
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

J. Math. Anal. Appl. 331 (2007) 1396–1414

www.elsevier.com/locate/jmaa

A SIRS epidemic model with infection-age
dependence ✩

Zhang Zhonghua a, Peng Jigen b,∗

a Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, China
b Research Center for Applied Mathematics, Xi’an Jiaotong University, Xi’an 710049, China

Received 26 April 2006

Available online 3 November 2006

Submitted by Steven G. Krantz

Abstract

Based on J. Mena-Lorca and H.W. Hethcote’s epidemic model, a SIRS epidemic model with infection-
age-dependent infectivity and general nonlinear contact rate is formulated. Under general conditions, the
unique existence of its global positive solutions is obtained. Moreover, under more general assumptions
than the existing, the existence and asymptotical stability of its equilibria are discussed. In the end, the
condition on the stability of endemic equilibrium is verified by a special model.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In most epidemiological models, it has been assumed that all infected individuals are equally
infectious during their infectivity period. The assumption has been proved to be reasonable in
the study of the dynamics of communicable diseases such as influenza [8] and the sexually trans-
mitted diseases such as gonorrhea [9]. However, the early infectivity experiments [10] reported
in Francis together with the measurements of HIV antigen and antibody titers have supported
the possibility of an early infectivity peak (a few weeks after exposure) and a late infectivity
plateau (one year or so before the onset of “full-blown” AIDS) [11]. Therefore, there are enough
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reasons to study the possible effects of variable infectivity on the epidemic dynamics. The ini-
tial work was owed to Kermack and Mckendrick [12–15], where the infectivity was allowed to
depend on infection-age (namely, the time that has passed since the moment of infection). How-
ever, the infection-age-dependent epidemic models were largely neglected until 1970s [16,17].
Recently, the infection-age-dependent epidemic models have been extensively considered (see,
for examples, [2–7]).

In [4], H.R. Thieme and C. Castillo-Chavez explored the role of variable infectivity together
with a variable incubation period in the dynamics of HIV transmission in a homogeneously mix-
ing population, and discussed both the asymptotical behavior of the equilibria and the possibility
whether the undamped oscillations occur or not. In [2], M.Y. Kim and F.A. Milner formulated
a SIR epidemic model with screening together with variable infectivity and proved the global
existence and uniqueness of the positive solution. In a sequent paper [3], M.Y. Kim discussed the
asymptotical properties of equilibria of the model. In [5], C.M. Kribs-Zaleta and M. Martcheva
modelled a disease with acute, chronic infective stages, variable infectivity, and recovery rates
and exhibited backward bifurcations under some conditions. In [6], H. Inaba and H. Sekine stud-
ied the stability of the equilibria of an infection-age-dependent model for Chagas disease. In [7],
Jia Li et al. considered epidemiological models for the transmission of a pathogen that can mu-
tate in the host to create a second infectious mutand strain and showed that there exists a Hopf
bifurcation where the endemic equilibrium loses its stability under certain circumstances.

In [9], considering temporary immunity, Mena-Lorca and Hethcote founded a kind of SIRS
model. Indeed, it is a quite general model for epidemic transmission and many traditional epi-
demic models can be viewed as its special examples. However, in that model the infection-age
did not be considered. In this paper, by incorporating the infection-age and general contact rate
into the Mena-Lorca and Hethcote’s model, we formulate a SIRS epidemic model, and then study
the existence and uniqueness of the positive solutions together with the existence and stability of
equilibria.

The remainder of this paper is organized as follows. Section 2 is devoted to the model deriva-
tion. Section 3 proves the global existence and uniqueness of positive solutions. Section 4 studies
the existence together with the asymptotical stability of the equilibria and the condition on the
stability of endemic equilibrium is verified by a special model.

2. Model formulation

Mena-Lorca and Hethcote’s SIRS epidemic model [1] is described by⎧⎪⎨⎪⎩
dS(t)

dt
= Λ − μS(t) − βS(t)I (t) + δR(t),

dI (t)
dt

= βS(t)I (t) − μI (t) − αI (t) − εI (t),

dR(t)
dt

= εI (t) − δR(t) − μR(t),

(2.1)

where S(t), I (t) and R(t) respectively denote the numbers of susceptibles, infectives and recov-
ered at time t , Λ is the input flow, μ the natural mortality rate, β the transmission rate, α the
death rate due to disease, ε the recovery rate, δ the rate that the removed return to the susceptible
and β the infection rate. Obviously, no infection-age was considered in this model. As stated in
the introduction, for infections, specially those may last for a long time (relative to the life span
of the infected individuals), and it is necessary for variable infectivity to predict accurately the
spread of the infection in population [18]. Now, we concentrate our attention on the SIRS model
(2.1) in which I (t), α, ε and β are all structured by the infection-age. Denote by τ the infection-
age variable, by i(t, τ ) the distribution function of I (t) over infection-age τ at time t , and by



Aut
ho

r's
   

pe
rs

on
al

   
co

py

1398 Z. Zhang, J. Peng / J. Math. Anal. Appl. 331 (2007) 1396–1414

β(τ), α(τ) and ε(τ ) the distribution functions of β , α and ε over τ , respectively. Then, the in-
fected individuals I (t) at time t equals to

∫∞
0 i(t, τ ) dτ , the nonlinear incidence is characterized

by

C(S(t), I (t),R(t))

S(t) + I (t) + R(t)
S(t)

∞∫
0

β(τ)i(t, τ ) dτ

where C(S(t), I (t),R(t)) is the contact rate (i.e., the mean number contacts per individual per
unit time), the recovery individuals from disease is characterized by

∫∞
0 ε(τ )i(t, τ ) dτ , and the

continuous-time dynamics of the infected individuals is governed by a partial differential equa-
tion other than an ordinary equation (that is, the second equation in the model (2.1) will be
replaced by a partial differential equation of the distribution i(t, τ )). Correspondingly, we derive
a new SIRS epidemic model with general nonlinear contact rate⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ − μS(t) − C(S(t),I (t),R(t))
N(t)

S(t)
∫∞

0 β(τ)i(t, τ ) dτ + δR(t),

∂i(t,τ )
∂t

+ ∂i(t,τ )
∂τ

= −(μ + α(τ) + ε(τ ))i(t, τ ),

dR(t)
dt

= ∫∞0 ε(τ )i(t, τ ) dτ − (μ + δ)R(t),

N(t) = S(t) + I (t) + R(t),

i(t,0) = C(S(t),I (t),R(t))
N(t)

S(t)
∫∞

0 β(τ)i(t, τ ) dτ,

i(0, τ ) = η(τ), S(0) = S0, R(0) = R0,

(2.2)

where Λ is the input flow into susceptible, μ the natural mortality rate, δ the rate for loss
of immunity (return to susceptibles), η(τ) the initial distribution of infected individuals with
infection-age, S0 and R0 are the initial susceptibles and recovered, respectively.

In model (2.2), if all of the individuals are assumed to have the same mortality rate (i.e.
α(τ) = 0 for all τ ) and the individuals recovered from the disease are assumed to immediately
enter the class of removed individuals and not to participate in the dynamics of transmission
(i.e. δ = 0), then the model is reduced to Kim–Milner model [2] with screening individuals (the
infected individuals who are screened and enter into the compartment of the removed)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= Λ − μS(t) − C(S(t),I (t))
S(t)+I (t)

S(t)
∫∞

0 β(τ)i(t, τ ) dτ,

∂i(t,τ )
∂t

+ ∂i(t,τ )
∂τ

= −(μ + ε(τ ))i(t, τ ) − σ(S(t),I (t))
S(t)+I (t)

i(t, τ ),

dR(t)
dt

= ∫∞0 ε(τ )i(t, τ ) dτ − μR(t) + σ(S(t),I (t))
S(t)+I (t)

I (t),

i(t,0) = C(S(t),I (t))
S(t)+I (t)

S(t)
∫∞

0 β(τ)i(t, τ ) dτ,

i(0, τ ) = η(τ), S(0) = S0, R(0) = R0,

(2.3)

where σ(S(t),I (t))
S(t)+I (t)

is the number of individuals screened per unit time. Furthermore, if the in-
fected individuals are additionally assumed not to be cured and the contact rate is assumed to
be a function of only the total of S(t) and I (t), then the model is reduced to Thieme–Chavez
model [18].

Throughout the remainder of the paper, we adopt the following assumptions similar to Kim
and Milner’s [2]. The contact rate C is a nonnegative and partially differentiable function of
S, I and R such that ∂C

∂S
, ∂C

∂I
, ∂C

∂R
∈ L∞([0,∞) × [0,∞) × [0,∞)); the nonnegative functions

α, ε and β satisfy α(·), ε(·) ∈ C1[0,∞) ∩ L∞[0,∞) with α′(·), ε′(·) ∈ L∞[0,∞), and β(·) ∈
C2[0,∞) ∩ L∞[0,∞) with β ′(·), β ′′(·) ∈ L∞[0,∞); Λ, μ and δ are positive constants. Denote
by ‖ · ‖1 the norm of Banach space L1[0,∞), by ‖ · ‖∞ the norm of Banach space L∞[0,∞),
and by L1+[0,∞) the positive cone of nonnegative functions in L1[0,∞).
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3. Global existence and uniqueness of positive solution

For convenience, we denote B(t) = i(t,0) = C(S(t),I (t),R(t))
N(t)

S(t)
∫∞

0 β(τ)i(t, τ ) dτ and m =
μ + δ. Integrating the second equation of (2.2) along the characteristic line t = τ yields

i(t, τ ) =
{

B(t − τ)π(τ), t − τ � 0;
η(τ − t)π(τ − t, τ ), τ − t > 0,

(3.1)

where

π(τ) = e− ∫ τ0 (μ+α(ρ)+ε(ρ)) dρ, π(τ1, τ2) = e
− ∫ τ2

τ1
(μ+α(ρ)+ε(ρ)) dρ

. (3.2)

Thus, we get an equivalent system to (2.2)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(t) = e−μt−∫ t0 B1(s) ds[S0 + ∫ t0 (Λ + δR(s))eμs+∫ s0 B1(ρ) dρ ds],
I (t) = ∫ t0 B1(t − τ)S(t − τ)π(τ) dτ + ∫∞

t
η(τ − t)π(τ − t, τ ) dτ,

R(t) = e−mt [R0 + ∫ t0 emsf (s) ds],
B1(t) = C(S(t),I (t),R(t))

N(t)

∫ t
0 β(τ)B1(t − τ)S(t − τ)π(τ) dτ + g(t),

(3.3)

where

B(t) = B1(t)S(t), (3.4)

f (t) =
t∫

0

ε(τ )B1(t − τ)S(t − τ)π(τ) dτ +
∞∫
t

ε(τ )η(τ − t)π(τ − t, τ ) dτ,

g(t) = C(S(t), I (t),R(t))

N(t)

∞∫
t

β(τ )η(τ − t)π(τ − t, τ ) dτ.

Lemma 1. Let S0 � 0, R0 � 0 and η ∈ L1+[0,∞). Then, there exists a constant T > 0 such that
the model (2.2) admits a unique nonnegative solution (S(t), I (t),R(t)) on [0, T ).

Proof. It is clear that for each T > 0 and any triple (S, I,R) ∈ (C+[0, T ])3 (where C+[0, T ]
stands for the positive cone of nonnegative functions in C[0, T ]), both the convolution kernel and
g(t) in the forth equation of system (3.3) are nonnegative and continuous. By the general theory
of Volterra equations [20, p. 13] we conclude that for any given triple (S, I,R) ∈ (C+[0, T ])3,
the forth equation of system (3.3) has a nonnegative solution B1(t), which is denoted by
H(S, I,R)(t) below. Substituting H(S, I,R)(t) into (3.3) leads to the following integral equa-
tions with respect to (S(t), I (t),R(t))⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(t) = e−μt−∫ t0 H(S,I,R)(s) ds[S0 + ∫ t0 (Λ + δR(s))eμs+∫ s0 H(S,I,R)(ρ)dρ ds],
I (t) = ∫ t0 H(S, I,R)(t − τ)S(t − τ)π(τ) dτ + ∫∞

t
η(τ − t)π(τ − t, τ ) dτ,

R(t) = e−mtR0 + e−mt
∫ t

0 [ems
∫ s

0 ε(τ )H(S, I,R)(s − τ)S(s − τ)π(τ) dτ

+ ∫∞
s

ε(τ )η(τ − s)π(τ − s, τ ) dτ ]ds.

(3.5)

Define three operators S, I,R from (C+[0, T ])3 into C+[0, T ] as follows
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S(S, I,R)(t) = e−μt−∫ t0 H(S,I,R)(s) ds

[
S0 +

t∫
0

(
Λ + δR(s)

)
eμs+∫ s0 H(S,I,R)(ρ)dρ ds

]
, (3.6)

I(S, I,R)(t) =
t∫

0

H(S, I,R)(t − τ)S(t − τ)π(τ) dτ +
∞∫

0

η(τ)π(τ, τ + t) dτ (3.7)

and

R(S, I,R)(t) = e−mt

[
R0 +

t∫
0

ems

( s∫
0

ε(τ )H(S, I,R)(s − τ)S(s − τ) dτ

+
∞∫
s

ε(τ )η(τ − s)π(τ − s, τ ) dτ

)
ds

]
. (3.8)

Then, S(t), I (t),R(t) � 0 solve the equations of (2.2) over [0, T ] iff the triple (S, I,R) ∈
(C+[0, T ])3 is a fixed point of the map F : (C+[0, T ])3 → (C+[0, T ])3, F(S, I,R) =
(S(S, I,R), I(S, I,R),R(S, I,R)).

Without loss of generality, we assume that S0 + I0 + R0 	= 0, where I0 = ∫∞0 η(τ) dτ .

Endow the space (C[0, T ])3 with the norm ‖(x1, x2, x3)‖T ,3 =∑3
j=1 ‖xj‖T , where ‖xj‖T =

supt∈[0,T ] |xj (t)|, and let OT ,r ⊂ (C+[0, T ])3 be a closed ball of radius r � S0+I0+R0
2 , centered

at (S0, I0,R0). It can be shown for each (S, I,R) ∈ OT ,r ,

‖S + I + R‖T � (S0 + I0 + R0) − r := K > 0

and

‖S‖T � R0 + I0

2
+ 3

2
S0, ‖I‖T � S0 + R0

2
+ 3

2
I0, ‖R‖T � S0 + I0

2
+ 3

2
R0.

Therefore, it follows from the forth equation of system (3.3) that

H(S, I,R)(t) � CT β∞
K

[
2S0 + N0

2

t∫
0

H(S, I,R)(s) ds + I0

]
, (3.9)

for all (S, I,R) ∈ OT ,r , where CT = supt∈[0,T ] C(S(t), I (t),R(t)), β∞ = ‖β‖∞ and N0 = S0 +
I0 + R0. Applying Gronwall’s inequality lemma [19, p. 23] to (3.9) yields

H(S, I,R)(t) � K1e
K2t , K1 = CT β∞I0

K
, K2 = CT β∞(2S0 + N0)

2K
. (3.10)

Now, we show that the operator F maps OT ,r into itself for some T > 0. Let (S, I,R) ∈ OT ,r .
Then, by the formulae (3.6)–(3.8), for all t ∈ [0, T ] we can show,∣∣S(S, I,R)(t) − S0

∣∣
� S0
∣∣1 − e−μt−∫ t0 H(S,I,R)(s) ds

∣∣+ ∣∣∣∣∣
t∫

0

(
Λ + δR(s)

)
e−μ(t−s)−∫ ts H(S,I,R)(ρ)dρ ds

∣∣∣∣∣
�
(
1 − e−μt−∫ t0 K1e

K2s ds
)
S0 +
(

Λ + N0 + 2R0

2
δ

)
T
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�
[(

μ + K1e
K2T
)
S0 +
(

Λ + N0 + 2R0

2
δ

)]
T ,∣∣I(S, I,R)(t) − I0

∣∣
�
∣∣∣∣∣

t∫
0

H(S, I,R)(t − τ)S(t − τ)π(τ) dτ

∣∣∣∣∣+
∣∣∣∣∣

∞∫
0

η(τ)
(
π(τ, τ + t) − 1

)
dτ

∣∣∣∣∣
� 2S0 + N0

2

t∫
0

K1e
K2τ dτ +

∣∣∣∣∣
∞∫

0

η(τ)
[
1 − e− ∫ τ+t

τ (μ+α(ρ)+ε(ρ)) dρ
]
dτ

∣∣∣∣∣
�
[

2S0 + N0

2
K1e

K2T + I0(μ + α∞ + ε∞)

]
T

and ∣∣R(S, I,R)(t) − R0
∣∣

�
∣∣(e−mt − 1

)
R0
∣∣+ ∣∣∣∣∣

t∫
0

e−m(t−s)

[ s∫
0

ε(τ )π(τ)H(S, I,R)(s − τ)S(s − τ) dτ

+
∞∫
s

ε(τ )η(τ − s)π(τ − s, τ ) dτ

]
ds

∣∣∣∣∣
� mR0T + ε∞T

[
2S0 + N0

2
K1e

K2T T + I0

]
,

where ε∞ = ‖ε‖∞ and α∞ = ‖α‖∞. Therefore, for sufficiently small T > 0, F really maps OT ,r

into itself.
Let (Si, Ii,Ri) ∈ OT ,r (i = 1,2) and


1(t) = ∣∣S(S1, I1,R1)(t) − S(S2, I2,R2)(t)
∣∣,


2(t) = ∣∣I(S1, I1,R1)(t) − I(S2, I2,R2)(t)
∣∣,


3(t) = ∣∣R(S1, I1,R1)(t) − R(S2, I2,R2)(t)
∣∣.

Obviously, F is a contraction mapping on OT ,r . In fact, for t ∈ [0, T ] we have


1(t)

� S0e
−μt
∣∣e− ∫ t0 H(S1,I1,R1)(s) ds − e− ∫ t0 H(S2,I2,R2)(s) ds

∣∣
+ Λ

∣∣∣∣∣
t∫

0

e−μ(t−s)
(
e− ∫ ts H(S1,I1,R1)(s) ds − e− ∫ ts H(S2,I2,R2)(s) ds

)
ds

∣∣∣∣∣
+ δ

∣∣∣∣∣
t∫

0

(
R1(s)e

−μ(t−s)−∫ ts H(S1,I1,R1)(ρ) dρ − R2(s)e
−μ(t−s)−∫ ts H(S2,I2,R2)(ρ) dρ

)
ds

∣∣∣∣∣
:= e1(t) + e2(t) + e3(t),
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2(t) �
∣∣∣∣∣

t∫
0

(
S1(s)H(S1, I1,R1)(s) − S2(s)H(S2, I2,R2)(s)π(t − s)

)
ds

∣∣∣∣∣
and


3(t) �
∣∣∣∣∣

t∫
0

e−m(t−s)

s∫
0

ε(τ )π(τ)
[
S1(s − τ)H(S1, I1,R1)(s − τ)

− S2(s − τ)H(S2, I2,R2)(s − τ)
]
dτ ds

∣∣∣∣∣.
Let h(t) = H(S1, I1,R1)(t) − H(S2, I2,R2)(t), t ∈ [0, T ]. Since H(S, I,R)(t) solves the forth
equation of system (3.3), it follows that for all t ∈ [0, T ],
∣∣h(t)
∣∣� ∣∣
4(t)

∣∣∣∣∣∣∣
t∫

0

β(τ)H(S2, I2,R2)(t − τ)S2(t − τ)π(τ) dτ

∣∣∣∣∣
+ ∣∣
4(t)

∣∣∣∣∣∣∣
∞∫
t

β(τ )η(τ − t)π(τ − t, τ ) dτ

∣∣∣∣∣
+
∣∣∣∣∣C(S1, I1,R1)

N1

t∫
0

β(t − τ)π(t − τ)
5(τ ) dτ

∣∣∣∣∣, (3.11)

where Nj(t) = Sj (t) + Ij (t) + Rj (t), j = 1,2,


4(t) = C(S1(t), I1(t),R1(t))

N1(t)
− C(S2(t), I2(t),R2(t))

N2(t)
, t ∈ [0, T ]

and


5(t) = [H(S2, I2,R2)(t)S2(t) − H(S1, I1,R1)(t)S1(t)
]
.

By (3.10), make an upper estimation of 
5(t)∣∣
5(t)
∣∣� K1e

K2T
∥∥(S2 − S1, I2 − I1,R2 − R1)

∥∥
T

+ 2S0 + N0

2

∣∣h(t)
∣∣, t ∈ [0, T ].

Applying the mean value theorem of differentials to 
4, for all t ∈ [0, T ] we obtain,

‖
4‖T �
∥∥∇F(θ) · (S2 − S1, I2 − I1,R2 − R1)

∥∥
T

�
5
2N0
∑3

j=1 CT
j + 3CT

K2

∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
,

where θ ∈ (0,1), C1 = ∂C
∂S

, C2 = ∂C
∂I

, C3 = ∂C
∂R

, CT
j = supt∈[0,T ] |Cj (t)|, j = 1,2,3,

∇F(θ) = ∇
(

C(S1 + θ(S2 − S1), I1 + θ(I2 − I1),R1 + θ(R2 − R1))

N1 + θ(N2 − N1)

)
and ∇ is the gradient operator. Combining the inequalities about ‖
4‖T and ‖
5‖T with the
inequality (3.11), we have
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∣∣h(t)
∣∣� P2

t∫
0

∣∣h(s)
∣∣ds + P1

∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
, t ∈ [0, T ]

where

P1 = β∞
(

I0 + 2S0 + N0

2
K1T eK2T

) 5
2N0
∑3

j=1 CT
j + 3CT

K2
+ CT β∞

K
K1T eK2T

and

P2 = (2S0 + N0)CT β∞
2K

.

Solving the above inequality yields∣∣h(t)
∣∣� P1e

P2t
∥∥(S2 − S1, I2 − I1,R2 − R1)

∥∥
T
, t ∈ [0, T ].

Therefore, for all t ∈ [0, T ] we have,

e1(t) � S0P1T eP2T
∥∥(S2 − S1, I2 − I1,R2 − R1)

∥∥
T
,

e2(t) � ΛP1T
2eP2T
∥∥(S2 − S1, I2 − I1,R2 − R1)

∥∥
T
,

e3(t) � δT

(
1 + 2R0 + N0

2
P1T eP2T

)∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
.

From the above inequalities, it follows


1(t) � T

[
P1e

P2T

(
S0 + ΛT + 2R0 + N0

2
T

)
+ δ

]∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
,


2(t) � T

[
K1e

K2T + 2S0 + N0

2
P1e

P2T

]∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
,


3(t) � ε∞T 2
[

2S0 + N0

2
P1e

P2T + K1e
K2T

]∥∥(S2 − S1, I2 − I1,R2 − R1)
∥∥

T
.

These three inequalities imply that the component operators S, I and R of F are contraction
mappings in OT ,r for sufficiently small T > 0. Accordingly, Brouwer’s fixed point theorem gives
the unique existence of the fixed point of F, which is just the unique positive solution of (2.2) on
[0, T ). �
Theorem 3.1. For all initial values S0 � 0, R0 � 0 and η ∈ L1+[0,∞), the model (2.2) admits a
unique nonnegative solution (S(t), I (t),R(t)) on [0,∞).

Proof. Let [0, T ) be the maximal existence interval of the positive solution (S(t), I (t),R(t))

initiated from (S0, I0,R0), where I0 = ∫∞0 η(τ) dτ . By the proof of Lemma 1 it is plain that
T is a continuous function of the initial values (S0, I0,R0). For convenience, we denote T by
T (S0, I0,R0).

Let i(t, τ ) be defined by (3.1), with B(t) being the corresponding solution of the equation
of (3.4). Then, it is easy to check that i(t, τ ) is just the distribution of I (t) over the infection-
age τ . Obviously, i(t, τ ) is nonnegative for all τ � 0 and for all t ∈ [0, T ). Hence, integrating the
second equation of system (2.2) over τ from 0 to ∞ yields

dI (t)

dt
� B(t) − μI (t) −

∞∫
0

(
α(τ) + ε(τ )

)
i(t, τ ) dτ, t ∈ [0, T ). (3.12)
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Combining the first and the third equations of (2.2) with Eq. (3.12) leads to

dN(t)

dt
� Λ − μN(t) −

∞∫
0

α(τ)i(t, τ ) dτ, t ∈ [0, T ). (3.13)

For all t ∈ [0, T ), from (3.12) and (3.13) we derive the following priori estimations of N(t) and
I (t)

N(t) � N0 + Λt, I (t) � I0 + CT βT

(
N0t + Λt2

2

)
. (3.14)

Define

BS(t) = N0 + (Λ + δN0)t + 1

2
δΛt2,

BI (t) = N0 + CT βT

(
N0t + 1

2
Λt2
)

,

BR(t) = N0 + N0t + 1

2
Λt2.

Obviously, these functions are strictly monotone increasing with respect to t in [0,∞), and S0 �
BS(t), I0 � BI (t) and R0 � BR(t) for all t � 0. Let T̃ > T (S0, I0,R0) and

T ∗ = min
(φ1,φ2,φ3)∈[0,BS(T̃ )]×[0,BI (T̃ )]×[0,BR(T̃ )]

T (φ1, φ2, φ3).

By Lemma 1 and the continuity of T (·, · ,·), we get 0 < T ∗ � T (S0, I0,R0). Moreover, from
(3.14) it follows that

S
(
T ∗)< BS

(
T (S0, I0,R0)

)
� BS(T̃ ),

I
(
T ∗)< BI

(
T (S0, I0,R0)

)
� BI (T̃ ),

R
(
T ∗)< BR

(
T (S0, I0,R0)

)
� BR(T̃ ).

Hence, T ∗ � T (S(T ∗), I (T ∗),R(T ∗)). This indicates that the model (2.2) admits a unique pos-
itive solution on the interval [T ∗,2T ∗], initiated from (S(T ∗), I (T ∗),R(T ∗)). Similarly, we can
show that the model (2.2) admits a unique positive solution on any interval [kT ∗, (k + 1)T ∗] as
long as (k + 1)T ∗ � T̃ . So, by the arbitrariness of T̃ we conclude the theorem. �
Remark 1. It should be noted that in our theorem there is not any assumption imposed on the
distribution function i(t, τ ) of the infected individuals. However, in [5] i(t, τ ) is assumed to
satisfy limτ→∞ i(t, τ ) = 0 for all t � 0.

4. Asymptotic stability analysis

In epidemic dynamic, the existence and stability of equilibrium are important research topics
because of the equilibrium standing for the possible ultima states of the special disease, and
the asymptotic stability of an equilibrium revealing the capability of disease that tends to the
ultima state corresponding to the equilibrium. This section is mainly devoted to the existence
and asymptotic stability of equilibria of the model (2.2). Moreover, the reproductive number R0
(namely, the number of secondary cases produced in a completely susceptible population by
a typical infected individual during its whole period of infection) is found, which is usually
intimately connected with the existence of equilibria.
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Obviously, (S, i(·),R) is an equilibrium of system (2.2) iff it solves the following equations⎧⎪⎪⎪⎨⎪⎪⎪⎩
Λ − μS − B + δR = 0,
di(τ )
dτ

= −(μ + α(τ) + ε(τ ))i(τ ),∫∞
0 ε(τ )i(τ ) dτ − mR = 0,

B = C(S,I,R)
N

S
∫∞

0 β(τ)i(τ ) dτ = i(0),

(4.1)

where I = ∫∞0 i(τ ) dτ . Hence, system (2.2) always possesses the disease-free equilibrium
(Λ

μ
,0,0). In the following we discuss the existence of endemic equilibria of (2.2).
Solving the second equation of (4.1), we have

i(τ ) = i(0)π(τ), (4.2)

where π(τ) is defined by (3.2). Substituting (4.2) into Eqs. (4.1), we further have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
S = Λ−(1− δ

m

∫∞
0 ε(τ)π(τ) dτ)B

μ
,

I = B
∫∞

0 π(τ) dτ,

R = B
∫∞

0 π(τ)ε(τ ) dτ

m
,

B = C(S,I,R)
S+I+R

SB
∫∞

0 β(τ)π(τ) dτ.

(4.3)

Define a real function G on [0,∞)

G(B) = C(S(B), I (B),R(B))

S(B) + I (B) + R(B)
S(B)

∞∫
0

β(τ)π(τ) dτ, B � 0 (4.4)

where S = S(B), I = I (B) and R = R(B) are defined by (4.3). It is clear that G is a continuous
real function.

Theorem 4.1. Let

R0 = C

(
Λ

μ
,0,0

) ∞∫
0

β(τ)π(τ) dτ. (4.5)

Then, in the case that R0 > 1, there exists at least an endemic equilibrium, while in the case that
R0 � 1, no endemic equilibrium exists if the function G define by (4.4) is strictly decrease.

Proof. By (4.3), we know that the existence of endemic equilibria is equivalent to the exis-
tence of positive parameter B that solves the forth equation of (4.3). Obviously, a positive
B solves the forth equation of (4.3) iff it satisfies G(B) = 1. It is clear that G(0) = R0
and G( Λ

1− δ
m

∫∞
0 ε(τ)π(τ) dτ

) = 0. Hence, if R0(= G(0)) > 1, there exists at least a B such that

G(B) = 1. Corresponding to this determined B , an endemic equilibrium is specified by (4.3).
If R0 � 1 (that is, G(0) = R0 � 1), then only B = 0 satisfies G(B) = 1 provided G is strictly
decrease. �
Remark 2. The strict decrease of function G is not a restrictive assumption for a practical epi-
demic model. In fact, it is not hard to check that if C(S, I,R) = C(N) and C′(N) � 0 then G

is strictly decreasing, where C(S, I,R) = C(N) and C′(N) � 0, that is, the contact rate C is a
function of the total population and increased with the total population.
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In the remainder of this section, we study the asymptotic behavior of (2.2). First, similar to the
proof of Theorem 2 of [4], we obtain the global asymptotic stability of disease-free equilibrium
provided R0 < 1. Specifically,

Theorem 4.2. Assume that C = C(N), and C′(N) � 0. If R0 < 1, the disease-free equilibrium
of the model (2.2) is globally asymptotical stability.

Similar to the proof of Theorem 3.1 of [3], we can prove the following more general stability
theorem.

Theorem 4.3. Assume that C(S, I,R) � C(Λ
μ

,0,0) for all nonnegative S, I and R. If R0 < 1,
then the disease-free equilibrium of the model (2.2) is globally asymptotically stable.

Next, we analyze the stability of endemic equilibrium if it exists. Let (S∗, i∗(τ ),R∗) be an en-
demic equilibrium of (2.2). Set S(t) = S(t)−S∗, i(t, τ ) = i(t, τ )− i∗(τ ) and R(t) = R(t)−R∗.
Clearly, system (2.2) is equivalently transferred into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= −μS(t) + δI(t) − i(t,0),

∂i(t,τ )
∂t

+ ∂i(t,τ )
∂τ

= −(μ + α(τ) + ε(τ ))i(t, τ ),

R(t)
dt

= ∫∞0 ε(τ )i(t, τ ) dτ − mR(t),

i(t,0) = i(t,0) − i∗(0),

S(0) = S0 − S∗, η(τ ) = η(τ) − i∗(τ ),

I (0) = I (0) − I ∗, R(0) = R0 − R∗,

(4.6)

where

i(t,0) = M(t)

∞∫
0

β(τ)
(
i(t, τ ) + i∗(τ )

)
dτ − M∗

∞∫
0

β(τ)i∗(τ ) dτ,

M(t) = C(S, I,R)S

N
, M∗ = C∗(S∗, I ∗,R∗)S∗

N∗ . (4.7)

Integrating the second equation of system (4.6) along the characteristic t = τ , we get

i(t, τ ) =
{

B(t − τ)π(τ), t � τ,

η(τ − t)π(τ − t, τ ), t < τ,
(4.8)

where B(t) = i(t,0). Additionally, by (4.7) we get

i(t,0) = M∗
∞∫

0

β(τ)i(t, τ ) dτ + ∇M∗ · (S, I ,R)

∞∫
0

β(τ)i∗(τ ) dτ

+ (M(t) − M∗ − ∇M∗ · (S, I ,R)
) ∞∫

0

β(τ)
(
i(t, τ ) + i∗(τ )

)
dτ

+ ∇M∗ · (S, I ,R)

∞∫
0

β(τ)i(t, τ ) dτ.
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Substituting (4.8) into (4.6) leads to the equivalent system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dS(t)
dt

= −μS(t) + δR(t) − B(t),

I (t) = ∫ t0 B(t − τ)π(τ) dτ + ∫∞
t

η(τ − t)π(τ − t, τ ) dτ,

dR(t)
dt

= ∫ t0 ε(τ )B(t − τ)π(τ) dτ + ∫∞0 ε(τ )η(τ − t)π(τ − t, τ ) dτ − mR(t),

B(t) = M∗ ∫∞
0 β(τ)i(t, τ ) dτ + ∇M∗ · (S, I ,R)

∫∞
0 β(τ)i∗(τ ) dτ + Ψ (t),

(4.9)

where

Ψ (t) = [M(t) − M∗ − ∇M∗ · (S, I ,R)
] ∞∫

0

β(τ)
(
i(t, τ ) + i∗(τ )

)
dτ

+ ∇M∗ · (S, I ,R)

∞∫
0

β(τ)i(t, τ ) dτ.

Solving Eqs. (4.9) yields⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
S(t) = e−μtS(0) + ∫ t0 e−μ(t−τ)[δR(τ) − B(τ)]dτ,

I (t) = ∫ t0 B(t − τ)π(τ) dτ + ∫∞
t

η(τ − t)π(τ − t, τ ) dτ,

R(t) = e−mtR(0) + ∫ t0 e−m(t−τ)
∫ τ

0 ε(s)B(τ − s)π(s) ds dτ

+ ∫ t0 e−m(t−τ)
∫∞
τ

ε(s)η(s − τ)π(s − τ, s) ds dτ.

(4.10)

Let X = (S, I ,R,B)T . It is clear that the above system is equivalent to the compact form

AX +
t∫

0

K(t − τ)X(τ) dτ = f (t), (4.11)

where

A =
⎛⎜⎝ 1 0 0 0

0 1 0 0
0 0 1 0

−M∗
1

∫∞
0 β(τ)i∗(τ ) dτ −M∗

2

∫∞
0 β(τ)i∗(τ ) dτ −M∗

3

∫∞
0 β(τ)i∗(τ ) dτ 1

⎞⎟⎠,

K(t) =

⎛⎜⎜⎝
0 0 δe−μt e−μt

0 0 0 −π(t)

0 0 0 e−mt
∫ t

0 emτ ε(τ )π(τ) dτ

0 0 0 −M∗β(t)π(t)

⎞⎟⎟⎠ ,

f (t) =
⎛⎜⎝

f1(t)

f2(t)

f3(t)

f4(t)

⎞⎟⎠ ,

f1(t) = e−μtS(0),

f2(t) =
∞∫
t

η(τ − t)π(τ − t, τ ) dτ,
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f3(t) = e−mtR(0) +
t∫

0

e−m(t−τ)

∞∫
τ

ε(s)η(s − τ)π(s − τ, s) ds dτ,

f4(t) = M∗
∞∫
t

β(τ )η(τ − t)π(τ − t, τ ) dτ + Ψ (t),

M∗
1 = ∂M(S∗, I ∗,R∗)

∂S
,

M∗
2 = ∂M(S∗, I ∗,R∗)

∂I
,

M∗
3 = ∂M(S∗, I ∗,R∗)

∂R
.

It is a routine matter to show that there exists a positive constant D such that∥∥K(t)
∥∥,∥∥K ′(t)

∥∥,∥∥K ′′(t)
∥∥� De−μt . (4.12)

Hence, the Laplace transform K̂(s) of K(t) is analytic in the right half plane �(s) > −μ.
Moreover, it is easy to verify lim|s|→+∞ K̂(s) = 0 and then lim|s|→+∞ det(A + K̂(s)) = 1.
Therefore, all of the roots of det(A + K̂(s)) are isolated and lie in a certain ball centered at
(0,0,0).

Assume that all roots of det(A + K̂(s)) have negative real parts, that is, there exists a μ∗ and
0 < μ∗ < μ such that no root of det(A+ K̂(s)) lies outside �(s) < −μ∗. Let L(s) denote the an-
alytic reverse matrix of A+ K̂(s) in �(s) � −μ∗. Since A is invertible and lim|s|→+∞ K̂(s) = 0,
for sufficiently large |s| and �(s) > −μ we have

L(s) = A−1(I + A−1K̂(s)
)−1 = A−1

∞∑
j=0

(
A−1K̂(s)

)j
and

lim|s|→∞L(s) = lim|s|→∞A−1(I + A−1K̂(s)
)−1 = A−1.

Moreover, by Taylor theorem it can be shown that

K̂(s) = K(0)

s
+ K ′(0)

s2
+ o
(
s−2), for |s| → ∞ in �(s) > −μ∗.

Therefore, we get a constant matrix J0 such that

L(s) = A−1 + 1

s
J0 + O

(
s−2), for |s| → ∞ in �(s) > μ∗.

Which implies that Ĵ (s) := L(s) − A−1 is the Laplace transform of J (t), where

J (t) = 1

2π
e−μ∗t

∞∫
−∞

eiξ t Ĵ
(−μ∗ + iξ

)
dξ, t � 0. (4.13)

It is easy to obtain from (4.12) that there exists a constant D1 such that∥∥J (t)
∥∥� D1e

−μ∗t , t � 0.
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To discuss the asymptotical stability of endemic equilibrium, we use the following assump-
tion, which is a reduction of the assumption H5 of [3].

A. |M − M∗ − ∇M∗ · (S, I ,R)| = o(|S| + |I | + |R|), as |S| + |I | + |R| → 0, that is, for ε0 > 0,
there exists δ(ε0) > 0 such that |S + I + R| < δ(ε0) implies that |M − M∗ − ∇M∗ · (S, I ,R)| <
ε0(|S| + |I | + |R|).

Remark 3. It should be pointed out that this assumption is obviously satisfied if C(S, I,R) =
β1N , where β1 is a nonnegative number and N is the population size.

Theorem 4.4. Under the assumption A. If all roots of det(A + K̂(s)) have negative real parts,
then there exist positive numbers a, b and δ such that for initial value S0, η(τ), and R0 with |S0|+
|R0|+‖η(τ)‖1 < δ, the solutions for (2.2) satisfy |S(t)−S∗|+‖i(t, ·)− i∗(·)‖1 +|R(t)−R∗|+
|i(t,0) + i∗(0)| < ae−bt , t � 0.

Proof. Denote by X̂(s) the Laplace transform of X(t) and by f̂ (s) the Laplace transform of
f (t). Then, it follows from (4.11) that

AX̂(s) + K̂(s)X̂(s) = f̂ (s).

Hence, we have

X(t) = L−1((A + K̂(s)
)−1

f̂ (s)
)

= A−1f (t) +
∞∫

0

J (t − τ)f (τ) dτ, t � 0,

where L−1 represents the inverse Laplace transform. To obtain a bound of X(t), we consider the
following system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= −μS(t) + δR(t) − B(t),

∂i(t,τ )

∂t
+ ∂i(t,τ )

∂τ
= −(μ + ε(τ ) + α(τ))i(t, τ ),

dR(t)
dt

= ∫∞0 ε(τ )i(t, τ ) dτ − mR(t),

B(t) = i(t,0) = M∗ ∫∞
0 β(τ)i(t, τ ) dτ + ∇M∗ · (S, I ,R)

∫∞
0 β(τ)i∗(τ ) dτ,

S(0) = S(0), i(0, τ ) = i(0, τ ) − Ψ (τ), R(0) = R(0), η(τ ) = η(τ).

(4.14)

Clearly,

i(t, τ ) =
{

B(t − τ)π(τ), t − τ � 0;
η(τ − t)π(τ − t, τ ), τ − t > 0,

where B(t) = i(t,0). Let Y(t) = (S(t), I (t),R(t),B(t))T . Then, the system (4.14) can be writ-
ten as

AY(t) +
t∫

0

K(t − τ)Y (τ) dτ = l(t), (4.15)
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where

l =

⎛⎜⎜⎜⎝
e−μtS(0)∫∞

t
η(τ − t)π(τ − t, τ ) dτ

e−mtR(0) + ∫ t0 e−m(t−τ)
∫∞
τ

ε(s)η(s − τ)π(s − τ, s) ds dτ

M∗ ∫∞
t

β(τ )η(τ − t)π(τ − t, τ ) dτ

⎞⎟⎟⎟⎠ , (4.16)

and A and K are defined by (4.11). Similar to the previous discussion, we have

Y (t) = A−1l(t) +
t∫

0

J (t − τ)l(τ ) dτ. (4.17)

Let us endow 4-dimensional real space R
4 with the norm ‖x‖ =∑4

j=1 |xj |. Then, it follows
from (4.16) that

‖l‖ � e−μt
[∣∣S(0)
∣∣+ ∣∣R(0)

∣∣+ (1 + M∗β∞
)‖η‖1
]

+ ε∞

∣∣∣∣∣
t∫

0

e−m(t−τ)−μτ

∞∫
τ

η(s − τ) ds dτ

∣∣∣∣∣
�
(
1 + M∗β∞

)
N(0)e−μt + ε∞

m − μ
‖η‖1e

−μt

�
(

1 + M∗β∞ + ε∞
m − μ

)
N(0)e−μt := D2N(0)e−μt , (4.18)

where N(0) = |S(0)| + |R(0)| + ‖η‖1. Considering (4.17), (4.18) and the second equation of
(4.14), we get the following estimations of ‖Y‖ and ‖i(t, ·)‖

‖Y‖ �
∥∥A−1
∥∥∥∥l(t)∥∥+ D1

t∫
0

e−μ∗(t−τ)‖l‖dτ

� D2N(0)

[∥∥A−1
∥∥e−μt + D1e

−μ∗t
t∫

0

e−(μ−μ∗)s ds

]

< D2

[∥∥A−1
∥∥+ D1

μ − μ∗

]
N(0)e−μ∗t := D3N(0)e−μ∗t (4.19)

and

∥∥i(t, ·)∥∥1 =
∣∣∣∣∣

t∫
0

B(t − τ)π(τ) dτ

∣∣∣∣∣+
∣∣∣∣∣

∞∫
t

η(τ − t)π(τ − t, τ ) dτ

∣∣∣∣∣
�

t∫
0

∥∥Y (t − τ)
∥∥π(τ) dτ + e−μt

∥∥η(t)
∥∥

1

� D3

μ
N(0)e−μ∗t + N(0)e−μ∗t := D4N(0)e−μ∗t . (4.20)
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Let W(t) = |S(t)|+ |I (t)|+ |R(t)|+‖i(t, ·)‖1. Without loss of generality, for some ε0, choosing
δ(ε0) < ε0, under the assumption A, we get∣∣Ψ (t)

∣∣� max
{∣∣M∗

1

∣∣, ∣∣M∗
2

∣∣, ∣∣M∗
3

∣∣}β∞
(∣∣S(t)
∣∣+ ∣∣I (t)

∣∣+ ∣∣R(t)
∣∣)∥∥i(t, ·)∥∥1

+ ε0
(∣∣S(t)
∣∣+ ∣∣I(t)

∣∣+ ∣∣R(t)
∣∣)(β∞
∥∥i(t, ·)∥∥1 +

∞∫
0

β(τ)i∗(τ ) dτ

)

�
(∣∣S(t)
∣∣+ ∣∣I(t)

∣∣+ ∣∣R(t)
∣∣)(D5
∥∥i(t, ·)∥∥1 + ε0

∞∫
0

β(τ)i∗(τ ) dτ

)
� ε0(D5 + D6)W(t) := ε0D7W(t), (4.21)

where D5 = β∞(ε0 + max{|M∗
j |, j = 1,2,3}) and D6 = ∫∞0 β(τ)i∗(τ ) dτ . By (4.21) and the

expressions of f (t) and l(t), we obtain∥∥f (t) − l(t)
∥∥� ε0D7W(t). (4.22)

Note that

X(t) = Y (t) + A−1(f (t) − l(t)
)+ t∫

0

J (t − τ)
(
f (τ) − l(τ )

)
dτ,

we get

‖X‖ � ‖Y‖ + ε0D7
∥∥A−1
∥∥W(t) + ε0D1D7

t∫
0

e−μ∗(t−τ)W(τ) dτ

:= ‖Y‖ + ε0D8W(t) + ε0D9

t∫
0

e−μ∗(t−τ)W(τ) dτ, (4.23)

and

∥∥i(t, ·) − i(t, ·)∥∥1 =
t∫

0

∣∣B(t − τ) − B(t − τ)
∣∣π(τ) dτ

� ε0D7

t∫
0

W(t − τ)π(τ) dτ. (4.24)

Thus, by (4.20), (4.23) and (4.24), we get

W(t) � ‖X‖ + ∥∥i(t, ·)∥∥1
� ‖Y‖ + ε0D8W(t) + ε0D9

t∫
0

e−μ∗(t−τ)W(τ) dτ + ∥∥i(t, ·) − i(t, ·)∥∥1 + ∥∥i(t, ·)∥∥1
� (D3 + D4)N(0)e−μ∗t + ε0D8W(t) + ε0(D7 + D9)

t∫
0

e−μ∗(t−τ)W(τ) dτ. (4.25)
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Let ε0D8 < 1. It follows from Gronwall’s lemma that

W(t) � D3 + D4

1 − ε0D8
N(0)

[
e−μ∗t + ε0(D7 + D9)

1 − ε0D8

t∫
0

e
−μ∗t+ ε0(D7+D9)

1−ε0D8
(t−s)

ds

]

� D3 + D4

1 − ε0D8
N(0)
[
e−μ∗t + e

−(μ∗− ε0(D7+D9)

1−ε0D8
)t]

� 2
D3 + D4

1 − ε0D8
N(0)e

−(μ∗− ε0(D7+D9)

1−ε0D8
)t
. (4.26)

Substituting (4.19) and (4.26) into (4.23) yields

‖X‖ � D3N(0)e−μ∗t + 2(D3 + D4)ε0D8

1 − ε0D8
N(0)e

−(μ∗− ε0(D7+D9)

1−ε0D8
)t

+ 2ε0D9(D3 + D4)

1 − ε0D8
N(0)

t∫
0

e
−μ∗t+ ε0(D7+D9)

1−ε0D8
s
ds.

Clearly, there exists positive constant ξ such that∥∥X(t)
∥∥� ξN(0)e

−(μ∗− ε0(D7+D9)

1−ε0D8
)t
. (4.27)

Next, we prove that there exist positive numbers a, b and δ such that for |S0| + ‖η(·)‖1 +
|R0| < δ, the solution to (2.2) satisfy |X(t)| < ae−bt , t � 0.

Let δ < min{δ(ε0),
δ(ε0)

ξ
}. By continuity of (S(t), I (t),R(t)), if |S0| + ‖η(·)‖1 + |R0| < δ <

δ(ε0) there exists a constant T > 0 such that |S(t)|+ |I (t)|+ |R(t)| < δ(ε0) on [0, T ]. According
to the above discussion, we have∥∥X(t)

∥∥� ξN(0)e
−(μ∗− ε0(D7+D9)

1−ε0D8
)t
, t ∈ [0, T ]. (4.28)

It is clear that the inequality is satisfied for t � 0. Overwise, there exists a constant t1 > 0 such
that ∣∣S(t1)

∣∣+ ∣∣I (t1)
∣∣+ ∣∣R(t1)

∣∣� δ(ε0) (4.29)

and ∣∣X(t1)
∣∣� ξN(0)e

−(μ∗− ε0(D7+D9)

1−ε0D8
)t1

< δ(ε0)e
−(μ∗− ε0(D7+D9)

1−ε0D8
)t1

. (4.30)

Inequalities (4.29) and (4.30) lead to a contradiction iff ε0 <
μ∗

μ∗D8+D7+D9
.

Let a = ξN(0) and b = μ∗ − ε0(D7+D9)
1−ε0D8

with ε0 <
μ∗

μ∗D8+D7+D9
, if |S0| + ‖η(·)‖1 + |R0| < δ,

we have∣∣X(t)
∣∣� ae−bt , t ∈ [0,∞).

This completes the proof. �
Indeed, for special α(τ), ε(τ ),β(τ ) and C(S, I,R), the condition of Theorem 4.4 is satisfied.
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Example 1. Let ε(τ ) ≡ ε, α(τ) ≡ α, β(τ) = e−βτ and C(S, I,R) = β ′N , where α, ε,β and β ′
are positive numbers. Correspondingly, we have M = β ′S, R0 = β ′Λ

μ(μ+α+ε+β)
, S∗ = μ+α+ε+β

β ′ ,

B∗ = mμ(μ+α+ε)(μ+α+ε+β)(R0−1)
β ′(m(μ+α+ε)−δε)

, I ∗ = B∗
μ+α+ε

, R∗ = B∗ε
m(μ+ε+α)

. Then, we further have

A + K̂(s) =

⎛⎜⎜⎜⎝
1 0 δ

s+μ
1

s+μ

0 1 0 − 1
s+μ1

0 0 1 ε
(s+m)(s+μ1)

−k 0 0 1 − μ2
s+μ2

⎞⎟⎟⎟⎠ ,

where μ1 = μ + α + ε, μ2 = μ + α + ε + β and k = mμμ1(R0−1)
mμ1−εδ

.
Clearly,

det
(
A + K̂(s)

)= s4 + a1s
3 + a2s

2 + a3s + a4

(s + m)(s + μ)(s + μ1)(s + μ2)
,

where a1 = k + μ + μ1 + m, a2 = μμ1 + mμ + μ1m + k(μ1 + μ2 + m), a3 = μμ1m +
kμ2(μ1 + m) + k(μ1m − δε) and a4 = kμ1(μ1m − δε).

For convenience, we introduce the following denotations

Ω1 = a1, Ω2 =
(

a1 a3
1 a2

)
,

Ω3 =
(

a1 a3 0
1 a2 a4
0 a1 a3

)
and Ω4 =

⎛⎜⎝
a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

⎞⎟⎠ .

It is easy to obtain that

det(Ω1) = k + μ + μ1 + m,

det(Ω2) = (μ1 + μ2 + m)k2 + (m2 + μμ2 + 2μμ1 + 2μ1m + δε + 2mμ + μ2
1

)
k

+ μμ2
1 + μ2

1m + 2μμ1m + m2μ + μ1m
2 + μ2μ1 + mμ2,

det(Ω3) = (μ2
2μ1 + μ2

1μ2 + μ2
2m + m2μ2 + μ1m

2 + 2μ1mμ2 − μ1δε − mδε + μ2
1m
)
k3

+ (2μ2
1m

2 + μ3
1μ2 + μ3

1m + 4μμ1mμ2 − δ2ε2 + μμ2
2m − m2δε + 2μμ2

1μ2

+ μμ2
2μ1 + μμ2δε − 2μμ1δε − 2mμδε + 3muμ2

1m − μ2
1δε + μ1m

2μ2

+ 2m2μμ2 − μ1mδε + m3μ2 + m3μ1 + 3mμ2δε + 3m2μμ1 + 3μ1μ2δε

+ μ2
1mμ2
)
k2 + (μ2

1m
3 + μ3

1m
2 + 3μ2μ2

1m + 3m2μ2μ1 + 4μ2
1m

2μ + m3μμ2

+ 2m3μμ1 + μ2μ2
1μ2 + m2μ2μ2 + μμ2

1mμ2 + μμ1m
2μ2 − m2μδε

− μ1m
2δε + 2μ2μ1mμ2 − μ2μ1δε − mμ2δε − μμ2

1δε − μ2
1mδε + μ2m

2δε

+ μ2μ
2δε + μ2μ

2
1δε + μμ3

1μ2 + 2μμ3
1m − μμ1mδε + 2μ2mμδε

+ 2μ2μ1mδε + 2μ2μμ1δε
)
k + μ2

1m
3μ + μ3μ2

1m + 2μ2μ2
1m

2 + m3μ2μ1

+ μ3
1m

2μ + m2μ3μ1 + μ2μ3
1m,

det(Ω4) = a4 det(Ω3).



Aut
ho

r's
   

pe
rs

on
al

   
co

py

1414 Z. Zhang, J. Peng / J. Math. Anal. Appl. 331 (2007) 1396–1414

Clearly, if R0 > 1, we have aj > 0 and det(Ωj ) > 0, j = 1,2,3,4. By Routh–Hurwitz Crite-
rion, we get that all of roots of s4 + a1s

3 + a2s
2 + a3s + a4 have negative real parts. Then, we

arrive at that all of roots of det(A + K̂(s)) have negative real parts.
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