
Soft Comput (2009) 13:847–869
DOI 10.1007/s00500-008-0350-8

FOCUS

Multi-objective no-wait flow-shop scheduling with a memetic algorithm
based on differential evolution

Bin Qian · Ling Wang · De-Xian Huang ·
Xiong Wang

Published online: 9 August 2008
© Springer-Verlag 2008

Abstract In this paper, a memetic algorithm (MA) based on
differential evolution (DE), namely MADE, is proposed for
the multi-objective no-wait flow-shop scheduling problems
(MNFSSPs). Firstly, a largest-order-value rule is presented
to convert individuals in DE from real vectors to job per-
mutations so that the DE can be applied for solving flow-
shop scheduling problems (FSSPs). Secondly, the DE-based
parallel evolution mechanism is applied to perform effec-
tive exploration, and several local searchers developed accor-
ding to the landscape of multi-objective FSSPs are applied to
emphasize local exploitation. Thirdly, a speed-up computing
method is developed based on the property of the no-wait
FSSPs. In addition, the concept of Pareto dominance is used
to handle the updating of solutions in sense of multi-objective
optimization. Due to the well balance between DE-based glo-
bal search and problem-dependent local search as well as
the utilization of the speed-up evaluation, the MNFSSPs can
be solved effectively and efficiently. Simulation results and
comparisons demonstrate the effectiveness and efficiency of
the proposed MADE.

B. Qian (B) · L. Wang · D.-X. Huang · X. Wang
Department of Automation, Tsinghua University,
Beijing 100084,
People’s Republic of China
e-mail: qianb04@mails.tsinghua.edu.cn

L. Wang
e-mail: wangling@mail.tsinghua.edu.cn

B. Qian
Department of Automation,
Kunming University of Science and Technology,
Kunming 650051,
People’s Republic of China

Keywords Multi-objective no-wait flow-shop scheduling ·
Differential evolution · Memetic algorithm · Local search ·
Exploration and exploitation

1 Introduction

Production scheduling is an important issue faced daily both
in the manufacturing systems and the service industries. So,
it is necessary to develop effective and efficient advanced
manufacturing and scheduling technologies and approaches
(Stadtler 2005; Dimopoulos and Zalzala 2000; Wang 2003).
The flow shop scheduling problem (FSSP) is a class of widely
studied scheduling problems. It represents nearly a quarter
of manufacturing systems, assembly lines and information
service facilities nowadays (Pinedo 2002) and is considered
as being difficult to solve (Garey and Johnson 1979; Baker
1974). In many FSSPs, there exists a constraint that once
the processing of a job begins, subsequent processing must
be performed without waiting between or on consecutive
machines. Such a FSSP is termed as no-wait FSSP (NFSSP).
Some typical situations are encountered in metal, plastic,
chemical and pharmaceutical industries. For example, a plas-
tic product requires to be processed through a continuous
sequence of operations to prevent degradation. According to
the research work by Garey and Johnson (1979), the NFSSP
is NP-hard.

Due to its significance both in theory and industrial
applications, the NFSSP has been studied by many resear-
chers. Historically, NFSSP has been primarily treated by the
branch-and-bound method (Van Deman and Baker 1974),
constructive methods (Bonney and Gundry 1976; King and
Spachis 1980; Gangadharan and Rajendran 1993; Rajendran
1994). Recently, metaheuristic methods have attracted wide
research attention, including such topics as genetic algorithm

123

848 B. Qian et al.

(GA) (Chen et al. 1996; Kumar et al. 2000; Aldowaisan
and Allahverdi 2003), simulated annealing (SA) algorithm
(Aldowaisan and Allahverdi 2003), tabu search (TS) algo-
rithm (Grabowski and Pempera 2005), descending search
(DS) algorithm (Grabowski and Pempera 2005), hybrid
particle swarm optimization (HPSO) algorithm (Liu et al.
2007). An early comprehensive survey of the NFSSP can be
found in Hall and Sriskandarajah (1996). As we know, most
real scheduling problems naturally involve the optimization
of multiple objectives. Up to now, few researchers have stu-
died multi-objective NFSSPs (MNFSSPs). Allahverdi and
Aldowaisan (2004) presented two hybrid algorithms based
on SA and GA to minimize a weighted sum of makespan
and maximum lateness. Tavakkoli-Moghaddam et al. (2007)
addressed the MNFSSP that minimizes both the weighted
mean completion time and weighted mean tardiness, and
developed a hybrid multi-objective immune algorithm (IA)
to obtain Optimal Pareto solution for such problem.

Over the past 15 years, memetic algorithms (MAs) have
been a hot topic in the fields of both computer science and
operational research (Reeves and Yamada 1998; Murata et al.
1996; Ong et al. 2006; Hart et al. 2004). It assumes that
combining the features of different methods in a comple-
mentary fashion may result in more robust and effective
optimization tools. MAs belong to the class of evolutio-
nary algorithms (EAs) that combine the global and local
search by using an EA to execute exploration while the local
search method executes exploitation, which are inspired by
Darwinian principles of natural evolution and Dawkins’
notion of a meme defined as a unit of cultural evolution that
is capable of local refinements. Some recent work demons-
trates that MAs (sometimes called hybrid EAs) can yield
promising results for solving combinatorial and nonlinear
optimization problems (Tang et al. 2007; Zhou et al. 2007;
Ong and Keane 2004) and engineering problems (Caponio
et al. 2007; Ong and Keane 2004). In MAs, studies (Hart
et al. 2004; Zhu et al. 2007; Ishibuchi et al. 2003) have
been focused on how to achieve a reasonable combination
of global search and local search, and how to make a good
balance between exploration and exploitation. As for multi-
objective FSSPs, Ishibuchi and Murata (1998) firstly devi-
sed a multi-objective memetic algorithm (IMMOGLS) by
combining GA with the local search method, which used
a scalar fitness function with random weights to guide the
evolution process of GA-based search and local search to
find optimal Pareto front. Jaszkiewicz (2002) implemented
another genetic local search algorithm (JMOGLS), which
was similar to IMMOGLS. The main difference lies in the
selection mechanism of parents. Ishibuchi et al. (2003) pro-
posed a modified IMMOGLS (IMMOGLS2) by adopting
a more reasonable local searcher in multi-objective sense.
Moreover, the impact of balance between global search and
local search was analyzed. Arroyo and Armentano (2005)

conceived a multi-objective GA (AAMOGLS), in which the
concept of Pareto dominance is used to rank the population
and assign suitable fitness values to all the individuals. Sub-
sequently, a local searcher based on Pareto dominance was
applied to perform the exploitation. However, the research
work about MAs for NFSSPs and MNFSSPs is very scarce.
Liu et al. (2007) proposed an effective memetic algorithm
based on particle swarm optimization (PSO) algorithm to
minimize makespan, where several local searchers or memes
with adaptive learning strategy were incorporated into PSO.
Tavakkoli-Moghaddam et al. (2007) implemented a hybrid
multi-objective IA to minimize both the weighted mean com-
pletion time and weighted mean tardiness, where two local
searchers, namely bacterial mutation and gene transfer, were
applied to improve the quality of some selected individuals
(i.e., antibodies).

Differential evolution (DE) is a novel population-based
evolutionary mechanism recently proposed for global
optimization over continuous spaces (Storn and Price 1997).
Despite DE’s structure simplicity, the key evolutionary ope-
rators of mutation and crossover are very efficient, which
allows the search behavior of each individual to self-adapting.
Due to its ease of use, fast convergence and robustness, DE
has gained wide application in a variety of fields (Ilonen
et al. 2003; Chang and Wu 2005; Feoktistov 2006; Price and
Storn 2007). Because DE’s individual is a real vector, it is
difficult to directly present feasible solutions to combinato-
rial optimization problems (COPs). Thus, the research work
of DE for scheduling problems is quite limited. Recently,
Tasgetiren et al. (2004) implemented an encoding scheme to
convert the continuous values of individuals in DE to job per-
mutations and incorporated Interchange-based local searcher
into DE to minimize the makespan criterion of FSSPs. Onwu-
bolu and Davendra (2006) developed a DE-based heuristic to
solve FSSPs with the objectives of makespan, mean flowtime,
and total tardiness. Nearchou and Omirou (2006) designed
a stochastic method based on DE to deal with three classic
NP-hard scheduling problems: the flow-shop scheduling pro-
blem, the single-machine total weighted tardiness problem,
and the single machine common due date scheduling pro-
blem. Nearchou (2008) presented a DE-based algorithm to
address the common due date early/tardy job scheduling pro-
blem on a single machine, which could find new upper bounds
to nearly 60% of the testing benchmark problems. As for
multi-objective scheduling problems, Qian et al. (2008) pro-
posed a memetic algorithm based on DE for multi-objective
job shop scheduling problems (MJSSPs), which used several
memes and adopted an adaptive Meta-Lamarckian strategy to
dynamically decide which meme to be selected to emphasize
exploitation in each generation. To the best of our knowledge,
there are few other published papers on DE for shop sche-
duling, and especially there is no published paper on DE for
the multi-objective no-wait FSSPs.

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 849

In this paper, we will devise a memetic algorithm based
on DE (MADE) by combining DE with several problem
dependent memes for the no-wait multi-objective FSSPs.
The motivation of MADE is based on the ‘no free lunch
theory’ (Wolpert and Macready 1997). That is, any algo-
rithm without adopting the domain knowledge of problems
is only equal to a kind of random search, and it is impos-
sible to obtain excellent performance on special problems.
Thus, when designing MADE, we fully considered some
structure information of MNFSSPs. For FSSPs, the solution
space landscape induced by some specific neighborhoods
(i.e., Insert, Interchange, Swap, etc.) has a “big valley,” where
local optima tend to be relatively close to each other and to
the global optima at the big valley’s bottom part (Reeves
and Yamada 1998; Reeves 1999). And the size of the bot-
tom region of the big valley containing global or satisfac-
tory local optima is considerably small with respect to the
whole valley. However, the number of solutions in the bottom
region is also so large that it is unlikely to apply a total search
(Nowicki and Smutnicki 2006). For MNFSSPs, different
objective induces different shape of big valley. Since the
objectives are usually not positively correlated, it is difficult
for a solution to simultaneously reach the bottom regions of
all big valleys. That is to say, the effectiveness of searching in
the different big valleys directly determines the performance
of MADE. Fortunately, the DE’s mutation operation is quite
unique, which is driven by the differences between contem-
porary population members. This allows the search behavior
of each individual to self-tune during the search process, and
gives an appropriate search direction to guide the search to
find the global optima. So, in our MADE for MNFSSPs, DE
is applied to find the promising solutions or regions over the
solution space, and three efficient memes based on the land-
scape of FSSP are conceived to exploit the solution space
from those regions and to guide the population to the bot-
tom regions of big valleys, where Optimal Pareto solutionsor
satisfactory Pareto solutionsare contained. In short, firstly, a
largest-order-value (LOV) rule is proposed to map the conti-
nuous values of individuals in DE to job permutations so
as to make DE suitable for solving FSSPs; secondly, the
DE-based search is applied for exploration in a parallel fra-
mework, while several problem-dependent memes are utili-
zed to emphasize exploitation; thirdly, a speed-up computing
method base on the property of the NFSSPs is developed
to calculate the objective functions efficiently. Simulation
results and comparisons based on the testing benchmark ins-
tances validate the effectiveness and efficiency of the propo-
sed MADE.

The remaining contents of this paper are partitioned into
five sections. Section 2 briefly introduces no-wait FSSP and
MNFSSP. Section 3 provides a brief review of DE. Sec-
tion 4 presents MADE in detail, while Sect. 5 presents and
discusses simulation results and comparisons. Finally,

Sect. 6 gives some conclusions and states future research
directions.

2 NFSSP and MNFSSP

2.1 NFSSP

The no-wait FSSP with n jobs and m machines can be des-
cribed as follows: given the processing time p(i, j) of job
i on machine j , each of n jobs will be sequentially proces-
sed on machine 1, 2, . . . , m. At any time, each machine can
process at most one job and each job can be processed on
at most one machine. The sequence in which the jobs are
to be processed is the same for each machine. To follow the
no-wait restrictions, the difference between the completion
time of the last operation of a job and the start time of its
first operation is equal to the sum of the processing times
of its operations. In other words, the operation of each job
must be processed without interruptions between consecutive
machines. The problem is to find a sequence or permutation
for processing all jobs on all machines so that one or more
given objectives are optimized. The objective widely used
is the minimization of the maximum completion time, i.e.,
makespan (Cmax).

Let π = {π1, π2, . . . , πn} denote the permutation of jobs
to be processed, Psum(π j) the total processing time of job π j

on all machines, M D(π j−1, π j) the minimum delay on the
first machine between the start of job π j and π j−1 restricted
by the no-wait constraint. Then MD can be calculated as
follows:

M D(π j−1, π j) = p(π j−1, 1)

+ max

[
0, max

2≤k≤m

{
k∑

h=2

p(π j−1, h)

−
k−1∑
h=1

p(π j , h)

}]
. (1)

Thus, the makespan can be defined as

Cmax(π) =
n∑

j=2

M D(π j−1, π j) + Psum(πn). (2)

where Psum(πn) = ∑m
k=1 p(πn, k).

The aim of the no-wait FSSP with the makespan criterion
is to find a permutation π∗ in the set of all permutations �

such that

Cmax(π
∗) = min

π∈�
Cmax(π). (3)

Figure 1 shows an example of a no-wait FSSP with n = 4
and m = 4.

123

850 B. Qian et al.

 1

 1

 1

 1

 2

 2

 2

 2

 3

 3

 3

 3

π
π

π
π

π
π

π
π

π
π

π
π

 4

 4π
 4π

 4π

machines

time),(21π πMD),(32π πMD),(43π πMD 4)πPsum(

1

2

3

4

makespan

π
0

Fig. 1 No-wait FSSP example with n = 4 and m = 4

2.2 MNFSSP

2.2.1 Objective functions

For a FSSP, let C(π j , k) denote the completion time of job
π j on machine k. If there exists a due date d j for job j , we
can define L(π j) = C(π j , m) − d j as the lateness of job j .
Then, the tardiness and earliness of job π j can be defined
as T (π j) = max{L(π j), 0} and E(π j) = max{−L(π j), 0},
respectively. In some real application, machine idleness may
be considered. Let Ik(π) = C(πn, k) − ∑n

j=1 p(π j , k)

denote the idleness time on machine k. Besides, we can use
the indicator function U (π j) to denote whether job π j is
tardy (U (π j) = 1) or not (U (π j) = 0). Assuming λ j is a
possible weight associated to job j , the following objective
functions are frequently used (Pinedo 2002):

(1) Maximum completion time or makespan Cmax(π) =
C(πn, m);

(2) Total weighted completion time
Cw(π) = ∑n

j=1 λ j C(π j , m);
(3) Maximum tardiness Tmax(π) = max

j
T (π j);

(4) Total weighted tardiness Tw(π) = ∑n
j=1 λ j T (π j);

(5) Total machine idleness Isum(π) = ∑m
k=1 Ik(π);

(6) Maximum earliness Emax(π) = max j E(π j);

(7) Total weighted earliness Ew = ∑n
j=1 λ j E(π j);

(8) Total number of tardy jobs NT (π) = ∑n
j=1 U (π j); and

so on.

2.2.2 MNFSSP

For the MNFSSP, some of objectives mentioned in Sect. 2.2.1
can be considered simultaneously. However, these objectives
often conflict with themselves, that is, an improvement in one
objective may worsen another. Since there is usually no such
a solution that is the best to all objectives, the multi-objective
optimization algorithms are required to find a set of optimal
solutions (called non-dominated solutions) (Ishibuchi et al.
2003; Arroyo and Armentano 2005). Without loss of genera-
lity, a general multi-objective optimization problem (MOP)

with w objectives can be described as follows:

Minimize f1(x), f2(x), . . . , fw(x)

subject to x ∈ X, (4)

where f1(x), f2(x), . . . , fw(x) are w objectives to be mini-
mized, x is a vector of decision variables, and X is the set of
feasible solution.

To multi-objective optimization, the following basic defi-
nitions are of importance:

(1) Pareto dominance: A solution x1 is said to (Pareto)
dominate another solution x2 (denoted x1 � x2) if and
only if

(∀i ∈ {1, 2, . . . , w} : fi (x1) < fi (x2))

∧(∃ j ∈ {1, 2, . . . , w} : f j (x1) < f j (x2)). (5)

(2) Optimal Pareto solution: A solution x1 is said to be an
optimal Pareto solution if and only if there is no any
solution x2 that satisfies x2 � x1.

(3) Optimal Pareto set: The set containing all optimal Pareto
solutions is said as optimal Pareto set.

(4) Optimal Pareto front: The set of all objective function
values corresponding to the solutions in the optimal
Pareto set is said as optimal Pareto front.

According to (Deb et al. 2002), basically two main goals
should be considered to evaluate the obtained non-dominated
solutions: (1) convergence to the optimal Pareto front; (2)
maintenance of diversity (i.e., spread and distribution) of the
obtained non-dominated solutions.

3 Introduction to differential evolution

DE is a class of population-based evolutionary algorithms,
which absorbs the concepts of “population” from GA and
“self-adapting mutation” from evolution strategy (ES). The
procedure of DE is almost the same as that of GA whose
main operations are mutation, crossover, and selection. The
main difference between DE and GA lies in the mutation
operation. In DE, it starts with the random initialization of a
population of individuals in the search space and works on
the cooperative behaviors of the individuals in the population.
At each generation, the mutation and crossover operators are
applied to individuals to generate a new population. Then, the
one-to-one greedy selection takes place and the population
is updated.

The basic scheme of DE, which is denoted as DE/rand/1
/bin, can be summarized as follow.

Let the i th individual in the N -dimensional search
space at generation t be Xi (t) = [xi,1, xi,2, . . . , xi,N]

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 851

(i = 1, 2, . . . , P S), where PS denotes the size of the popu-
lation, and Xi (t) is a real vector.

Step 1: DE’s initialization. Randomly initialize the popu-
lation with PS individuals and determine the best
individual bestit with the best objective value.

Step 2: DE’s mutation. In order to obtain each individual’s
corresponding mutant vector Vi (t + 1) = [vi,1

(t + 1) , . . . , vi,N (t + 1)], mutation operation is
performed for each individual according to the
following equation:

Vi (t+1)= Xr1 (t)+F ∗ (Xr2 (t)−Xr3 (t)), (6)

where r1, r2, r3 ∈ {1, 2, . . . , P S} are randomly
chosen and mutually different and also different
from the current index i, F ∈ (0, 2) is a constant
called scaling factor which controls amplification of
the differential variation Xr2 (t) − Xr3 (t) .Xr1 (t)
is the base vector to be perturbed.

Step 3: DE’s crossover. To get each individual’s trial vector
Ui (t + 1) = [ui,1 (t + 1) , . . . , ui,N (t + 1)], cros-
sover operation is performed between each indi-
vidual and its corresponding mutant vector by the
following equation:

ui, j (t + 1)

=
⎧⎨
⎩

vi, j (t + 1) , if (rand (j) < C R) or
j = randn (i) ,

xi, j (t) , otherwise.
(7)

j = 1, . . . , N ,

where rand (j) is the j th evaluation of a random
number uniformly distributed in the range of [0,1],
randn (i) is a randomly chosen index from the set
{1, 2, . . . , N } , C R ∈ [0, 1] is a constant crossover
parameter that controls the diversity of the popula-
tion.

Step 4: DE’s selection. To generate the new individual for
the next generation, selection operation is perfor-
med between each individual and its corresponding
trial vector by the following greedy selection crite-
rion:

Xi (t + 1)

=
{

Ui (t + 1) , if f (Ui (t + 1))< f (Xi (t)) ,

Xi (t) , otherwise.

(8)

where f is the objective function and Xi (t + 1) is
the individual of the new population.

Step 5: Update bestit. If a stopping criterion is met, then
output bestit and its objective value; otherwise go
back to Step 2.

The key parameters in DE are the size of population (P S),
the scaling factor (F), and the crossover parameter (C R).
Proper configuration of these parameters can increase the
convergence velocity and robustness of the search process.
In (Storn and Price 1997) some suggestions have been given
for selecting suitable parameters for DE.

There are also some other DE variants (Price and Storn
2007), only differ in the type of mutation operation and cross-
over operation. The general format of DE is DE/x/y/z, where
x represents a base vector to be mutated/perturbed, y is the
number of difference vectors used for perturbation of x , and
z stands for the type of crossover being used (bin: binomial;
exp: exponential).

4 MADE for MNFSSP

In this section, we will present the memetic DE for no-wait
FSSP after explaining the solution representation, speed-
up computing method, DE-based search, problem-dependent
local search and multi-objective handling techniques.

4.1 Solution representation

Due to the continuous nature of DE, the standard encoding
scheme of DE cannot be directly adopted for FSSPs. So, it is
crucial to develop a suitable mapping scheme that converts
the individuals (continuous vectors) to the job sequence. In
this paper, we design a largest-order-value (LOV) rule based
on random key representation (Bean 1994) to convert indi-
vidual Xi = [xi,1, xi,2, . . . , xi,n] in DE to the job solution
or permutation vector πi = [πi,1, πi,2, . . . , πi,n]. Some other
conversion techniques can be found in (Tasgetiren et al. 2004;
Price et al. 2005). The conversion procedure is as follows:

Step 1: Rank all elements in Xi = [xi,1, xi,2, . . . , xi,n] by
descending order to obtain a sequence ϕi = [ϕi,1,

ϕi,2, . . . , ϕi,n].
Step 2: Calculate the job permutation πi by the following

formula:

πi,ϕi,l = l, (9)

where the dimension l varies from 1 to n.

To better understand the LOV rule, a simple example
(n = 6) is illustrated in Table 1, where the individual is
Xi = [1.36, 3.85, 2.55, 0.63, 2.68, 0.82]. The details that
correspond with the steps of the conversion procedure are
given as follows:

123

852 B. Qian et al.

Table 1 Solution representation

Dimension l 1 2 3 4 5 6

xi, l 1.36 3.85 2.55 0.63 2.68 0.82

ϕi, l 4 1 3 6 2 5

πi, l 2 5 3 1 6 4

Step 1: Since xi,2 is the largest value of Xi , xi,2 is selec-
ted first and assigned the rank value 1. Then xi,5 is
selected second and assigned the rank value 2. In
the same way, xi,3, xi,1, xi,6 and xi,4 are assigned
the rank values 3, 4, 5, and 6, respectively. Thus, the
sequence is ϕi = [4, 1, 3, 6, 2, 5].

Step 2: According to (9), if l = 1, then ϕi,1 = 4 and
πi,ϕi,1 = πi,4 = 1; if l = 2, then ϕi,2 = 1
and πi,ϕi,2 = πi,1 = 2; if l = 3, then ϕi,3 = 3
and πi,ϕi,3 = πi,3 = 3; and so on. Thus, we obtain
the job permutation πi = [2, 5, 3, 1, 6, 4].

Obviously, such a conversion process is very simple, and
it makes DE suitable for solving FSSPs.

In our MADE, memes or local searchers are not directly
applied to individual Xi (t) with real values, but to the job per-
mutation πi . Thus, after the whole local search completes,
Xi (t) should be repaired because its corresponding job per-
mutation should match the permutation resulted by the local
search. Based on the mechanism of LOV rule, the repair pro-
cess is easy to implement, which is given as follows:

Step 1: Calculate the sequence ϕi by the following formula:

ϕi,πi, l = l. (10)

where l varies from 1 to n.
Step 2: Values in Xi (t) are rearranged to keep consistent

with ϕi . That is, Xi, l should be set to the ϕi, l th
largest value of the old Xi (t).

A simple instance on the repair is shown in Tables 2
and 3, where πi,3 = 3 and πi,4 = 1 are interchanged. As seen
in Table 2, the LOV rule is violated because the new job per-
mutation πi does not match the old individual Xi (t). Thus,
Xi (t) and ϕi should be repaired, as the results in Table 3.
The details that match with the steps of the repair process are
given as follows:

Table 2 Job solution resulted by local search (before repairing)

Dimension l 1 2 3 4 5 6

xi, l 1.36 3.85 2.55 0.63 2.68 0.82

ϕi, l 4 1 3 6 2 5

πi, l 2 5 1 3 6 4

Table 3 Job solution resulted by local search (after repairing)

Dimension l 1 2 3 4 5 6

xi, l 2.55 3.85 1.36 0.63 2.68 0.82

ϕi, l 3 1 4 6 2 5

πi, l 2 5 1 3 6 4

Step 1: Rearrange ϕi by equation (10). That is, if l = 1,
then πi,1 = 2 and ϕi,πi,1 = ϕi,2 = 1; if l = 2, then
πi,2 = 5 and ϕi,πi,2 = ϕi,5 = 2; and so on. Then
we can get the new sequence ϕi = [3, 1, 4, 6, 2, 5]
in Table 3.

Step 2: Rearrange Xi (t) to keep consistent with the new
ϕi . If l = 1, then ϕi,1 = 3. That is to say, Xi,1

should be set to the third largest value of the old
Xi (t) (i.e., 2.55). If l = 2, then ϕi,2 = 1 and Xi,2

should be set to the largest value of the old Xi (t)
(i.e., 3.85). Similarly, the new individual Xi (t) =
[2.55, 3.85, 1.36, 0.63, 2.68, 0.82] can be obtained
in Table 3.

4.2 Speed-up computing method

In FSSPs, M D(π j−1, π j) is not only determined by the job
π j−1 and π j but also affected by the jobs before π j−1. But
in no-wait FSSPs (NFSSPs), M D(π j−1, π j) is only decided
by the job π j−1 and π j . Based on this property of NFSSPs,
one method can be adopted to reduce the computing com-
plexities of the objective functions in Section 2.2. That is,
M D(π j−1, π j) and Psum(π j) can be calculated and saved in
the initial phase of MADE and then can be used as constant
values in the evolution phase of MADE.

According to equation (1), M D(π j−1, π j) can be cal-
culated by the algorithm in Appendix 1. This algorithm
has a computing complexity (CC) of O(m). In the initial
phase of MADE, M D(π j−1, π j) and Psum(π j)(π j−1, π j ∈
{1, . . . , n}) need to be calculated n(n − 1) times and n times
respectively. Since n is usually much larger than m, the total
CC of M D(π j−1, π j) and Psum(π j)(π j−1, π j ∈ {1, . . . , n})
is O(n2m).

For the sake of simplicity, let MADE_nospeedup denote
MADE without speed-up method, TCC_MADE_nospeedup
(a certain objective function) denote the total CC of calcula-
ting a certain objective function in MADE_nospeedup and
TCC_MADE(a certain objective function) denote the total
CC of calculating a certain objective function in MADE. Sup-
pose the total solution evaluation times (TET) of any objective
function in MADE_nospeedup and MADE are K .

4.2.1 Analysis of the CC of calculating Cmax(π)

In MADE_nospeedup, it can be seen from Eq. (2) that the
CC of Cmax(π) is O(nm). Then, TCC_MADE_nospeedup

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 853

(Cmax(π)) is O(Knm). In MADE, L(π j−1, π j) and Psum(π j)

can be regarded as constant values in the evolution phase.
Then, the CC of Cmax is reduced to O(n). Thus TCC_MADE
(Cmax(π)) is O(n2m+Kn). Because K is usually much larger
than nm, TCC_MADE(Cmax(π)) is reduced from O(Knm)
of TCC_MADE_nospeedup(Cmax(π)) to O(Kn).

4.2.2 Analysis of the CC of calculating Isum(π)

The total machine idleness Isum(π) can be defined as
follow:

Isum(π) =
m∑

k=1

Ik(π) = m
n∑

x=2

M D(πx−1, πx)

+
m∑

k=1

k∑
y=1

p(πn, y) −
m∑

k=1

n∑
j=1

p(π j , k)

= m
n∑

x=2

M D(πx−1, πx) +
m∑

k=1

k∑
y=1

p(πn, y)

−
n∑

j=1

Psum(π j). (11)

where
∑m

k=1
∑k

y=1 p(πn, y) can be computed in O(m) by
the algorithm in Appendix 2.

In MADE_nospeedup, the CCs of m
∑n

x=2 M D(πx−1, πx)

and
∑m

k=1
∑k

y=1 p(πn, y) and
∑n

j=1 Psum(π j) are O(nm)

and O(m) and O(nm) respectively. And n is larger than m.
So, the CC of Isum(π) in MADE_nospeedup is O(nm).
In MADE, the CCs of m

∑n
x=2 M D(πx−1, πx) and

∑m
k=1∑k

y=1 p(πn, y) and
∑n

j=1 Psum(π j) are O(n) and O(m)

and O(n) respectively. That is, the CC of Isum(π) in MADE
is O(n). Like the analysis in Sect. 4.2.1,
TCC_MADE(Isum(π)) is decreased from O(K nm) of
TCC_MADE_nospeedup(Isum(π)) to O(K n).

4.2.3 Analysis of the CCs of calculating other objective
functions in Sect. 2.2

Let OF denote any objective function in Section 2.2 except
Cmax(π) and Isum(π). When calculating OF, C(π j , m)(π j ∈
{1, . . . , n}) is required to be computed first, which can be
obtained by the algorithm in Appendix 3. The CC of this
algorithm is O(nm), which can be decreased from O(nm) to
O(n) by using the speed-up method. Obviously, the CC of
computing OF is equal to that of computing C(π j , m)(π j ∈
{1, . . . , n}). This means TCC_MADE(OF) can be decreased
from O(K nm) of TCC_MADE_nospeedup(OF) to O(K n).

4.3 DE-based search

In MADE, DE-based search is designed based on DE/rand-
to-best/1/exp scheme to perform parallel exploration, in
which “exp” of “DE/rand-to-best/1/exp” means the expo-
nential crossover is adopted and “rand-to-best” means the
base vector is the best individual of the current population
(Price and Storn 2007). Thus, those individuals performing
DE-based operation will share the information of the best
individual of the population. Note that, DE-based evolution
is not performed on permutation-based solution space but
continuous space. So, DE is used to stress exploration in a
continuous searching space. Furthermore, DE-based search
can be regarded as a kind of scatter search. In the mutation
and crossover phase, each individual can transform probabi-
listically to any other individual in the solution space. There-
fore, a wide range of solution space can be searched. In the
selection phase, only the better individual can be accepted.
This means that the DE-based search has the ability to reach
enough promising regions over the solution space.

Because of the parallel evolutionary framework of DE, it
is easy to incorporate local search into DE to design effec-
tive memetic algorithms. Next, we will present the problem-
dependent local search.

4.4 Problem-dependent Local Search

For the MNFSSPs, we designed local searchers or memes
based on the following three neighborhoods which are often
employed in the literature. (i) Remove the job at the uth
dimension and insert it in the vth dimension of the job solu-
tion π(insert (π, u, v)), (ii) interchange the job at the uth
dimension and the job at the vth dimension of the job solu-
tion π(interchange(π, u, v)), (iii) swap the two neighbo-
ring jobs at the dimension u and (u + 1) of the job solution
π(swap(π, u, u + 1)).

According to (Schiavinotto and Stützle 2007), the diame-
ter of Insert is n − 1. That is, using Insert at most n − 1
times, one solution π can transit to any other solution. The
diameters of Interchange and Swap are n −1 and n(n −1)/2,
respectively. Therefore, the solutions in the big valley cau-
sed by Insert or Interchange are closer to each other than
those in the big valley caused by Swap. This means Insert
and Interchange can perform a more efficient and thorough
search than Swap with the same computational efforts. So we
select one neighborhood Nexploi tation from Insert and Inter-
change to perform exploitation in local search. However, it
is easy to fall into local optima only with a single neigh-
borhood. Inspired by the observation that a local optimum
within one neighborhood is not necessary one within another
neighborhood (Mladenovic and Hansen 1997), we choose a
neighborhood Nperturbation , which is different from

123

854 B. Qian et al.

Nexploi tation , to execute a perturbation operation before per-
form exploitation.

As for MNFSSPs, different objectives, which are usually
conflicting or not positively correlated, cause different shapes
of big valleys. Thus, it is very difficult for a solution to
simultaneously reach the bottoms of all big valleys. This
indicates that only one type of meme is unlikely to efficiently
exploit the solution space. Geiger (2007) also showed that not
a single neighborhood performs best for all multi-objective
FSSPs and combining different neighborhoods in a random
fashion can significantly improve the solutions quality. In
addition, Neri et al. (2007) presented an adaptive multimeme
algorithm for designing multidrug therapies, which utilized
different memes to exploit the solution space from comple-
mentary perspectives and can obtain very satisfactory solu-
tion. Therefore, we design three types of meme to enrich the
search behavior and enhance the search ability. These memes
are Meme(Interchange, Insert, LS_Len), Meme(Insert,
Interchange, LS_Len) and Meme(Swap, Insert, LS_Len),
in which LS_Len denotes the exploitation depth of a meme.
The general form of these memes, namely Meme
(Nperturbation, Nexploi tation , LS_Len), is given as follows:

Step 1: Convert individual Xi (t) to a job permutation πi_0

according to the LOV rule.
Step 2: Perturbation phase.

Randomly select u and v, where u �= v;

πi = Npertubation(πi_0, u, v); // Nperturbation

Step 3: Exploitation phase.
Set kcount=1;
Do
Randomly select u and v, where u �= v;

πi_1 = Nexp loi tation(πi , u, v); // Nexploi tation

if f (πi_1) dominates f (πi), then πi = πi_1;
kcount=kcount+1;
While kcount< LS_Len

Step 4: If f (πi) dominates f (πi_0), then πi_0 = πi .
Step 5: Convert πi_0 back to Xi (t).

The characteristic of the above algorithm lies in
two aspects. (1) In Step 2, u and v performing
perturbation are randomly chosen and the new
solution is always accepted, so the meme can
avoid falling into local optima and also can reach
different regions. (2) In Step 3, the new solution
πi_1 is accepted only if it dominates the old solu-
tion πi . Thus, the meme can guide the search
to the promising regions nearby the bottoms of
different valleys in a relatively short time and

spend more time to perform Nexploi tation -based
thorough search in these regions.
If Npertubation = I nterchange and
Nexp loi tation = I nsert , Meme(Nperturbation,

Nexploitation, LS_Len) is transformed to
Meme(Interchange, Insert, LS_Len). Similarly,
the other two memes can also be obtained.

4.5 Multi-objective handling techniques

In order to handle multi-objective no-wait FSSPs (MNF-
SSPs), several techniques are adopted as follows.

(1) For any big valley of MNFSSPs, the optimal Pareto
solutions and good solutions lie not only in the bot-
tom part but also in the sub-regions near the bottom
part. Therefore, in order to exploit enough sub-regions
to find all optimal Pareto solutions, both global search
and local search should be stressed and balanced. In
the former (Qian et al. 2009), we investigated how to
reasonably fuse DE-based global search and problem-
based local search for solving multi-objective FSSPs
with limited buffers and found that applying local search
to 1/4–1/5 individuals in population can achieve better
results. Based on our experiments, similar conclusion
can also be drawn for MNFSSPs. In MADE, 1/5 indi-
viduals are selected to apply local search.

(2) In MADE, a tentative non-dominated solutions set S is
used to store the obtained non-dominated job permu-
tations and the corresponding individuals. This elitism
can improve the optimization speed of multi-objective
GA (Zitzler et al. 2000). According to (Jonathan et al.
2003), restricting the number of solutions in S can
induce retreating and shrinking estimated Pareto fronts.
Fortunately, the number of solutions in S is usually less
than 30. Thus, it is not necessary to define an upper
bound for S. At every generation, S is updated by the
new population. In particular, if a solution in the new
population is dominated by any solution in S, it will
be discard; otherwise, it will be added to S, and all the
solutions dominated by the added one are deleted from
S.

(3) To enrich the searching direction and to speed up the
total convergence process, in MADE all non-dominated
solutions in S are treated equally, and one solution ran-
domly selected from S is used as the best individual
bestit (base vector) of the current population.

(4) To obtain non-dominated solutions with reasonable
diversity and good proximity, two measures, whose
effectiveness has been validated in (Qian et al. 2009),
are adopted at the DE’s selection step in MADE. The
first one is that the trail vector is compared with the
individual r1 rather than individual i . The second one

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 855

is that the dominated solution can be accepted with a
small probability.

4.6 Procedure of MADE

Based on the above solution conversion, speed-up computing
method, DE-based search, problem-dependent local search,
solution repair mechanism and multi-objective handling tech-
niques, the procedure of MADE is proposed as follows:

Based on the above sub-sections, the procedure of MADE
is given as follows:

Step 0: Let G denote a generation, Pop(t) a population
with size P S in generation t, Xi (t) the i th indivi-
dual with dimension N (N = n) in Pop(t), xi, j (t)
the j th variable of individual Xi (t), tmp j the j th
variable of tmp, C R the crossover probability, and
random(0, 1) the random value in the interval [0,1].
The values of the objectives of each individual are
calculated by speed-up method.

Step 1: Calculate and save M D(πi , π j) and Psum(π j)(πi ,

π j ∈ {1, . . . , n}).
Step 2: Input N , P S, C R ∈ [0, 1]. Set S = φ, and let ini-

tial bounds be lower(xi, j) = 0, upper(xi, j) = 4,

j = 1, . . . , N . As for DE/rand-to-best/1/exp
scheme, the mutation needs to randomly choose dif-
ferent r1, r2 and index i from {1, 2, . . . , P S}. So
PS must be greater or equal to 3.

Step 3: Population initialization.
Generate xi, j (0) = lower(xi, j) + random(0, 1) ∗
(upper(xi, j) − lower(xi, j)), j = 1, . . . , N for
i = 1, . . . , P S.

Step 4: Update S and let t = 1.
Step 5: Evolution phase (between Step 5 and Step 12). Let

i = 1.
Step 6: Set the trial vector tmp = Xi (t − 1) and L = 0.

Randomly select an individual from S as besti t ,
randomly select j ∈ (1, . . . , N), and randomly
select r1, r2 ∈ (1, . . . , P S), where r1 �= r2 �= i .

Step 7: Perform DE’s mutation and crossover.

Step 7.1: Let tmp j = tmp j + F ∗ (besti t j − tmp j) +
F ∗ (xr1, j (t − 1) − xr2, j (t − 1)).

If tmp j < lower(xi, j), then let tmp j =
2 ∗ lower(xi, j) − tmp j .
If tmp j > upper(xi, j), then let tmp j =
2 ∗ upper(xi, j) − tmp j .

Step 7.2: Set j = (j + 1) mod N and L = L + 1.
Step 7.3: If j = 0, then j = N .
Step 7.4: If (random(0, 1) < C R) and (L < N), then go

to Step 7.1.

Step 8: Perform DE’s selection.

),(jiMD ππ)(jsum π },,1{, nji ∈π

)~1()(PSitX i =

Calculate and save and P (π)

Generate DE’s individuals with random values,

and determine the corresponding job permutations by LOV rule

Calculate the objective functions of initial DE’s individuals with
speed-up method, initialize S and set t = 1

Is t > the
maximum number

Yes
Output S

No (DE-based global serach)

Randomly select an individual from S as bestit, update DE’s

individuals using DE/rand-to-best/1/exp-based operation, determine

permutations using LOV rule, calculate the objective functions of

DE’s individuals with speed-up method

Problem-dependent local search

Apply multimemes to 1/5 individuals, calculate the objective

functions with speed-up method

Update S

Set t= t + 1

. . .

Fig. 2 The framework of the MADE

If ((tmp dominates Xr1(t−1)) or (random(0, 1) <

0.05)), then let Xi (t) = tmp; else, let Xi (t) =
Xi (t − 1).

Step 9: If (i mod 5) = 1, then
Randomly select L S ∈ (1, 2, 3);
If LS= 1 then apply Meme(Interchange, Insert,
LS_Len) to Xi (t);
If LS= 2 then apply Meme(Insert, Interchange,
LS_Len) to Xi (t);
If LS= 3 then apply Meme(Swap, Insert, LS_Len)
to Xi (t);

Step 10: Let i = i + 1. If i < P S, then go to Step 6.
Step 11: Update S.
Step 12: Let t = t + 1. If t < t_max , then go to Step 5.
Step 13: Output S.

To be more straightforward, a MADE framework is illus-
trated in Fig. 2. It can be seen that DE and memes are hybri-
dized. On one aspect, the inherent random and scatter search
mechanism of DE and special designed DE’s selection are
utilized to find enough promising sub-regions over the whole
solution space. On the other aspect, three problem-specific
memes are applied to perform thorough exploitation in

123

856 B. Qian et al.

certain sub-regions. Due to the reasonable fusion of DE and
memes, searching behavior can be enriched, and global
exploration and local exploitation are stressed and well
balanced.

5 Simulation results and comparisons

5.1 Experimental setup

To test the performances of the proposed MADE for
MNFSSPs, numerical simulations are carried out with 28
well-studied benchmarks (i.e., Car1, Car5, Car8, Rec01,
Rec05, Rec09, Rec11, Rec15, Rec19, Rec21, Rec25, Rec29,
Rec31, Rec35, Rec39, Ta061, Ta065, Hel1, Ta071, Ta075,
Ta081, Ta085, Ta091, Ta095, Ta101, Ta105, Ta111, Ta115)
with different scales (Carlier 1978; Reeves 1995; Taillard;
Heller 1960). In proposed MADE, parameters are set as fol-
lows: the population size P S = 60, the scaling factor F =
0.7, the crossover parameter C R = 0.1, the meme’s exploi-
tation depth L S_Len = 12n when n < 75, L S_Len =
n2/6 when n = 100, L S_Len = n2/15 when n = 200,

L S_Len = n2/30 when n = 500.
To analyze the effectiveness of MADE, two variants of

MADE are compared, whose abbreviations are as follows:

(1): MADE_nospeedup: MADE without speed-up method.
(2): MADE_noSL: MADE without speed-up method and

local searchers (i.e., memes).

Moreover, a famous multi-objective optimization algorithm,
namely IMMOGLS2 (Ishibuchi et al. 2003), is also adopted
for comparison. In IMMOGLS2, the population size is also
set as P S = 60, and other parameters are set the same as
those in (Ishibuchi et al. 2003). That is, crossover probabi-
lity=0.9, mutation probability=0.6, number of elite solutions
(Nelite) = 10, number of neighbors to be examined (k) = 2,
tournament size=5, and local search probability (pL S) = 0.8.

All algorithms are coded in Delphi 6.0 and experiments
are executed on the same PC with Pentium IV 3.0 GHz CPU
and 1 GB memory. Each benchmark is independently run
10 times with every algorithm for comparison.

In Sects. 5.3 and 5.4, makespan Cmax(π) and maximum
tardiness Tmax(π) are considered as criteria. We set the two
objectives as follows:

Minimize f1(π) = Cmax(π) and f2(π) = Tmax(π), (12)

where π is a job permutation.
In the real application, the total machine idleness Isum

sometimes plays a key role and has to be regarded as unuti-
lized resources (Geiger 2007), and the total number of tardy
jobs NT (π) is often monitored and relative to which mana-
gers are measured (Pinedo 2002). In order to examine the per-
formance of MADE under these criteria, Isum(π) and total

NT (π) are also used as criteria. Because IMMOGLS2 adopts
a scalar fitness function with random weights to handle multi-
objectives and the value of NT (π) is much smaller Isum(π),
we set the two objectives as follows:

Minimize f1(π) = Isum(π) and f2(π) = 1000∗NT (π),(13)

where constant multipliers are used in equation (13) to handle
the two criteria.

Since MADE uses the concept of Pareto dominance to deal
with multiple objectives, the performance of MADE is inde-
pendent from constant multipliers. During the search process,
both MADE and IMMOGLS2 use the above constant mul-
tipliers. But when evaluating the obtained non-dominated
solutions by the performance metrics in Sect. 5.2, we set all
constant multipliers as 1.

The due date of each job is specified as follows:

(1) For each problem p, randomly generate a permutation
πr of the jobs.

(2) Calculate the completion time of each job in the permu-
tation πr .

(3) Specify the due data of each job by

dp, j = cp, j + random[−C p(π
r)/50, C p(π

r)/50], (14)

where dp, j is the due date of job j to problem p, cp, j is
the completion time of job πr

j to problem p, C p(π
r) is the

makespan of πr to problem p, and random[−C p(π
r)/50,

C p(π
r)/50] is a random value in the interval [−C p(π

r)/50,

C p(π
r)/50].

5.2 Performance metrics

Unlike single-objective problems, proper comparison of two
multi-objective algorithms itself is a multi-objective pro-
blem. That is, the two goals mentioned in Sect. 2.2.2 should
be considered. Here, four performance metrics are used to
evaluate the searching quality of the algorithm.

(1) Ratio of non-dominated solution (RNDS)
Let S denote the union of the K non-dominated solu-
tion sets (i.e., S = S1 ∪ · · · ∪ SK). A straightforward
performance metric (Ishibuchi et al. 2003) of the
non-dominated solution set S j with respect to the K
non-dominated solution sets is the ratio of solutions in
S j that are not dominated by any other solutions in S.
This metric is written as:

RN DS(S j) = |S j − {x ∈ S j |∃y ∈ S : y � x}|
|S j | , (15)

where y ≺ x means that the solution x is dominated
by the solution y. In the numerator of (15), dominated

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 857

Table 4 Comparisons of MADE_noSL with IMMOGLS2 when considering f = (Cmax, Tmax) (same running time)

Problem n, m Tavg MADE_noSL IMMOGLS2

ONVG ONSN DIR AQ ONVG ONSN DIR AQ

Car1 11,5 2.201 7.800 7.000 4.894 4221.411 9.500 9.200 1.994 4202.432

Car5 10,6 2.005 8.400 6.900 4.634 4883.763 9.000 9.000 0.050 4830.118

Car8 8,8 1.532 6.000 6.000 10.587 4782.080 6.900 6.900 0.473 4761.811

Rec01 20,5 4.925 9.300 2.500 25.769 859.575 9.300 9.100 8.126 807.743

Rec05 20,5 5.130 9.400 3.000 22.483 830.390 12.700 12.400 5.497 794.026

Rec09 20,10 6.181 8.200 1.800 32.450 1179.760 12.600 12.400 4.897 1091.125

Rec11 20,10 6.386 7.400 1.300 38.893 1043.839 9.400 9.300 6.704 966.840

Rec15 20,15 7.046 10.400 0.900 30.217 1397.505 12.600 12.500 2.940 1306.010

Rec19 30,10 10.984 8.800 0.900 50.721 1812.499 12.400 12.400 4.867 1608.427

Rec21 30,10 10.974 9.100 0.600 65.397 1795.125 10.900 10.900 3.270 1542.850

Rec25 30,15 13.400 8.900 0.700 57.744 2205.373 8.400 8.400 8.539 1952.038

Rec29 30,15 13.373 7.900 1.900 58.365 2095.286 11.700 11.700 9.005 1805.912

Rec31 50,10 26.791 9.000 0.000 87.161 3169.323 10.000 10.000 0.000 2483.894

Rec35 50,10 26.622 9.300 0.100 85.648 3337.035 16.100 16.100 0.209 2600.327

Rec39 75,20 82.537 8.400 0.000 97.130 6841.359 16.500 16.500 0.000 5003.819

Ta061 100,5 93.945 10.700 0.000 101.894 5339.674 15.200 15.200 0.000 3956.172

Ta065 100,5 93.514 9.500 0.000 103.903 5305.148 13.300 13.300 0.000 3816.982

Hel1 100,10 138.139 8.500 0.000 107.285 624.380 7.400 7.400 0.000 427.535

Ta071 100,10 133.516 11.000 0.000 99.681 7065.041 19.400 19.400 0.000 5005.006

Ta075 100,10 133.952 10.600 0.000 103.521 7047.056 17.400 17.400 0.000 4880.311

Ta081 100,20 201.217 10.200 0.000 103.130 9512.533 18.400 18.400 0.000 6483.817

Ta085 100,20 202.622 10.900 0.000 98.762 9174.423 20.300 20.300 0.000 6312.293

Ta091 200,10 437.112 12.100 0.000 112.416 15435.132 15.000 15.000 0.000 9998.205

Ta095 200,10 436.875 7.300 0.000 115.981 15615.812 12.300 12.300 0.000 9879.640

Ta101 200,20 658.878 8.800 0.000 116.670 20047.310 16.500 16.500 0.000 12768.669

Ta105 200,20 657.628 8.600 0.000 118.055 20647.405 17.500 17.500 0.000 12654.251

Ta111 500,20 5156.385 9.100 0.000 128.427 56798.486 10.100 10.100 0.000 31407.120

Ta115 500,20 5172.271 12.700 0.000 126.851 57069.386 14.200 14.200 0.000 33055.223

Average 9.225 1.200 75.310 9647.718 13.036 12.993 2.020 6300.093

solutions x by other solutions y in S are removed from
S j .|S j | is the number of solutions in S j .RN DS(S j) = 1
means that all solutions in S j are not dominated by
any solutions in S. On the contrary, RN DS(S j) = 0
represents that each solution in S j is dominated by some
solutions in S. The higher the ratio RN DS(S j) is, the
better the solution set S j is.

(2) Overall non-dominated vector generation (ONVG)
For an obtained non-dominated solution set S j , the
metric ONVG is defined as

∣∣S j
∣∣, which is the number

of distinct non-dominated solutions.
(3) Overall non-dominated solutions number (ONSN)

The metric ONSN is the number of those solutions in
S j not dominated by any other solutions in S:

O N SN (S j) = |S j − {x ∈ S j |∃y ∈ S : y � x}|. (16)

The larger the value of O N SN (S j) is, the better the
solution set S j is.

(4) Average distance (DIR)
Let dyx(S j) denote the shortest normalized distance
from a reference solution y to a solution set S j , which
is given as follows:

dyx(S j) = min
x∈S j

⎧⎨
⎩

√√√√ w∑
i=1

(
fi (y) − fi (x)

f max
i (·) − f min

i (·)

)2
⎫⎬
⎭,

(17)

where y belongs to the reference solution set S∗, and
fi (·) is the i th objective value, and f max

i (·) and f min
i (·)

are the maximum and minimum value of the i th objec-
tive in S, respectively. If the optimal Pareto front is not

123

858 B. Qian et al.

Table 5 Comparisons of MADE_noSL with IMMOGLS2 when considering f = (Isum, NT) (same running time)

Problem n, m Tavg MADE_noSL IMMOGLS2

ONVG ONSN DIR AQ ONVG ONSN DIR AQ

Car1 11,5 1.962 2.200 0.800 29.513 6448.268 3.000 2.800 0.467 6290.819

Car5 10,6 1.966 1.700 1.300 37.646 11102.719 3.100 3.000 1.264 10954.321

Car8 8,8 1.510 2.800 1.100 5.511 17006.262 2.000 2.000 0.000 16890.764

Rec01 20,5 4.351 3.000 0.100 53.612 1271.101 3.500 3.400 1.228 1072.022

Rec05 20,5 4.859 3.300 0.100 50.277 1319.162 4.300 4.300 0.613 1150.131

Rec09 20,10 5.424 3.000 0.100 52.631 5485.688 4.300 4.200 0.250 4849.659

Rec11 20,10 6.183 3.000 0.100 58.111 4811.464 3.900 3.900 1.359 4249.716

Rec15 20,15 6.445 2.300 0.200 61.855 10200.901 3.700 3.600 2.784 9262.229

Rec19 30,10 10.118 4.100 0.000 76.427 8432.260 4.200 4.200 0.000 6502.370

Rec21 30,10 10.069 3.700 0.100 69.759 8313.107 5.100 5.100 0.907 6335.484

Rec25 30,15 12.623 3.900 0.100 74.005 17884.648 5.300 5.300 0.538 13973.767

Rec29 30,15 12.748 3.800 0.200 72.547 17526.069 4.400 4.400 2.352 13065.492

Rec31 50,10 24.644 4.700 0.000 96.090 15127.245 5.400 5.400 0.000 9469.133

Rec35 50,10 24.452 4.700 0.000 93.376 15792.367 5.100 5.100 0.000 9987.971

Rec39 75,20 79.368 5.700 0.000 102.626 79810.039 6.400 6.400 0.000 50073.733

Ta061 100,5 89.339 6.200 0.000 108.461 9232.315 6.600 6.600 0.000 4250.400

Ta065 100,5 88.289 5.700 0.000 109.956 9345.865 7.200 7.200 0.000 3969.264

Hel1 100,10 132.930 6.400 0.000 106.158 2858.441 7.100 7.100 0.000 1487.329

Ta071 100,10 128.686 6.000 0.000 108.378 32002.972 7.300 7.300 0.000 16932.977

Ta075 100,10 127.942 5.700 0.000 108.395 33267.009 7.300 7.300 0.000 17244.356

Ta081 100,20 201.776 5.800 0.000 109.854 108575.143 7.900 7.900 0.000 63098.259

Ta085 100,20 205.230 5.700 0.000 107.509 103677.036 6.100 6.100 0.000 59754.862

Ta091 200,10 435.360 6.300 0.000 119.863 69583.990 9.100 9.100 0.000 33434.113

Ta095 200,10 436.854 8.500 0.000 119.924 70300.940 10.300 10.300 0.000 33399.257

Ta101 200,20 660.289 8.000 0.000 119.132 214568.344 8.600 8.600 0.000 115728.581

Ta105 200,20 657.980 8.100 0.000 118.778 217651.066 8.300 8.300 0.000 116083.820

Ta111 500,20 4976.331 12.300 0.000 127.879 575892.948 9.700 9.700 0.000 277332.576

Ta115 500,20 5013.203 9.100 0.000 127.430 573640.086 8.200 8.200 0.000 280857.271

Average 5.204 0.150 86.632 80040.266 5.979 5.957 0.420 42417.881

known, we will combine these K non-dominated solu-
tion sets and select all the non-dominated solutions to
form the set S∗.
The average distance DIR(S j) is the average of those
shortest normalized distances from all the reference
solutions to S j (Czyzak and Jaszkiewicz 1998; Knowles
and Corne 2002), that is,

DIR(S j) = 1

|S∗|
∑
y∈S∗

dyx(S j). (18)

According to (Ishibuchi et al. 2003), DIR(S j) can be
used to evaluate the spread of S j as well as the proxi-
mity of S j to the reference set S∗. Obviously, smal-
ler DIR(S j) values correspond to a better convergence
performance to S∗. If DIR(S j) = 0, all the reference
solutions in S∗ are included in the solution set S j .

(5) Average Quality (AQ)
In (Jaszkiewicz 2003), a metric was designed to mea-
sure the quality of the solution set, which was origi-
nally expressed in the form of weighted Tchebycheff
function. But that function may hide certain aspects
about the quality of solution set because poor perfor-
mance with respect to convergence could be compen-
sated by good performance in distribution of solutions.
So, diversity indicators of spread and space are added
to the formulation to overcome the limitation, and a
metric is given by the average value of a scalarized func-
tion over a representative sample of weight vectors as
follow:

AQ =
∑
λ∈�

sa(f, z0, λ, ρ)/|�| (19)

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 859

Table 6 Comparisons of MADE_noSL with MADE_nospeedup when considering f = (Cmax, Tmax) (same running time)

Problem n, m Tavg MADE_noSL MADE_nospeedup

ONVG ONSN DIR AQ ONVG ONSN DIR AQ

Car1 11,5 2.201 7.800 6.900 6.851 4221.411 10.500 10.500 0.516 4177.247

Car5 10,6 2.005 8.400 6.500 7.228 4883.763 9.400 9.300 1.671 4761.508

Car8 8,8 1.532 6.000 6.000 10.587 4782.080 6.900 6.900 0.473 4761.811

Rec01 20,5 4.925 9.300 0.100 35.784 859.575 12.900 12.900 0.237 780.550

Rec05 20,5 5.130 9.400 0.200 30.339 830.390 13.300 13.300 0.223 775.708

Rec09 20,10 6.181 8.200 0.000 40.376 1179.760 13.100 13.100 0.000 1059.114

Rec11 20,10 6.386 7.400 0.000 48.547 1043.839 6.200 6.200 0.000 967.713

Rec15 20,15 7.046 10.400 0.000 32.445 1397.505 16.800 16.800 0.000 1287.958

Rec19 30,10 10.984 8.800 0.000 55.610 1812.499 10.700 10.700 0.000 1520.520

Rec21 30,10 10.974 9.100 0.000 71.544 1795.125 11.500 11.500 0.000 1482.138

Rec25 30,15 13.400 8.900 0.000 64.226 2205.373 10.600 10.600 0.000 1905.917

Rec29 30,15 13.373 7.900 0.000 65.484 2095.286 12.100 12.100 0.000 1761.073

Rec31 50,10 26.791 9.000 0.000 85.853 3169.323 12.700 12.700 0.000 2343.021

Rec35 50,10 26.622 9.300 0.000 83.835 3337.035 13.700 13.700 0.000 2418.707

Rec39 75,20 82.537 8.400 0.000 98.716 6841.359 9.900 9.900 0.000 4638.389

Ta061 100,5 93.945 10.700 0.000 103.620 5339.674 12.400 12.400 0.000 3533.217

Ta065 100,5 93.514 9.500 0.000 101.229 5305.148 13.200 13.200 0.000 3385.204

Hel1 100,10 138.139 8.500 0.000 105.861 624.380 9.700 9.700 0.000 390.130

Ta071 100,10 133.516 11.000 0.000 100.326 7065.041 11.300 11.300 0.000 4475.233

Ta075 100,10 133.952 10.600 0.000 103.556 7047.056 13.100 13.100 0.000 4441.916

Ta081 100,20 201.217 10.200 0.000 101.339 9512.533 12.800 12.800 0.000 5863.456

Ta085 100,20 202.622 10.900 0.000 100.241 9174.423 13.200 13.200 0.000 5787.260

Ta091 200,10 437.112 12.100 0.000 110.936 15435.132 13.200 13.200 0.000 8730.636

Ta095 200,10 436.875 7.300 0.000 112.335 15615.812 12.700 12.700 0.000 8766.039

Ta101 200,20 658.878 8.800 0.000 112.893 20047.310 11.100 11.100 0.000 11370.351

Ta105 200,20 657.628 8.600 0.000 114.678 20647.405 10.300 10.300 0.000 11331.889

Ta111 500,20 5156.385 9.100 0.000 123.361 56798.486 12.600 12.600 0.000 28300.375

Ta115 500,20 5172.271 12.700 0.000 116.829 57069.386 13.100 13.100 0.000 28372.362

Average 9.225 0.704 76.594 9647.718 11.750 11.746 0.111 5692.480

where sa(f, z0, λ, ρ) = mini {max j {λ j (f j (xi)− z0
j)}+

ρ
∑w

j=1 λ j (f j (xi) − z0
j)}, and f j (·) is the j th objec-

tive, and � = {λ = (λ1, . . . , λw)|λ j ∈ {0, 1/r, 2/r,
. . . , 1},∑w

j=1 λ j = 1}, and z0 is a reference point in
the objective space that is set to (0, 0) for two-objective
problems, and ρ is a sufficiently small number which
is set to 0.01 in this paper. Besides, r is a parameter
changed as the number of objectives set as 50. AQ can
evaluate both the convergence performance and diver-
sity of the solution set. Lower metric value represents
better solution set.

5.3 Comparisons of MADE_noSL, IMMOGLS2
and MADE_nospeedup

In this subsection, we set the maximum generation of
MADE_nospeedup as t_max=300 and let MADE_noSL and

IMMOGLS2 run at the same time as MADE_nospeedup.
The average running time (second) of each instance, namely
Tavg, is given in the corresponding tables.

5.3.1 Comparisons of MADE_noSL with IMMOGLS2

In order to test DE’s global search ability, we compare
MADE_noSL with IMMOGLS2. Simulation results on
f = (Cmax, Tmax) and f = (Isum, NT) can be found in
Tables 4 and 5, respectively.

In Tables 4 and 5, it can be seen from ONVG metric
and ONSN metric that IMMOGLS2 can obtain obviously
more non-dominated solutions with better convergence per-
formance than MADE_noSL. From DIR metric, it can be
seen that the DIR values of IMMOGLS2 are much smal-
ler than those of MADE_noSL. This means that IMMO-
GLS2 can obtain solutions closer to the optimal Pareto front

123

860 B. Qian et al.

Table 7 Comparisons of MADE_noSL with MADE_nospeedup when considering f = (Isum, NT) (same running time)

Problem n, m Tavg MADE_noSL MADE_nospeedup

ONVG ONSN DIR AQ ONVG ONSN DIR AQ

Car1 11,5 1.962 2.200 0.600 29.681 6448.268 2.500 2.500 5.119 6266.588

Car5 10,6 1.966 1.700 1.300 37.089 11102.719 3.100 2.900 1.660 10947.810

Car8 8,8 1.510 2.800 1.100 5.511 17006.262 2.000 2.000 0.000 16890.764

Rec01 20,5 4.351 3.000 0.100 69.779 1271.101 3.400 3.400 0.944 1013.571

Rec05 20,5 4.859 3.300 0.000 61.036 1319.162 4.300 4.300 0.000 1095.335

Rec09 20,10 5.424 3.000 0.000 62.541 5485.688 4.500 4.500 0.000 4671.140

Rec11 20,10 6.183 3.000 0.000 60.727 4811.464 4.400 4.400 0.000 4092.068

Rec15 20,15 6.445 2.300 0.000 68.257 10200.901 3.300 3.300 0.000 9046.000

Rec19 30,10 10.118 4.100 0.000 84.596 8432.260 4.200 4.200 0.000 6193.537

Rec21 30,10 10.069 3.700 0.000 78.235 8313.107 4.400 4.400 0.000 6128.207

Rec25 30,15 12.623 3.900 0.000 79.948 17884.648 4.500 4.500 0.000 13753.284

Rec29 30,15 12.748 3.800 0.000 80.605 17526.069 4.100 4.100 0.000 12636.022

Rec31 50,10 24.644 4.700 0.000 97.303 15127.245 4.800 4.800 0.000 9232.426

Rec35 50,10 24.452 4.700 0.000 94.346 15792.367 4.700 4.700 0.000 9787.135

Rec39 75,20 79.368 5.700 0.000 105.474 79810.039 5.300 5.300 0.000 49885.688

Ta061 100,5 89.339 6.200 0.000 110.828 9232.315 5.300 5.300 0.000 4012.488

Ta065 100,5 88.289 5.700 0.000 114.042 9345.865 6.400 6.400 0.000 3823.921

Hel1 100,10 132.930 6.400 0.000 109.835 2858.441 4.900 4.900 0.000 1432.022

Ta071 100,10 128.686 6.000 0.000 111.971 32002.972 5.600 5.600 0.000 16601.863

Ta075 100,10 127.942 5.700 0.000 111.445 33267.009 6.100 6.100 0.000 16983.272

Ta081 100,20 201.776 5.800 0.000 114.387 108575.143 4.900 4.900 0.000 62198.099

Ta085 100,20 205.230 5.700 0.000 109.491 103677.036 5.800 5.800 0.000 59750.541

Ta091 200,10 435.360 6.300 0.000 124.324 69583.990 4.600 4.600 0.000 33021.617

Ta095 200,10 436.854 8.500 0.000 123.447 70300.940 5.800 5.800 0.000 33146.905

Ta101 200,20 660.289 8.000 0.000 121.001 214568.344 5.500 5.500 0.000 115171.246

Ta105 200,20 657.980 8.100 0.000 119.916 217651.066 5.600 5.600 0.000 116028.471

Ta111 500,20 4976.331 12.300 0.000 128.798 575892.948 5.700 5.700 0.000 269275.363

Ta115 500,20 4997.203 9.100 0.000 127.558 573640.086 5.200 5.200 0.000 270432.812

Average 5.204 0.111 90.792 80040.266 4.675 4.668 0.276 41554.221

than MADE_noSL. However, the values of RNDS, ONSN
and DIR metrics can not directly reflect the diversity of the
solution set. So, we use AQ metric that considers both the
convergence performance and diversity for comprehensive
comparisons. From Tables 4 and 5, it can be found that the AQ
values of IMMOGLS2 are less than those of MADE_noSL.
That is to say, the solutions obtained by IMMOGLS2 are
closer to the optimal Pareto front than those obtained by
MADE_noSL and the solutions obtained by IMMOGLS2
distribute more uniformly and cover more area of the opti-
mal Pareto front.

So it is concluded that DE’s global search is not suitable
to perform thorough exploitation in the promising regions
and has no enough ability to obtain non-dominated solutions
with good performance.

5.3.2 Comparisons of MADE_noSL with
MADE_nospeedup

Next we compare MADE_noSL with MADE_nospeedup to
examine the effect of memes on the performance of our
MADE_nospeedup. The statistics of performance metrics are
given in Tables 6 and 7, respectively.

Tables 6 and 7 show the statistical results produced by
MADE_nospeedup are much better than those by
MADE_noSL for every instance. As the size of the ins-
tance increases, the superiority of MADE_nospeedup over
MADE_noSL also increases. This indicates that by embed-
ding the proposed memes into MADE_noSL to enhance
exploitation it becomes more efficient and effective to obtain
an approximate optimal Pareto set with high quality.

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 861

Table 8 Comparisons of MADE_nospeedup with IMMOGLS2 when considering f = (Cmax, Tmax) (same running time)

Problem Tavg MADE_nospeedup IMMOGLS2

RNDS ONSN DIR TGen TET RNDS ONSN DIR TGen TET

Car1 2.201 0.981 10.300 0.936 300 500460 0.926 8.800 4.055 1117 213050

Car5 2.005 0.989 9.300 1.856 300 457260 0.944 8.500 3.698 1048 204457

Car8 1.532 1.000 6.900 0.000 300 370860 1.000 6.900 0.000 803 157865

Rec01 4.925 0.992 12.800 0.112 300 889260 0.043 0.400 18.132 2452 431492

Rec05 5.130 0.925 12.300 0.961 300 889260 0.157 2.000 15.562 2442 432015

Rec09 6.181 0.977 12.800 0.935 300 889260 0.079 1.000 17.984 2714 476850

Rec11 6.386 0.887 5.500 7.594 300 889260 0.436 4.100 12.037 2704 474582

Rec15 7.046 0.881 14.800 0.802 300 889260 0.302 3.800 10.194 2962 517233

Rec19 10.984 0.953 10.200 1.004 300 1321260 0.097 1.200 24.439 4588 777589

Rec21 10.974 0.991 11.400 1.108 300 1321260 0.083 0.900 30.157 4594 778664

Rec25 13.400 0.953 10.100 0.986 300 1321260 0.155 1.300 29.019 4933 836617

Rec29 13.373 0.917 11.100 3.768 300 1321260 0.291 3.400 26.349 4969 836932

Rec31 26.791 0.945 12.000 1.293 300 2185260 0.220 2.200 34.254 8934 1465672

Rec35 26.622 0.942 12.900 1.852 300 2185260 0.217 3.500 25.536 8939 1464873

Rec39 82.537 0.949 9.400 4.794 300 3265260 0.218 3.600 41.084 16389 2644907

Ta061 93.945 0.992 12.300 0.358 300 6026460 0.039 0.600 48.857 25031 4012639

Ta065 93.514 1.000 13.200 0.011 300 6026460 0.008 0.100 44.404 24971 4000829

Hel1 138.139 0.990 9.600 0.765 300 6026460 0.068 0.500 50.339 27951 4488400

Ta071 133.516 0.991 11.200 0.612 300 6026460 0.015 0.300 51.567 28021 4477938

Ta075 133.952 1.000 13.100 0.000 300 6026460 0.000 0.000 51.771 27991 4476658

Ta081 201.217 0.938 12.000 1.179 300 6026460 0.196 3.600 41.062 30651 4899760

Ta085 202.622 0.970 12.800 2.348 300 6026460 0.148 3.000 43.256 30611 4899094

Ta091 437.112 0.970 12.800 0.685 300 9626460 0.087 1.300 53.196 48001 7608995

Ta095 436.875 0.992 12.600 0.073 300 9626460 0.016 0.200 44.984 48068 7617100

Ta101 658.878 0.982 10.900 0.321 300 9626460 0.018 0.300 46.706 51801 8202919

Ta105 657.628 1.000 10.300 0.140 300 9626460 0.074 1.300 48.894 51901 8217402

Ta111 5156.385 1.000 12.600 0.000 300 30024060 0.000 0.000 68.139 137301 21792864

Ta115 5172.271 1.000 13.100 0.000 300 30024060 0.000 0.000 64.011 136801 21667364

Average 0.968 11.368 1.232 300 5694103 0.208 2.243 33.917 26382 4216956

5.3.3 Comparisons of MADE_nospeedup and IMMOGLS2

As for multi-objective FSSPs, IMMOGLS2 (Ishibuchi et al.
2003) is famous for its abilities to efficiently find uniformly
distributed non-dominated solutions and it outperforms two
famous multi-objective evolutionary algorithms, the strength
Pareto evolutionary algorithm (SPEA) (Zitzler and Thiele
1999) and the revised non-dominated sorting genetic algo-
rithm (NSGAII) (Deb et al. 2002). Thus, to investigate the
search ability of MADE, we compare MADE_nospeedup
with IMMOGLS2. The experiment results are illustrated in
Tables 8 and 9, where TGen denotes the average generations.

From Tables 8 and 9, it can be found that the values of
RNDS, ONSN and DIR produced by MADE_nospeedup are
much better than those by IMMOGLS2 for every problem.
The TGen values of MADE_nospeedup are equal to 300,

which are much less than those of IMMOGLS2, but the TET
value of MADE_nospeedup is obviously larger than that of
IMMOGLS2 for each instance. That is, when running at the
same time, MADE_nospeedup can explore and exploit more
promising regions in the whole solution space than IMMO-
GLS2. This is the main reason that MADE_nospeedup has
relatively good performance.

To better understand the performance of MADE_no
speedup on the objectives f = (Cmax, Tmax), we plotted the
non-dominated solutions of SM ADE_nospeedup (circle point)
and SI M M OGL S2 (star point) and SM ADE_noSL

(triangle point) for Rec25 in one typical run in Fig. 3. The
figure shows that the solutions obtained by MADE_no
speedup (circle point) and IMMOGLS2 (star point) are much
closer to the optimal Pareto front than those of MADE_noSL
(triangle point) and dominate all the MADE_noSL’s

123

862 B. Qian et al.

Table 9 Comparisons of MADE_nospeedup with IMMOGLS2 when considering f = (Isum, NT) (same running time)

Problem Tavg MADE_nospeedup IMMOGLS2

RNDS ONSN DIR TGen TET RNDS ONSN DIR TGen TET

Car1 1.962 0.960 2.400 16.555 300 500460 0.700 2.100 2.583 946 204288

Car5 1.966 0.903 2.800 11.728 300 457260 0.935 2.900 7.827 915 198171

Car8 1.510 1.000 2.000 0.000 300 370860 1.000 2.000 0.000 734 161790

Rec01 4.351 1.000 3.400 2.610 300 889260 0.057 0.200 46.845 2006 411119

Rec05 4.859 0.977 4.200 0.520 300 889260 0.023 0.100 33.145 2000 404462

Rec09 5.424 0.911 4.100 1.949 300 889260 0.116 0.500 24.932 2299 457297

Rec11 6.183 0.909 4.000 1.828 300 889260 0.128 0.500 22.973 2257 456910

Rec15 6.445 0.939 3.100 3.067 300 889260 0.162 0.600 25.160 2509 493028

Rec19 10.118 0.976 4.100 0.133 300 1321260 0.048 0.200 43.740 3963 735307

Rec21 10.069 0.955 4.200 1.782 300 1321260 0.059 0.300 30.721 3934 735933

Rec25 12.623 0.911 4.100 2.852 300 1321260 0.132 0.700 24.013 4348 797826

Rec29 12.748 0.976 4.000 1.348 300 1321260 0.045 0.200 31.889 4357 803212

Rec31 24.644 0.813 3.900 4.260 300 2185260 0.204 1.100 26.574 7879 1372958

Rec35 24.452 0.702 3.300 7.252 300 2185260 0.333 1.700 21.725 7841 1365446

Rec39 79.368 0.887 4.700 6.583 300 3265260 0.281 1.800 25.932 15339 2544527

Ta061 89.339 1.000 5.300 0.000 300 6026460 0.000 0.000 45.715 23581 3932148

Ta065 88.289 0.984 6.300 0.807 300 6026460 0.056 0.400 39.465 23411 3908370

Hel1 132.930 1.000 4.900 0.000 300 6026460 0.000 0.000 49.604 26721 4465173

Ta071 128.686 0.982 5.500 1.853 300 6026460 0.082 0.600 32.793 26781 4417008

Ta075 127.942 0.984 6.000 2.812 300 6026460 0.151 1.100 34.735 26721 4407456

Ta081 201.776 0.918 4.500 3.951 300 6026460 0.165 1.300 40.698 29801 4854814

Ta085 205.230 0.793 4.600 8.402 300 6026460 0.426 2.600 29.525 29841 4866382

Ta091 435.360 1.000 4.600 3.085 300 9626460 0.033 0.300 50.849 46868 7560615

Ta095 436.854 0.914 5.300 10.268 300 9626460 0.223 2.300 40.336 46834 7555082

Ta101 660.289 0.927 5.100 19.363 300 9626460 0.349 3.000 31.199 50668 8109910

Ta105 657.980 0.893 5.000 14.450 300 9626460 0.422 3.500 28.167 50868 8140486

Ta111 4976.331 1.000 5.700 0.000 300 30024060 0.000 0.000 80.053 136601 21606733

Ta115 4997.203 1.000 5.200 0.000 300 30024060 0.000 0.000 88.523 135951 21537702

Average 0.936 4.368 4.552 300 5694103 0.219 1.071 34.276 25571 4160862

solutions. Furthermore, it can be easily seen that MADE_no
speedup performs better than IMMOGLS2. The correspon-
ding values of performance metrics are reported in Table 10.
Experiment results for other problems are similar.

Moreover, typical results of a replication for the three
algorithms based on the objectives f = (Isum, NT) and the
benchmark Rec11 are shown in Fig. 4. And the corresponding
values of the performance metrics are given in Table 11. As
can be seen from Fig. 4 and Table 11, MADE_nospeedup’s
solutions (circle point) dominate all the IMMOGLS2’s solu-
tions (starpoint)andall theMADE_noSL’ssolutions (triangle
point). As for other problems, conclusions are similar.

To sum up, MADE_nospeedup is a more effective and
efficient multi-objective optimization algorithm than IMMO-
GLS2 and MADE_noSL.

5.4 Comparisons of MADE with MADE_nospeedup

To further show the effectiveness of MADE by incorpora-
ting speed-up computing method into MADE_nospeedup,
we compare MADE with MADE_nospeedup. In MADE_no
speedup, both (Cmax, Tmax) and (Isum, NT) can be compu-
ted in O(nm). And in MADE, where speed-up computing
method is adopted, both the CC of computing (Cmax, Tmax)
and that of computing (Isum, NT) are reduced to O(n). Let
TCC_MADE_nospeedup(OF1, OF2) denote the total CC of
calculating two objective functions, i.e., OF1 and OF2, in
MADE_nospeedup, TCC_MADE (OF1, OF2) denote the
total CC of calculating OF1 and OF2 in MADE. When
MADE and MADE_nospeedup run at the same TET
(i.e., K1, times), TCC_MADE(Cmax, Tmax) can be reduced

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 863

Fig. 3 Non-dominated
solutions of MADE_nospeedup
and IMMOGLS2 and
MADE_noSL (Cmax, Tmax)

Table 10 The values of performance metrics corresponding to Fig. 3

(Cmax, Tmax) MADE_noSL vs IMMOGLS2 MADE_noSL vs. MADE_nospeedup MADE_nospeedup vs. IMMOGLS2

MADE_noSL IMMOGLS2 MADE_noSL MADE _nospeedup MADE _nospeedup IMMOGLS2

RNDS 0.000 1.000 0.000 1.000 1.000 0.133

ONVG 11.000 15.000 11.000 10.000 10.000 15.000

ONSN 0.000 15.000 0.000 10.000 10.000 2.000

DIR 58.963 0.000 66.553 0.000 0.257 22.003

AQ 2211.807 1930.320 2211.807 1904.625 1904.625 1930.320

Fig. 4 Non-dominated
solutions of MADE_nospeedup
and IMMOGLS2 and
MADE_noSL (Isum, NT)

123

864 B. Qian et al.

Table 11 The values of performance metrics corresponding to Fig. 4

(Isum, NT) MADE_noSL vs IMMOGLS2 MADE_noSL vs. MADE_nospeedup MADE_nospeedup vs. IMMOGLS2

MADE_noSL IMMOGLS2 MADE_noSL MADE _nospeedup MADE _nospeedup IMMOGLS2

RNDS 0.000 1.000 0.000 1.000 1.000 0.000

ONVG 3.000 3.000 3.000 5.000 5.000 3.000

ONSN 0.000 3.000 0.000 5.000 5.000 0.000

DIR 53.344 0.000 50.918 0.000 0.000 19.518

AQ 4806.019 4221.229 4806.019 4078.764 4078.764 4221.229

Table 12 Comparisons of MADE with MADE_nospeedup when considering f = (Cmax, Tmax) (same running time)

Problem MADE_nospeedup MADE

RNDS ONSN DIR AQ TET RNDS ONSN DIR AQ TET

Car1 1.000 10.900 1.417 4170.667 500460 0.991 11.200 0.597 4170.453 999526

Car5 0.968 9.200 1.973 4749.634 457260 0.980 9.600 0.577 4750.289 932900

Car8 1.000 7.000 0.000 4761.173 370860 1.000 7.000 0.000 4761.173 810011

Rec01 0.528 6.700 4.362 782.824 889260 0.836 11.700 0.954 779.693 1768382

Rec05 0.419 5.400 5.020 778.069 889260 0.800 10.400 1.860 776.328 1705842

Rec09 0.310 4.000 5.008 1062.080 889260 0.866 13.600 0.846 1056.934 2164076

Rec11 0.719 4.600 9.258 968.124 889260 0.975 7.900 1.323 963.206 2192827

Rec15 0.439 6.800 3.009 1286.751 889260 0.880 16.900 0.369 1284.291 2697004

Rec19 0.274 3.100 6.886 1519.210 1321260 0.795 8.900 1.702 1511.279 3030012

Rec21 0.364 3.900 7.574 1483.129 1321260 0.738 10.400 2.333 1475.876 3106201

Rec25 0.240 2.300 10.286 1906.478 1321260 0.845 9.800 1.948 1893.397 3865451

Rec29 0.391 4.500 5.262 1757.966 1321260 0.690 10.900 1.588 1760.117 3912574

Rec31 0.330 3.800 6.619 2343.239 2185260 0.779 11.300 1.765 2336.331 5401146

Rec35 0.496 6.500 4.111 2409.761 2185260 0.698 11.100 1.771 2400.081 4875970

Rec39 0.144 1.700 10.528 4646.397 3265260 0.932 12.400 0.857 4618.432 12509041

Ta061 0.397 4.800 7.216 3536.685 6026460 0.780 9.200 4.646 3527.528 13748287

Ta065 0.220 2.700 8.257 3393.402 6026460 0.844 11.900 2.092 3378.404 13947158

Hel1 0.152 1.400 11.088 390.267 6026460 0.890 9.700 0.947 387.593 18515170

Ta071 0.246 3.300 7.482 4450.146 6026460 0.835 11.600 1.920 4430.940 19728485

Ta075 0.235 2.300 10.354 4438.651 6026460 0.831 10.800 1.453 4410.699 17121062

Ta081 0.167 2.100 9.028 5873.568 6026460 0.922 14.100 0.992 5809.913 29485226

Ta085 0.153 1.700 11.638 5800.144 6026460 0.929 14.500 1.457 5734.586 29774494

Ta091 0.141 2.000 8.680 8752.709 9626460 0.989 17.300 1.542 8638.003 35355688

Ta095 0.219 2.800 10.126 8727.668 9626460 0.920 16.100 1.548 8606.164 35179204

Ta101 0.165 2.000 12.579 11207.666 9626460 0.936 13.200 0.685 11024.192 48821952

Ta105 0.091 0.900 12.432 11398.121 9626460 0.938 15.100 0.276 11256.865 51249944

Ta111 0.112 1.600 31.764 28276.972 30024060 0.910 15.100 26.069 27733.851 154273380

Ta115 0.095 1.100 14.956 28277.364 30024060 1.000 13.400 1.533 27627.245 150170100

Average 0.358 3.896 8.461 5683.888 5694103 0.876 11.968 2.273 5610.852 23833611

from O(K1nm) of TCC_MADE_nospeedup(Cmax,

Tmax) to O(K1n) and TCC_MADE(Isum, NT) can be redu-
ced from O(K1nm) of TCC_MADE_nospeedup(Isum , NT)
to O(K1n).

5.4.1 Comparisons based on a fixed computational budget

Firstly, we set the maximum generation of MADE_nospeed-
up as t_max=300 and let MADE run at the same time as

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 865

Table 13 Comparisons of MADE with MADE_nospeedup when considering f = (Isum, NT) (same running time)

Problem MADE_nospeedup MADE

RNDS ONSN DIR AQ TET RNDS ONSN DIR AQ TET

Car1 0.913 2.100 8.356 6266.591 500460 1.000 2.500 3.490 6266.589 711295

Car5 0.909 3.000 1.809 10945.839 457260 0.941 3.200 0.250 10941.900 601583

Car8 1.000 2.000 0.000 16890.764 370860 1.000 2.000 0.000 16890.764 547114

Rec01 0.568 2.100 13.687 1009.662 889260 0.854 3.500 5.945 1003.196 1423373

Rec05 0.286 1.200 9.499 1095.613 889260 0.864 3.800 2.122 1086.271 1267170

Rec09 0.317 1.300 8.305 4668.916 889260 0.837 4.100 1.420 4650.637 1938220

Rec11 0.553 2.100 7.588 4106.237 889260 0.756 3.100 3.642 4078.965 1566238

Rec15 0.667 2.000 6.783 9033.474 889260 0.903 2.800 1.575 9033.122 2234323

Rec19 0.147 0.500 21.763 6203.915 1321260 0.919 3.400 4.493 6155.382 3511369

Rec21 0.333 1.400 12.939 6132.472 1321260 0.750 3.600 4.877 6081.009 3292931

Rec25 0.289 1.300 17.157 13729.679 1321260 0.784 4.000 1.787 13600.439 4099744

Rec29 0.300 1.200 14.968 12661.646 1321260 0.778 3.500 4.321 12478.479 4130572

Rec31 0.268 1.100 15.538 9193.316 2185260 0.783 4.700 2.385 9107.949 6704254

Rec35 0.298 1.400 15.193 9830.845 2185260 0.750 4.500 3.489 9700.398 6662006

Rec39 0.091 0.300 23.802 49939.014 3265260 0.902 5.500 0.850 49022.620 19307188

Ta061 0.415 2.200 14.964 4045.913 6026460 0.815 5.300 4.521 3981.624 19917312

Ta065 0.278 1.000 19.572 3800.234 6026460 0.786 4.400 4.447 3758.555 20475758

Hel1 0.213 1.000 24.682 1437.772 6026460 0.796 4.300 2.923 1419.663 25879430

Ta071 0.118 0.600 20.911 16602.528 6026460 0.902 5.500 0.693 16342.738 29083466

Ta075 0.109 0.700 18.269 17009.129 6026460 0.873 6.200 0.484 16814.526 23350351

Ta081 0.125 0.500 20.528 62180.878 6026460 0.955 6.400 0.784 61269.480 40545679

Ta085 0.143 0.700 19.700 59635.511 6026460 0.935 7.200 0.414 58806.785 40891193

Ta091 0.156 1.000 17.354 32946.528 9626460 0.947 7.100 1.356 32470.454 44078276

Ta095 0.000 0.000 22.980 33211.048 9626460 1.000 7.200 0.000 32627.303 39976360

Ta101 0.090 0.700 22.972 115092.964 9626460 0.973 7.100 1.906 113810.132 62357740

Ta105 0.094 0.500 24.442 115944.076 9626460 0.958 6.800 0.895 114933.432 67352772

Ta111 0.000 0.000 39.002 268005.032 30024060 1.000 7.300 0.000 265567.733 189251340

Ta115 0.000 0.000 35.874 270647.158 30024060 1.000 8.400 0.000 266637.278 189301380

Average 0.310 1.139 17.094 41509.527 5694103 0.884 4.907 2.110 41019.194 30373516

MADE_nospeedup. Simulation results on f = (Cmax, Tmax)

and f = (Isum, NT) are shown in Tables 12 and 13, respec-
tively.

From Table 12, it can be seen that the average TET of
MADE is 4.2 times larger than that of MADE_nospeedup,
which testifies that the evaluation time of solution can be
significantly reduced by the speed-up computing method.
Furthermore, all performance metrics values of MADE are
obviously better than those of MADE_nospeedup. This
means that, under the same running time, MADE can spend
more time in executing search operation in the solution space,
which is helpful to obtain the optimal Pareto front. Similar
conclusion can be drawn from Table 13.

5.4.2 Comparisons with the same running generation

Secondly, we let MADE and MADE_nospeedup run the
same generation (i.e., t_max=300). Test results on f =(Cmax,

Tmax) and f = (Isum, NT) are illustrated in Tables 14 and
15 respectively, where Tavg denotes the average CPU time
(second) of ten runs.

It is shown from Table 14 that the differences between per-
formance metrics values of MADE and those of
MADE_nospeedup are quite minor. That is to say, when
running same generation, MADE and MADE_nospeedup
can obtain similar non-dominated solutions. However, espe-
cially for the large problems, the Tavg of MADE is obviously

123

866 B. Qian et al.

Table 14 Comparisons of MADE with MADE_nospeedup when considering f = (Cmax, Tmax) (same running generation)

Problem MADE_nospeedup MADE

RNDS ONSN DIR AQ Tavg RNDS ONSN DIR AQ Tavg

Car1 0.972 10.400 1.243 4177.153 2.423 1.000 10.900 0.308 4168.629 1.586

Car5 0.979 9.200 1.107 4766.167 1.930 0.989 9.200 1.605 4786.309 1.275

Car8 1.000 6.800 2.005 4764.539 1.494 1.000 6.900 1.059 4763.264 0.936

Rec01 0.634 8.500 3.055 781.260 4.561 0.629 9.000 2.779 783.343 2.773

Rec05 0.602 8.000 2.744 776.329 5.253 0.606 7.700 3.718 777.120 3.431

Rec09 0.645 8.900 2.974 1060.886 5.805 0.624 8.300 2.876 1061.066 2.922

Rec11 0.933 5.600 5.827 966.583 6.659 0.788 5.200 5.337 966.331 2.803

Rec15 0.573 9.800 2.027 1287.307 6.627 0.614 10.200 2.153 1286.758 2.704

Rec19 0.648 6.800 4.428 1520.098 10.300 0.524 6.500 3.905 1524.042 4.139

Rec21 0.544 6.200 4.770 1484.482 10.585 0.560 7.000 4.892 1485.308 4.453

Rec25 0.613 6.500 4.362 1902.208 12.775 0.557 5.400 5.176 1906.549 4.409

Rec29 0.545 6.100 4.851 1769.807 12.951 0.570 6.900 4.021 1766.794 4.481

Rec31 0.614 7.000 3.511 2346.677 25.820 0.481 6.300 4.295 2338.303 9.719

Rec35 0.626 7.700 3.522 2418.355 26.020 0.526 7.000 3.217 2414.257 10.059

Rec39 0.512 6.300 4.175 4645.296 80.105 0.576 7.600 5.106 4649.754 17.308

Ta061 0.464 5.200 5.776 3533.974 94.277 0.648 7.000 4.913 3531.098 52.614

Ta065 0.521 6.200 5.993 3395.795 93.497 0.635 8.000 3.750 3381.977 52.511

Hel1 0.793 6.900 4.921 389.757 137.488 0.387 4.100 8.140 391.299 52.589

Ta071 0.652 7.500 5.035 4455.661 132.941 0.475 5.800 5.292 4466.872 52.614

Ta075 0.569 6.600 6.409 4446.235 132.933 0.543 6.300 5.075 4426.617 52.760

Ta081 0.433 5.200 6.084 5882.187 199.245 0.679 8.900 3.690 5868.730 54.208

Ta085 0.535 6.100 5.386 5809.396 201.292 0.577 7.100 4.779 5813.518 57.378

Ta091 0.565 7.000 4.319 8730.569 438.911 0.483 6.900 4.245 8739.799 119.537

Ta095 0.652 7.500 4.821 8705.978 437.271 0.523 5.800 6.589 8736.021 119.490

Ta101 0.521 5.000 8.143 11375.480 658.766 0.639 7.600 3.184 11254.455 128.914

Ta105 0.505 5.300 7.768 11446.594 649.971 0.562 6.800 6.091 11419.405 122.112

Ta111 0.644 8.700 7.521 28718.063 5195.164 0.525 6.400 10.709 28962.025 1026.930

Ta115 0.551 7.600 4.825 28418.446 5209.621 0.607 8.200 3.243 28242.137 1057.640

Average 0.637 7.093 4.557 5713.403 492.667 0.619 7.250 4.291 5711.135 107.939

smaller than that of MADE_nospeedup. The average Tavg of
MADE is 4.6 times smaller than that of MADE_nospeedup.
This is very meaningful for real-time applications and dyna-
mic scheduling, in which achieving satisfied solutions within
a short time is critical. Similar conclusion also can be drawn
from Table 15.

In conclusion, MADE is the most effective and efficient
multi-objective optimization algorithm among the four com-
pared algorithms.

6 Conclusions

In this article, a memetic algorithm based on DE (MADE) is
presented for solving multi-objective no-waiting flow-shop
scheduling problems (MNFSSPs). In order to apply DE for

FSSPs problems, we proposed a LOV rule to map the conti-
nuous values of an individual into a job permutation of FSSPs.
We also adopted the concept of Pareto dominance to handle
the updating of solutions in multi-objective sense. In our pro-
posed algorithm, not only did DE-based wide scatter search
be utilized to find enough promising regions, but also several
problem-specific memes were designed to perform a tho-
rough and deep search in these promising regions. More-
over, a speed-up computing method was developed to reduce
the computing complexity of solution evaluation, that is, we
considered the improvements of both the effectiveness of
searching solutions and the efficiency of evaluating solu-
tions. Simulation results and comparisons based on a set of
benchmarks demonstrated the effectiveness and efficiency
of MADE.

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 867

Table 15 Comparisons of MADE with MADE_nospeedup when considering f = (Isum, NT) (same running generation)

Problem MADE_nospeedup MADE

RNDS ONSN DIR AQ Tavg RNDS ONSN DIR AQ Tavg

Car1 0.960 2.400 7.185 6266.589 2.291 0.958 2.300 11.850 6266.591 1.470

Car5 0.935 2.900 10.472 10949.779 2.191 0.917 3.300 1.800 10937.960 1.498

Car8 1.000 2.000 0.000 16890.764 1.430 1.000 2.000 0.000 16890.764 0.884

Rec01 0.800 2.800 7.809 1011.980 4.442 0.667 2.600 7.243 1005.925 2.592

Rec05 0.548 2.300 4.843 1096.169 5.500 0.675 2.700 5.118 1097.177 3.639

Rec09 0.643 2.700 7.992 4671.443 5.658 0.683 2.800 6.155 4671.642 2.625

Rec11 0.639 2.300 11.080 4098.513 6.620 0.561 2.300 5.100 4113.106 2.511

Rec15 0.606 2.000 6.117 9036.557 6.673 0.933 2.800 8.205 9036.561 2.525

Rec19 0.538 2.100 9.718 6194.875 10.233 0.516 1.600 7.939 6203.557 3.678

Rec21 0.366 1.500 10.803 6151.922 10.239 0.632 2.400 7.518 6122.275 3.822

Rec25 0.614 2.700 7.330 13695.844 12.958 0.455 2.000 8.641 13733.615 3.981

Rec29 0.558 2.400 7.006 12627.610 13.077 0.500 2.100 9.687 12638.520 4.028

Rec31 0.500 2.300 11.894 9267.815 25.277 0.630 3.400 8.807 9254.565 7.748

Rec35 0.327 1.800 9.283 9775.352 25.221 0.744 3.200 7.308 9797.619 7.665

Rec39 0.554 3.100 13.729 50041.328 81.525 0.564 3.100 8.614 50009.214 13.617

Ta061 0.589 3.300 11.598 4072.539 89.651 0.600 3.300 7.624 4026.334 29.163

Ta065 0.611 3.300 7.880 3787.457 88.714 0.540 2.700 10.576 3826.838 29.123

Hel1 0.688 3.300 7.388 1432.918 133.989 0.403 2.500 12.623 1438.734 29.052

Ta071 0.633 3.800 7.489 16539.856 129.081 0.421 2.400 11.177 16537.319 29.192

Ta075 0.571 3.200 9.345 16903.369 128.408 0.490 2.500 11.180 16986.848 29.494

Ta081 0.333 2.200 11.707 62325.617 203.800 0.786 4.400 5.873 61905.444 35.497

Ta085 0.509 2.800 7.525 59573.442 211.613 0.541 3.300 8.696 59500.372 40.523

Ta091 0.640 3.200 10.347 32932.648 433.299 0.525 3.100 16.526 33085.582 93.883

Ta095 0.672 4.300 6.338 33023.507 444.964 0.408 2.900 15.918 32944.996 106.859

Ta101 0.433 2.900 7.993 114888.203 664.591 0.644 4.700 5.738 115302.791 102.898

Ta105 0.667 3.800 12.361 116246.703 653.510 0.492 3.200 7.842 115722.781 93.365

Ta111 0.451 3.200 13.215 268461.025 4942.188 0.346 2.700 10.363 268620.583 661.523

Ta115 0.539 4.100 3.438 271268.743 4961.109 0.444 3.200 10.066 270881.992 691.407

Average 0.604 2.811 8.639 41544.020 474.938 0.610 2.839 8.507 41519.989 72.652

To the best of our knowledge, this is the first paper to
apply the standard DE for multi-objective no-wait flow-shop
scheduling problems. In our future research, we will propose
some adaptive strategies to improve the efficiency of MADE,
and extend MADE to solve other kinds of scheduling pro-
blems, such as stochastic scheduling.

Acknowledgments This research is partially supported by National
Science Foundation of China (60774082, 60574072), National 863
Hi-Tech R&D Plan (2007AA04Z155, 2007AA04Z193) and the Project-
sponsored by SRF for ROCS, SEM. The authors would like to acknow-
ledge the guest editors and three anonymous referees for their helpful
comments and suggestions on the earlier manuscript of this paper.

Appendix 1 : The algorithm to calculate M D(π j−1, π j)

Step 1: Set p1 = 0, p2 = 0 and k = 2;
Step 2: Do

p1 = p1 + p(π j−1, k);
p2 = p2 + p(π j , k − 1);
If k = 2 then
max_p = p1 − p2

Else
max_p = max{max_p,p1 − p2};
k = k + 1;
While k ≤ m;

Step 3: M D(π j−1, π j) = p(π j−1, 1) + max{0, max_p};

Appendix 2 : The algorithm to calculate
∑m

k=1
∑k

y=1 p(πn, y)

Step 1: Set psum = 0, p = 0 and k = 1;
Step 2: Do

123

868 B. Qian et al.

p = p + p(πn, k); // p = ∑k
y=1 p(πn, y)

psum = psum + p;

k = k + 1;
While k ≤ m;

Remark In Step 2, p is used to save the current value of∑k
y=1 p(πn, y) in each loop. If the equation p = p+p(πn, k)

is replaced with the equation p = ∑k
y=1 p(πn, y), the CC of∑m

k=1
∑k

y=1 p(πn, y) will rise from O(m) to O(m2). For the
purpose of reducing the computing complexity, the equation
p = p + p(πn, k) is adopted in Step 2.

Appendix 3 : The algorithm to calculate
C(π j , m) (π j ∈ {1, . . . , n})

Step 1: Calculate C(π1, m) = ∑m
y=1 p(π1, y) and set

MD_sum = 0;
Step 2: Set j = 2 and p = 0;

Do
MD_sum = MD_sum+ M D(π j−1, π j);
C(π j , m) = M D_sum + Psum(π j);
j = j + 1;
While j ≤ n;

References

Aldowaisan T, Allahverdi A (2003) New heuristics for no-wait flow-
shops to minimize makespan. Comput Oper Res 30:1219–1231

Allahverdi A, Aldowaisan T (2004) No-wait flowshops with bicriteria
of makespan and maximum lateness. Eur J Oper Res 152:132–147

Arroyo JEC, Armentano VA (2005) Genetic local search for multi-
objective flowshop scheduling problems. Eur J Oper Res 167:
717–738

Baker KR (1974) Introduction to sequencing and scheduling. Wiley,
New York

Bean JC (1994) Genetic algorithm and random keys for sequencing and
optimization. ORSA J Comput 6(2):154–160

Bonney MC, Gundry SW (1976) Solutions to the constrained flowshop
sequencing problem. Oper Res Quart 24:869–883

Caponio A, Cascella GL, Neri F, Salvatore N, Sumner M (2007) A fast
adaptive memetic algorithm for online and offline control design
of PMSM drives. IEEE T Syst Man Cybern B 37(1):28–41

Carlier J (1978) Ordonnancements a contraintes disjonctives.
R.A.I.R.O. Recherche operationelle/Oper Res 12:333–351

Chang YP, Wu CJ (2005) Optimal multiobjective planning of large-
scale passive harmonic filters using hybrid differential evolution
method considering parameter and loading uncertainty. IEEE T
Power Deliver 20(1):408–416

Chen CL, Neppalli RV, Aljaber N (1996) Genetic algorithms applied to
the continuous flow-shop problem. Comput Ind Eng 30:919–929

Czyzak P, Jaszkiewicz A (1998) Pareto-simulated annealing—a meta-
heuristic technique for multi-objective combinatorial optimiza-
tion. J Multi-Crit Decis Anal 7(1):34–47

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist
multiobjective genetic algorithm: NSGA-II. IEEE T Evol Comput
6(2):182–197

Dimopoulos C, Zalzala AMS (2000) Recent development in evolutio-
nary computation for manufacturing optimization: problems, solu-
tions, and comparisons. IEEE T Evolut Comput 4:93–113

Feoktistov V (2006) Differential evolution: in search of solutions.
Springer, Heidelberg

Gangadharan R, Rajendran C (1993) Heuristic algorithms for schedu-
ling in the no-wait flowshop. Int J Prod Econ 32(3):285–290

Garey MR, Johnson DS (1979) Computers and intractability: a guide
to the theory of np-completeness. Freeman, San Francisco

Geiger MJ (2007) On operators and search space topology in multi-
objective flow-shop scheduling. Eur J Oper Res 181(1):195–206

Grabowski J, Pempera J (2005) Some local search algorithms for
no-wait flow-shop problem with makespan criterion. Comput Oper
Res 32:2197–2212

Hart WE, Krasnogor N, Smith JE (2004) Recent advances in memetic
algorithms. Springer, Heidelberg

Hall NG, Sriskandarajah C (1996) A survey of machine scheduling pro-
blems with blocking and no-wait in process. Oper Res 44:510–525

Heller J (1960) Some numerical experiments for an M×J flow-shop and
its decision-theoretical aspects. Oper Res 8:178–184

Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution trai-
ning algorithm for feed-forward neural networks. Neural Process
Lett 17(1):93–105

Ishibuchi H, Murata T (1998) A multiobjective genetic local search
algorithm and its application to flowshop scheduling. IEEE T Syst
Man Cybern C 28(3):392–403

Ishibuchi H, Yoshida T, Murata T (2003) Balance between genetic
search and local search in memetic algorithms for multiobjec-
tive permutation flowshop scheduling. IEEE T Evol Comput 7:
204–223

Jaszkiewicz A (2002) Genetic local search for multi-objective combi-
natorial optimization. Eur J Oper Res 137(1):50–71

Jaszkiewicz A (2003) Do multiple-objective metaheuristcs deliver on
their promises? A computational experiment on the set-covering
problem. IEEE T Evolut Comput 7(2):133–143

Jonathan EF, Richard ME, Sameer S (2003) Using unconstrained elite
archives for multiobjective optimization. IEEE T Evolut Comput
7(3):305–323

King JR, Spachis AS (1980) Heuristics for flowshop scheduling. Int J
Prod Res 18:343–357

Knowles JD, Corne DW (2002) On metrics for comparing nondo-
minated sets. In: 2002 Congress on Evolutionary Computation,
Honolulu, HI, USA, pp 711–716

Kumar S, Bagchi TP, Sriskandarajah C (2000) Lot streaming and sche-
duling heuristics for m-machine no-wait flowshops. Comput Ind
Eng 38:149–172

Liu B, Wang L, Jin YH (2007) An effective hybrid particle swarm opti-
mization for no-wait flow-shop scheduling. Int J Adv Manuf Tech
31(9–10):1001–1011

Murata T, Ishibuchi H, Tanaka H (1996) Genetic algorithms for flow-
shop scheduling problems. Comput Ind Eng 30:1061–1071

Nearchou AC (2008) A differential evolution approach for the common
due date early/tardy job scheduling problem. Comput Oper Res
35:1329–1343

Mladenovic N, Hansen P (1997) Variable neighborhood search.
Comput Oper Res 24:1097–1100

Nearchou AC, Omirou SL (2006) Differential evolution for sequencing
and scheduling optimization. J Heuristics 12(6):395–411

Neri F, Toivanen J, Cascella GL, Ong YS (2007) An adaptive mul-
timeme algorithm for designing HIV multidrug therapies. IEEE
ACM T Comput BI 4(2):264–278

Nowicki E, Smutnicki C (2006) Some aspects of scatter search in the
flow-shop problem. Eur J Oper Res 169:654–666

123

Multi-objective no-wait flow-shop scheduling with a memetic algorithm based on differential evolution 869

Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algo-
rithms. IEEE T Evol Comput 8:99–110

Ong YS, Lim MH, Zhu N, Wong KW (2006) Classification of adaptive
memetic algorithms: a comparative study. IEEE T Syst Man Cy B
36(1):141–152

Onwubolu G, Davendra D (2006) Scheduling flow-shops using diffe-
rential evolution algorithm. Eur J Oper Res 171(2):674–692

Pinedo M (2002) Scheduling: theory, algorithms and systems, 2nd edn.
Prentice-Hall, NJ

Price K, Storn R (2007) Differential evolution (DE) for continuous func-
tion optimization. http://www.icsi.berkeley.edu/%7Estorn/code.
html. Accessed 13 July 2007

Price K, Storn R, Lampinen J (2005) Differential evolution: a practical
approach to global optimization. Springer, Berlin, pp 227–238

Qian B, Wang L, Huang DX, Wang X (2008) Scheduling multi-
objective job shops using a memetic algorithm based on differential
evolution. Int J Adv Manuf Technol 35:1014–1027

Qian B, Wang L, Huang DX, Wang WL, Wang X (2009) An effective
hybrid DE-based algorithm for multi-objective flow shop schedu-
ling with limited buffers. Comput Oper Res 36(1):209–233

Rajendran C (1994) A no-wait flowshop scheduling heuristic to mini-
mize makespan. J Oper Res Soc 45(4):472–478

Reeves CR (1995) A genetic algorithm for flowshop sequencing. Com-
put Oper Res 22:5–13

Reeves CR (1999) Landscapes, operations and heuristic search. Ann
Oper Res 86:473–490

Reeves CR, Yamada T (1998) Genetic algorithms, path relinking and
the flowshop sequencing problem. Evol Comput 6:45–60

Schiavinotto T, Stützle T (2007) A review of metrics on permuta-
tions for search landscape analysis. Comput Oper Res 34(10):
3143–3153

Stadtler H (2005) Supply chain management and advanced planning-
basics, overview and challenges. Eur J Oper Res 163:575–588

Storn R, Price K (1997) Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces. J Glob
Optim 11(4):341–359

Tasgetiren MF, Liang YC, Sevkli M, Gencyilmaz G (2004) Differential
evolution algorithm for permutation flowshop sequencing problem
with makespan criterion. In: Proceedings of 4th international sym-
posium on intelligent manufacturing systems, Sakarya, Turkey,
pp 442–452

Tang J, Lim MH, Ong YS (2007) Diversity-adaptive parallel memetic
algorithm for solving large scale combinatorial optimization pro-
blems. Soft Comput 11(9):873–888

Tavakkoli-Moghaddam R, Rahimi-Vahed A, Hossein Mirzaei A (2007)
A hybrid multi-objective immune algorithm for a flow shop sche-
duling problem with bi-objectives: weighed mean completion time
and weighted mean tardiness. Inf Sci. doi:10.1016/j.ins.2007.06.
001

Taillard E (1993) Benchmarks for basic scheduling problems. Eur J
Oper Res 64: 278–285

Van Deman JM, Baker KR (1974) Minimizing mean flow time in the
flowshop with no intermediate queues. AIIE Trans 6:28–34

Wang L (2003) Shop scheduling with genetic algorithms. Tsinghua
Univ. Press & Springer, Beijing

Wolpert DH, Macready WG (1997) No free lunch theorems for optimi-
zation. IEEE T Evol Comput 1:67–82

Zhou Z, Ong YS, Lim MH, Lee BS (2007) Memetic algorithm using
multi-surrogates for computationally expensive optimization pro-
blems. Soft Comput 11(10):957–971

Zhu Z, Ong YS, Dash M (2007) Wrapper-filter feature selection algo-
rithm using a memetic framework. IEEE T Syst Man Cybern B
37(1):70–76

Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms:
a comparative case study and the strength pareto approach. IEEE
T Evolut Comput 3(4):257–271

Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evo-
lutionary algorithms: Empirical results. IEEE T Evol Comput
8(2):173–195

123

http://www.icsi.berkeley.edu/%7Estorn/code.html
http://www.icsi.berkeley.edu/%7Estorn/code.html
http://dx.doi.org/10.1016/j.ins.2007.06.001
http://dx.doi.org/10.1016/j.ins.2007.06.001

	0pt Multi-objective no-wait flow-shop scheduling with a memetic algorithmbased on differential evolution
	Abstract
	1 Introduction
	2 NFSSP and MNFSSP
	2.1 NFSSP
	2.2 MNFSSP

	3 Introduction to differential evolution
	4 MADE for MNFSSP
	4.1 Solution representation
	4.2 Speed-up computing method
	4.3 DE-based search
	4.4 Problem-dependent Local Search
	4.5 Multi-objective handling techniques
	4.6 Procedure of MADE

	5 Simulation results and comparisons
	5.1 Experimental setup
	5.2 Performance metrics
	5.3 Comparisons of MADE_noSL, IMMOGLS2and MADE_nospeedup
	5.4 Comparisons of MADE with MADE_nospeedup

	6 Conclusions
	Acknowledgments
	Appendix 1 : The algorithm to calculate MD(j-1 ,j)
	Appendix 2 : The algorithm to calculate k=1m y=1k p(n ,y)
	Appendix 3 : The algorithm to calculate C(j ,m) (j {1,…,n})

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

