It is of interest to compare the numerical performance of
the present PIST/OSBW method, versus that of the FD ap-
proach, as used by Weisset al.49 When evaluating the per-
formance of different numerical methods, it is almost always
difficult to define a fair comparison—owing to different phi-
losophies that may underly the different approaches, idiosyn-
cracies of the particular application under consideration, and
the myriad technical issues that inevitably come into play.
With regard to a general comparison between PIST/OSBW, a
lengthy discussion of these issues is provided in Paper I, in
the context of the bound state computation for HOCl, and
more generally, in Refs. 31 and 32.

On the other hand, for the particular application consid-
ered here—i.e., the calculation of a small number of highly
excited mode- and state-specific resonances for HOCl—a nu-
merical comparison is more straightforward than in previous
investigations,31,32,66 for several reasons. Moreover, we feel
that the present application exemplifies the differences in de-
sign philosophy between the two approaches. Thus, whereas
FD computes a large number of eigenstates for essentially
the same CPU effort as would be required for a small num-
ber of eigenstates~up to a point!, the CPU effort for PIST/
OSBW is essentially linear in the number of computed
eigenstates. The FD approach provides a great advantage if
the spectral window of interest contains a large number of

TABLE V. Comparison between present calculation and literature values
~Weisset al.! for the energiesE and widthsG of the rovibrational~8,0,0!
resonances ofJ.0, K50 HO35Cl, for various values ofJ. All quantities
but J are in cm21.

Angular momentum Present calculations Literature results

J E G E G

0 24 174.43 2.39 24 173.3 1.9
2 24 177.37 2.36 24 176.5 2.1
4 24 184.47 2.77 24 183.5 2.6
6 24 195.72 2.58 24 194.6 3.3
8 24 211.04 1.68 24 210.3 3.8

10 24 229.63 1.25 24 230.0 2.7
12 24 252.25 1.54 24 252.6 2.1
14 24 280.15 1.46 24 280.5 1.0
16 24 310.86 6.41(21) 24 311.2 5.5(21)
18 24 345.60 1.06(21) 24 346.2 1.7(21)
20 24 384.27 3.63(21) 24 385.2 3.7(21)

FIG. 2. Comparison between present calculation and literature values
~Weisset al.! for the widthsG of the rovibrational resonances ofJ.0, K
50 HO35Cl, as a function ofJ: ~a! ~7,0,0! resonances;~b! ~8,0,0! reso-
nances. Horizontal lines indicate the ranges of experimental measurements
~Callegariet al.!.
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states. On the other hand, PIST/OSBW will be more efficient
in the limit of very narrow spectral windows at very high
excitation energies—the most extreme case being that for
which just a single eigenstate is computed per calculation.

Thus, whereas in general, the relative improvement in
CPU efficiency for PIST/OSBW versus FD depends prima-
rily on the number of states one is interested in, for the
present application for which ‘‘one-at-a-time’’ calculations
are performed, we expect PIST/OSBW to be favored. Such
conclusions are based on theoretical arguments,31,32,66how-
ever, necessitating the demand for numerical comparisons to
provide more quantitative insight for realistic applications. In
this regard, the HOCl resonance application investigated
here is ideal.

A second key design philosophy of the present approach
follows from the first: since PIST/OSBW is ideally suited to
computing small numbers of eigenstates at a time, it is natu-
ral to use basis representations that are customized for the
states of interest. This has the effect of reducing the total
matrix size and~for resonance states! numerical level den-
sity, which lowers the CPU cost of the matrix-vector product,
as well as reducing the number of linear solver iterations
~especially in resonance calculations!.32 This idea has been
implemented in the present application through the use of the
PSO basis representation described in Sec. II A, and espe-
cially the modifications described in Sec. III B 1, designed
specifically to exploit the mode specificity of the desired
resonance states.

Of course, the same sort of basis optimization could be
employed in a FD calculation. If many states were desired, as
in Paper I, this strategy would require splitting up a single
calculation into multiple state- or mode-specific calculations,
in order to be effective. Such a multifurcation need not be the
most efficient implementation of the FD approach, although
it would be ideally suited to a PIST/OSBW calculation. This
is why we maintain that the latter approach is more amenable
to basis optimization in general, which we in fact regard as
being an important partof the method itself. On the other
hand, the present resonance application allows us to put all
such arguments aside, as the current goal is not to compute
manystates, but rather, a very small, mode-specific few. Ac-
cordingly, it is in the best interest of both implementations to
use a customized basis set, and indeed, the FD calculations
of Weisset al. have also done so. The primary point though
is that this leads to more direct comparisons of the two
methods.

Another respect in which the comparison is more direct
pertains to the PESs used, which for the present application
are identical~for purposes of comparison, onlyJ50 is con-
sidered!. This is in contrast to the bound state calculations of
Paper I, for which different PESs were used, leading to com-
plications related to the ranges used for the coordinater .66

For the present comparison, the coordinate ranges appear to
be similar, although Weisset al. usedRmin52.5 instead of
2.0 @see Eq.~5!#. It should be noted that they report using
r max53.5, which is almost certainly incorrect, because:~1!
this is what they used for their earlier bound state calculation
using the SPB98 PES, which does not incorporate the HClO
isomer;66 ~2! this would have resulted in a 5 cm21 increase

to the computed energies~Sec. IV A!. Most likely, the correct
r max is closer to our value of 6.0.

One somewhat important difference between the two
calculations is that ours was performed to a higher level of
accuracy—as reflected in the slightly increased coordinate
ranges, and the convergence errors as reported in Sec. IV A.
This weights the comparison somewhat against PIST/OSBW.
On the other hand, our basis set was substantially smaller—
despite the increased accuracy—owing primarily to better
basis optimization. The latter is more favorable for PIST/
OSBW, although we emphasize once again that we regard
this as being a part of the method. The increased accuracy is
most likely also due in part due to the more efficient CAP
used here, although this plays a surprisingly small role in the
present case, owing to an atypically small absorbing region
~Sec. III B 3!.

The issue of basis sets merits further discussion. For our
calculation, we used a direct product basis with
(NR ,Nr ,Ng)5(150,30,50) functions, giving rise to a total
basis size ofN5225 000. In comparison, the FD calculation
used~220,30,70!, i.e., N5462 000.49 Note that the FD basis
is alsooptimized, in that PO DVRs were used for both of the
radial coordinates. Curiously, the increase in basis size rela-
tive to our basis is actually greater for the optimizedNR than
for the unoptimizedNg . This would not be surprising if slice
potentials were used to generate the PO DVRs, as discussed
in Sec. II A. Although Ref. 49 does not report how these
were generated, we note that the equivalentNr values sug-
gest that similar effective potentials are being used forVr(r ),
which would also be consistent with the slice hypothesis.

Several other, less important issues also come into play,
vis-à-vis a numerical comparison of the two approaches. One
pertains to the calculation of both eigenvalues and eigen-
functions, versus eigenvalues only. Using FD, the CPU cost
of the former is in most cases twice that of the latter, whereas
for PIST/OSBW, the costs are essentially the same. On the
other hand, FD resonance calculations can gain a factor of
two savings in CPU cost, by exploiting a development that
converts complex to real arithmetic, which has not yet been
applied to PIST/OSBW. All of this serves to emphasize, once
again, that a fair CPU cost comparison depends very much
on precisely what and how one wishes to compute; for sim-
plicity, we presume in the present application that these two
factors of 2 ‘‘cancel out.’’

Taking the above discussion under consideration, we
now present the numerical comparison. Regarding the total
number of QMR iterations, we observe a three-order-of-
magnitude reduction, from 180 000 for the FD calculation to
184 for the~7,0,0! PIST/OSBW calculation~Table I!. This
demonstrates the remarkable effectiveness of the OSBW pre-
conditioner, even under very adverse circumstances, and
even though ideal scaling is not quite attained. This reduc-
tion, moreover, is greater than that observed in any previous
numerical comparison with FD,31,32 including the bound
state HOCl calculation of Paper I. We attribute this to the
larger matrices involved here, and also to the fact that PIST/
OSBW is favored in the narrow spectral window limit.

On the other hand, the CPU cost per iteration is substan-
tially greater for PIST/OSBW than for FD; and moreover, the
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CPU cost of the~one-time! Wyatt block LU decomposition is
also very substantial. Accordingly, we also provide a com-
parison of the total number of CPU operations involved. For
PIST/OSBW, this is obtained using Eq.~6!; for FD, the for-
mula is K(Nr1NR1Ng)NrNRNg . The results of this nu-
merical comparison, both with and without the Wyatt block
LU decomposition, are presented in Table VI. The respective
reductions in total CPU effort are around 153 and 2303.
However, the true savings on our computer platform~Com-
paq ES45, 1200MHz CPU, 16GB RAM! are in realitymany
times greater, because the memory and compiler architec-
tures are much more efficient for the Wyatt block operations
than for the matrix-vector product operations. Similar behav-
ior has been observed on other platforms,31 and is anticipated
more generally, although to an extent that must be platform-
dependent.

In any event, we present data for calculations both with
and without the LU decomposition step, because there are
several simple techniques that can be used to mitigate the
CPU cost of this step—which is now the bottleneck of the
entire calculation. For instance, only a single LU decompo-
sition is required for a large number of convergence calcula-
tions. Alternatively, one can avoid explicit LU decomposi-
tion altogether, by solving the linear algebra problem for the
Wyatt block itself at each iteration. This might best be imple-
mented using a ‘‘sub-Wyatt,’’ or even a ‘‘recursive Wyatt’’
approach. As for a recursive implementation of OSB, this is
currently being investigated, as is portability to massively
parallel computing platforms.

V. SUMMARY

Using an integrative combination of techniques, we have
performed an accurate and highly efficient calculation of the
~7,0,0! and~8,0,0! resonance states of HOCl, which are states
for which the OH bond is selectively and highly excited.
This work builds on the previous effort~Paper I! in several
important ways: First, resonances well above the dissociation
threshold were computed, rather than bound states, requiring
the use of the optimized polynomial CAP method~Sec. II B!,
in addition to the PSO DVR basis, PIST iteration, and
OSBW preconditioning methods used previously. Second,
the effectiveness of the one-state-at-a-time approach for
computing selected mode- and state-specific resonances was
evaluated. Third, calculations were performed for theJ.0
rovibrational resonances, in addition toJ50.

Careful convergence studies were conducted, and our
calculational results are in very good agreement with those

of Weisset al.,49 and Zouet al.,50 although our results appear
to be somewhat more converged. Our calculations reveal that
full convergence of states with high overtones of the OH
stretching mode requires a larger max. In particular, we find
thatr max56.0 bohrs is required, although there is pseudocon-
vergence in the vicinity ofr max53.5– 4.5 bohrs, which leads
to substantially higher computed energies~Sec. IV A!. Weiss
et al.49 reported anr range of 1.2–3.5 bohrs for their reso-
nance calculations, which may not be correct, given the very
good agreement with the present results.

Good agreement with previous experiments5 is also ob-
served~Table II and Fig. 2!. By design, the 22 experimen-
tally known vibrational bands are reproduced to very high
accuracy by the Corrected SPB99 PES.47,66 In contrast, the
computed resonance energies for~7,0,0! and ~8,0,0! exceed
the experimental values by 17 and 71 cm21, respectively. We
believe such large discrepancies may be due to the fact that
the actual potential minimum of the Corrected SPB99 PES is
25.317 cm21, rather than 0 cm21 as presumed by the
creators.47,87 From this trend, we predict that the computed
resonance energy for~9,0,0! would exceed the experimental
value by hundreds of wave numbers, although so far, no
experimental measurements for this resonance have been
conducted.

The present PIST/OSBW calculations used 184 itera-
tions to compute the~7,0,0! vibrational resonance, whereas
180 000 iterations were used in a previous FD calculation49

on the same PES. We attribute this remarkable efficiency
primarily to the fact that PIST/OSBW is more favored in the
limit of narrow spectral windows at high energies, although
the basis set and CAP are contributing factors. In any event,
it is clear that the present computational scheme is well-
suited for computing state-specific and bond-selective fea-
tures, with ‘‘surgical precision.’’

On the other hand, the computational bottleneck is now
to be found in the Wyatt block manipulations, due to loss of
ideal scaling. Consequently, the CPU cost per matrix-vector
product is somewhat larger than for the FD calculation, and
in addition, a computationally expensive, one-time LU de-
composition procedure is required. These additional CPU
costs are reflected in Table VI, which underestimates the per-
formance of PIST/OSBW, for reasons explained in Sec.
IV C. Techniques for mitigating the cost of LU decomposi-
tion will be explored in future papers, wherein we shall also
apply the method to more challenging test cases such as
acetylene/vinylidene.
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