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In order to make competitive electricity markets effective, bidding generation companies (GENCOs) need
to estimate market demand models according to information available to each of them. However, many
stochastic factors (e.g. weather, demand side features) make it very hard for GENCOs to accurately cap-
ture the actual market demand in a model. Each GENCO might hold an estimated model deviating, from
the real market model as well as from its peers’. Little work has been done in discussing the impacts of
model deviations towards the design of GENCO’s bidding strategies.

In this paper, the effects of model deviations upon the equilibrium-oriented bidding methods (EOBMs),
more specifically conjectural variation (CV) based methods, are studied. We relax the strong assumptions
that one uniform and accurate market demand model is employed by all GENCOs in the basic CV-based
learning bidding algorithm (CVBA). In this work, the market demand model utilized for bidding by each
GENCO is different from each other and from the actual market model as well. The impacts of such model
deviations are analyzed from both theoretical and simulation perspective. Theoretical analyses point out
that as a consequence of the model deviations it is possible that the basic CVBA algorithm will bring the
bidding process into an unstable state. In order to eliminate the effects from inaccurate modeling, a CV-
based learning bidding method with data filtering capabilities is proposed. Several sets of simulations
have been done to test the impact of the model deviations. The simulation results confirm the theoretical
analyses. The feasibility and effectiveness of the proposed bidding methods are also verified. The pro-
posed algorithm can bring systems into stable state even when model deviations exist.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, the power industry in many countries has been
deregulated and has been opened up to competition. On one hand,
thanks to enhanced competition, the social welfare and market
efficiency are improved. On the other hand, traditional regulated
generation companies (GENCOs) are facing more challenges to
adapt to the daily operation of the new market environment. GEN-
COs are required to analyze the market themselves and to ratio-
nally conduct their strategic bidding. In such competitive
markets, GENCOs have the freedom to exercise a certain degree
of market power to maximize their profit. If GENCOs have com-
plete information about the market, e.g. bidding strategy and mar-
ginal cost of other GENCOs’, consumer response models,
transmission network conditions etc., it would be possible for GEN-
COs to develop the optimal bidding decision accordingly. However,
in reality many of those data – competitors’ bidding strategies, for
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instance – might not be available for an individual GENCO. What a
GENCO can have is publicly available information, such as histori-
cal demand data, market clearing prices, etc. In most cases, each
GENCO should develop its bidding strategy with incomplete
information.

In order to deal with this incomplete information, many propos-
als have been made with the intention of revealing the system by
modeling the other market players’ behaviors together with pub-
licly available information.

One approach is to perceive the bidding curves submitted by
the competitors as random values. In [1], the bidding curve coeffi-
cients submitted by rival suppliers are assumed to follow a joint
normal distribution. The problem, originally with two decision
variables, is reduced to one with only one decision variable. In
[2], with a similar assumption, a fuzzy adaptive particle swarm
optimization algorithm is proposed to solve the optimal bidding
problem. In [3], an incomplete game has been transformed into a
complete game by assuming the form of the probability distribu-
tion of competitors’ behavior. The primary limitations of the ap-
proaches mentioned above are the impractical assumptions that
the bidding behaviors of competitors strictly follow a certain
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distribution pattern. Moreover they neglect interactions between
GENCOs despite the fact that in practice the actions taken by one
GENCO will influence the others’ behaviors and vice versa.

In other research, the use of multi-agent techniques is proposed
to design the bidding strategy of a GENCO [4–7]. In those ap-
proaches, in order to capture the inter-influence between market
players, an agent normally creates a state-action matrix to record
all possible discrete states observed [4]. Then, reinforcement learn-
ing [5,7] or Erev-Roth algorithms [6] are used to derive the optimal
bidding strategies for GENCOs. However, those approaches suffer
scalability problems, as the dimensions of the action metric in-
crease with the number of players in the system.

Market equilibrium models [8–15] have been introduced, as dif-
ferent interesting and promising category of approaches to model
interactions among GENCOs in actual electricity markets. While
an equilibrium point (also known as Nash Equilibrium [16]) is
reached, no GENCO could increase its profit by unilaterally chang-
ing its behavior, e.g. its output. In many equilibrium-oriented mod-
els, conjectural variation (CV) methods are used to model the
interactions among market players [17,18]. The essentials of con-
jectural variation value are to capture the behavioral response of
competitors to the action change by the observed GENCO in the
market. It has been well accepted that CV enables a more powerful
representation of GENCO bidding behaviors and is capable of mod-
eling various degrees of market competitions, ranging from perfect
competition (CV = �1), Cournot game (CV = 0), to collusion (CV = 1)
and other variants [18,19].

CV methods provide a quantified measure to analyze the bid-
ding behavior of GENCOs. A duopoly market has been analyzed
for a pool spot market [18], where CV is used to model/estimate
forward market behavior. Ref. [10] analyzes the conjectural varia-
tion based equilibrium market in a competitive environment. Be-
sides, Ref. [20] developed an empirical method within the CV
method framework to evaluate and analyze the market behavior
of GENCOs in a real world market. Ref. [21] researches on the out-
come of an oligopolistic competition market when considering two
types of linear conjecture functions as input to a market equilib-
rium model. The application of CV methods is not only limited to
the power exchange market. Ref. [11,21–23] extend similar ideas
with so called conjectured supply functions to model imperfect
competitions on the electricity transmission market. However,
those approaches focus on behavioral analysis with static and
pre-assigned CV values. In fact, due to the complexity and dynam-
icity of markets, CV values are normally very hard to acquire and
might vary with variation of GENCO’s market behavior. For an ac-
tual electricity market, the pre-defined conjectures are normally
inconsistent with the actual response of other GENCOs and need
to be updated accordingly.

Two main categories of approaches to estimate CV values
according to publicly available historical information, namely ex-
plicit fitting and implicit fitting, are employed in [1,11,24,25]. In
an implicit fitting procedure a closed-form which employs histor-
ical available market data has been developed for energy and
transmission price response [25]. However, those CV values only
reflect system historical status and can only be used to analyze
the static market behaviors of GENCOs within a predefined market
setting. Moreover, in day-ahead markets or repeated markets
based on regular time intervals, as each GENCO aims to maximize
profits, normally they have incentives to learn from bidding history
and public market data and hence, they gradually evolve their bid-
ding behavior. Those static approaches fail to answer what CV va-
lue set will be reached in a dynamic market with multiple GENCOs.

In order to research the dynamic interaction among strategic
GENCOs, in [15], a CV-based learning method is proposed, based
on which GENCOs evolve their bidding behavior in a spot market.
It has been proved that the equilibrium reached during the learn-
ing process is a Nash Equilibrium. The approaches typically assume
a commonly agreed market model, e.g. a common market price de-
mand function. However, for a practical electricity market, no such
function exists. Each GENCO has to analyze publicly available
information and its own private information to build its own mar-
ket model. As the market model is typically influenced by many
stochastic factors, e.g. changes of demand curves and behaviors
of generators, each generator uses its own way to interpret the
market data to construct its own estimated market model, based
on which market behaviors are predicted. The models held by indi-
vidual GENCO may be inconsistent with the real market model by
minor variations.

This paper studies the behaviors of typical CV-based learning
strategies in a repeated market from a novel yet practical perspec-
tive: firstly, market models (i.e. demand function) estimated by
individual GENCO might differ from the actual market models; sec-
ondly, the market models employed by the involved GENCOs are
not uniform anymore. An accurate uniform market function serves
an assumption in many works on equilibrium-oriented bidding
methods [10,15,22,23,26]. Practically no such commonly-agreed
uniform market model exists. Even with the same historical mar-
ket data, different GENCOs would have different interpretations
of the market. The error resulting from deviations between GEN-
CO’s own market evaluation and the real one propagate during
the repeated bidding process. This paper analyzes the impact of
such model deviation on the CV-based learning bidding strategy.
Firstly, CV-based learning bidding methods with an accurate uni-
form estimated market model are described and analyzed. Then,
with the assumption (i.e. an accurate uniform market model) re-
laxed, it is pointed out that the model deviations would bring the
basic CV-based learning algorithm to unstable states in some cases,
which is undesirable for electricity system operation from both
physical perspective and economic perspective. The analyses are
further verified by a set of simulations. Afterwards, a CV-based dy-
namic learning algorithm with data filtering technology is pro-
posed in this paper. The aim of the proposed algorithm is to
alleviate the influence of the model deviations and to make the
bidding process stable. The simulation results validate the effec-
tiveness of the proposed algorithm.

The paper is arranged as follows: Section 2 describes the profit
optimization problem for a GENCO in a competitive market. Sec-
tion 3 presents the basic CV-based bidding method and the market
equilibrium model. Section 4 firstly analyzes the impact of the
deviation of modeling on repeated bidding process and then devel-
ops a CV-based method with data filter. The simulation results are
shown in Section 5. Section 6 concludes the paper.

2. Profit maximization for a GENCO

In a competitive market, a GENCO, as a main market participant,
has to strategically schedule its generation qi to maximize its prof-
it. The scope of this paper is limited to the market where a few
independent GENCOs service a given geographic region where
the transmission capacity is large enough. So a uniform market
price is considered and the effect of congestion is neglected. For
GENCO i, the profit maximization problem can be formalized as
follows:

max
qi

Pi ¼ p � qi � CiðqiÞ

s:t: qi min 6 qi 6 qi max

ð1Þ

where Pi is the profit of GENCO i. p is the market price which is an
exogenous value for all GENCOs. qimin and qimax are the minimal and
maximal generation capacity for GENCO i. Ci(qi) is the production
cost function of GENCO i, which normally takes the form of the fol-
lowing quadratic function:
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CiðqiÞ ¼
1
2

ciq2
i þ biqi þ ai ð2Þ

ci, bi and ai are the coefficients of the generation cost curve for GEN-
CO i. For this cost function to be well-behaved, ci > 0, bi > 0 and
ai P 0 are satisfied.

From (1) we can see that the profit for a GENCO is determined
by both the market price and the bidding quantity. Moreover the
market price is affected by the behavior of market participants,
within the regulated price cap. In order to achieve maximum profit,
it is reasonable for GENCOs to evolve their bidding strategy by ana-
lyzing the behavior of its competitors from the available historical
bidding and market data. Learning is needed to track the practical
dynamic interactions that exist in the market: such behavior pat-
tern need to be recognized for future decision making.

In this paper, the CV value is used to represent interactions of
market participants. Solving GENCO’s profit maximization prob-
lems is developed via CV-based bidding method. Firstly, a basic
CV-based bidding method with a uniform market demand model
is described. Then a more practical scenario is analyzed, where
market demand models held by all GENCOs are not uniform
anymore and deviate from the actual market model. The impact
of such model deviations on CV-based bidding strategies for
GENCOs is analyzed. Finally a new CV-based bidding algorithm
with data filtering is proposed to overcome the impact of model
deviations.

3. Conjectural variation method and market equilibrium model

3.1. One time period conjectural variation bidding framework

Supposing there are N GENCOs in the market; they compete
with each other to supply electricity. The total system demand D
and the supply quantity of GENCO i qi satisfy:

D ¼
XN

i¼1

qi ¼ qi þ
XN

j¼1ðj–iÞ
qj ¼ qi þ q�i ð3Þ

where q�i ¼
PN

j¼1ðj–iÞqj is the total power supplied by the pseudo-
competitors of GENCO i.

The market price p is interrelated with the system demand D
via the market inverse demand function:

p ¼ f ðDÞ ¼ f ðqi þ q�iÞ ð4Þ

The derivative of the above function associated with any positive
demand value is negative. This function actually reflects the market
behavior in function of both demand and time. In order to make a
balance of modeling accuracy and analytical complexity, the de-
mand function is assumed to be time-independent [10,17,18,24].
The static linear decreasing demand function form is commonly
used:

p ¼ A� kD ¼ A� kðqi þ q�iÞ ð5Þ

where coefficient A(>0) is the intercept and k(>0) is the slope of the
demand curve.

When GENCO i reaches its optimal bidding quantity, the deriv-
ative of the profit in (1) associated with the bidding quantity qi

equals zero, that is:

@
Y

i

@qi
¼ @p
@qi
� qi þ p�MCiðqiÞ ¼ 0 ð6Þ

where MCiðqiÞ ¼ @CiðqiÞ
@qi

is the marginal cost for GENCO i when the

production quantity is qi. When Eq. (2) is taken, MCiðqiÞ ¼ ciqi þ bi.
If the demand curve has the form (5), the derivative of the mar-

ket price associated with qi is:
@p
@qi
¼ �k � 1þ @q�i

@qi

� �
¼ �k � ð1þ CViÞ ð7Þ

The derivative @q�i
@qi

is defined as the conjectural variation CVi of GEN-
CO i, which measures the influence of the strategy variation of GEN-
CO i on the strategy change of other competitors’ [19]. There are
other equivalences to the form of the conjectural variation men-
tioned above. For instance, the derivative of the market price with
respect to the competitors’ strategy, i.e. @p

@q�i
, is also appearing in

some research [9,21].
Substituting (6) with (5) and (7) and rearranging give the opti-

mal bidding quantity for GENCO i associated with CVi:

qi ¼
A� k � q�i � bi

k � ð2þ CViÞ þ ci

s:t: qi min 6 qi 6 qi max

ð8Þ

Eq. (8) demonstrates the dominant factors which could influ-
ence the bidding quantity for a GENCO under CV method. It shows
that,

(1) If the accurate market demand function is known, i.e. if k
and A are determined and shared by all involved GENCOs,
then for GENCO i, its optimal bidding quantity can be
inferred with the CVi value and the pseudo-competitors’ bid-
ding quantity q�i. The limited information needed in the bid-
ding decision process makes CV-based bidding methods
appropriate for an actual incomplete information electricity
market.

(2) For different GENCOs, even with similar characteristics, the
different adopted CV values will result in different bidding
strategies.

(3) Modifying the CV values could lead to an increase or
decrease of a GENCO’s profit.

In the framework presented in [8–11], the CV values are as-
sumed to be static and would not change in the repeating bidding
process. However, in a practical electrical power market, each
GENCO will adapt its bidding strategy to a dynamic market for
the purpose of profit maximizing. Thus the conjectures on other
behavior are not constant. If the GENCOs want to win such game
it is reasonable that they learn from historical bids and update
their conjecture towards market situation and adjust their bidding
strategy accordingly.

3.2. Market equilibrium model

Once the bidding of each GENCO is modeled with the integra-
tion of other competitor behaviors’ evaluation, the market equilib-
rium model becomes a collection of each generator’s equilibrium
model together with market clearing models, as follows:

q� ¼

q�1 ¼
A � k�q�1 � b1

k�ð2 þ CV�1Þ þ c1

..

.

q�N ¼
A � k�q�N � bN

k�ð2 þ CV�NÞ þ cN

8>>><
>>>:

s:t: qi min 6 q�i 6 qi max

XN

i¼1

q�i ¼ D

p ¼ A� kD

ð9Þ

where q� ¼ ðq�1; q�2; � � � q�NÞ is the equilibrium point corresponding to
the CV set ðCV�1;CV�2; � � � ;CV�NÞ which is held by each GENCO when
the market is cleared. It is shown that the obtained equilibrium q⁄

after market clearing is a Nash equilibrium even if the different
GENCOs hold different CV values [18]. Different CV sets would lead
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Fig. 1. Possible range of demand curves estimated by various GENCOs.
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to different Nash equilibriums. In the CV-based learning bidding
method with the convergent CV set mentioned in the next section,
the repeated market will converge to a stable Nash equilibrium.

From the next section on, the focus is on how evolutionary
learning is used to search optimal CV values for each GENCO to
aid the optimal bidding decision in the scenarios with and without
accurate market information.

4. CV-based learning bidding in repeated market

4.1. Basic CV-based learning method with accurate market model

In the repeated market environment, the developed bidding
strategies are based on available historical information. Now we
investigate the dynamic CV method. CVt

i is used to represent the
CV value for GENCO i at time step t. It is assumed that the newest
observation of competitors’ bidding and CV value are used for deci-
sions of the next time step, say qt�1

i and CVt�1
i . The coefficients of

the demand curve and cost function are kept time-independent.
Then, at each time step t, the bidding quantity developed in (8)
becomes,

qt
i ¼

A� k � qt�1
�i � bi

k � ð2þ CVt�1
i Þ þ ci

s:t: qi min 6 qt
i 6 qi max

ð10Þ

Now the pivotal question is how one GENCO strategically specu-
lates the CV value in a dynamic repeated market. The simplest rea-
soning is that if GENCO i observes increments of the competitors’
strategy e.g. bidding quantity in this case and computes the ratio
with its own increments, an estimate of the proportionality factor
used by its competitor can be obtained as follows [15,19]:

CVt
i ¼

Dqt�1
�i

Dqt�2
i

¼
qt�2
�i
� qt�1

�i
qt�2

i
� qt�3

i
; jqt�2

i � qt�3
i j > h

CVt�1
i ; jqt�2

i � qt�3
i j 6 h

8<
: ð11Þ

where h > 0 is a small predefined number to avoid a null denomina-
tor and keep the equation numerically stable.

It has already been shown in Ref. [18] that for each GENCO with
an accurate uniform model of the demand curve and accurate CV
estimation, the repeated game will converge to Nash equilibrium.
The results in Ref. [18] showed that dynamic CV-based learning
for GENCOs can help to achieve better social welfare, e.g. a lower
market price. This conclusion is also validated in the simulation
part of this paper in Section 5.

However, in the approaches mentioned above, the market equi-
librium is achieved based on the assumption that an accurate uni-
form demand price function exists, which is shared by all involved
GENCOs. That is in (9) the equation sets for q�i utilize one common
demand function (i.e. the same k and A for all GENCOs). Obviously,
it is hard to be supported by real world electricity markets where
each GENCO has its own demand curve estimation. In the next sec-
tion we will analyze the performance of the basic CV-based learn-
ing bidding algorithm when deviations exist between the
estimated model of individual GENCO and the real market model.

4.2. Analyses of impact of model deviation

Various GENCOs would use different modeling methods (e.g.
regression modeling) to analyze their available data and construct
their own demand function. Partially available information and dif-
ferent exposure towards the information makes it very hard for all
GENCOs in market to reach a commonly-agreed price-demand
function. Practically, even with the same historical demand price
pair data, various GENCOs could build slightly different demand
functions.
We assume that a market demand function exists and is de-
noted as the reference demand function fr(D, t) which is associated
with time. For each GENCO the time-dependent demand curve
fi(D, t) can be denoted by the reference model fr(D, t) plus a
deviation function ei(D, t) which is dependent on time as well. As
we assume the estimation executed by each GENCO is comparably
accurate, thus for any D and t, the absolute value of the deviation is
less than a predefined value d (>0).

fiðD; tÞ ¼ frðD; tÞ þ eiðD; tÞ
jeiðD; tÞj < d; 8d > 0

ð12Þ

In order to better compare with the basic CV-based learning bidding
introduced in the previous section, we denote,

frðD; tÞ ¼ A� kD ð13Þ

The relation between fr(D, t) and fi(D, t) is shown in Fig. 1. The
curve shown in Fig. 1 is mainly for demonstrative purposes. The ac-
tual demand curve could be much more complex than this linear
form.

It is assumed that historical demand-price pair data (i.e. dots
in the Fig. 1) are available by which GENCOs use to develop
their regression functions for demand curves. The reference
demand function fr(D, t) is indicated by the solid line in Fig. 1.
fi(D, t), ("i = 1, � � �, N) lies in a confidence range indicated by the
area between two dotted lines in Fig. 1. Ai and ki are the intercept
and slope of the demand curve estimated by GENCO i.

When GENCO i has its own estimated demand function fi(D, t) at
time t, based on (12) and (13) the derivative of its own estimated
market price pt

i with respect to qt
i is

@pt
i

@qt
i

¼ �k � ð1þ CVt
i Þ þ

@et
i

@qt
i

ð14Þ

When replacing (6) with (12)–(14) and rearranging, the bidding
quantity at time t becomes:

qt
i ¼

A � k�qt�1
�i
� bi þ et

i

k�ð2 þ CVt�1
i Þ þ ci þ

@et
i

@qt
i

s:t: qi min 6 qt
i 6 qi max

ð15Þ

Compared to (10) with the accurate uniform market model, (15)
represents the bidding methods in case of the GENCOs’ demand
curves with deviations. It can be seen from (15) that both deviation
ei(D, t) and its derivative

@et
i

@qt
i

influence the bidding value of GENCO.
The impact of ei(D, t) on the bidding process is now discussed:

(1) If ei(D, t) is constant, say Cei
, then @et

i
@qt

i
¼ 0. In this case, (15)

becomes
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qt
i ¼

A�k�qt�1
�i
�biþCei

k�ð2þCVt�1
i Þþci

s:t: qi min 6 qt
i 6 qi max

ð16Þ
Since Cei
is constant, the item ð�bi þ Cei

Þ in (16) can be synthesized
into one constant value, say b0i. Then for GENCO i nothing changes
compared with (10), except for pseudo coefficient b0i replacing the
real coefficient bi of GENCO’s cost function in (16). The competitors
of GENCO i are able to adapt to this constant error by iterative
learning.

(1) If ei(D, t) is a stochastic function giðqt
i Þ which is associated to

qt
i ; then in this discrete system
@et
i

@qt
i

¼ et
i � et�1

i

qt
i � et�1

i

–0 ð17Þ
Table 1
Generator data.

b c Min capacity (MWh) Max capacity (MWh)

Gen1 3 0.025 0 800
Gen2 1.75 0.0175 0 800
Eq. (17) shows that the derivative @ei
@qt

i
is determined both by the var-

iation of ei and qi in two consecutive time steps t � 1 and t. For in-
stance, if, in the repeated learning process, qi gradually converges
(but does not really converge) and oscillates around one value, then

(qt
i � qt�1

i ) as a small dominator makes
@et

i
@qt

i
very big. In this case@ei

@qt
i

is

introduced as a non-negligible error. Furthermore, the qt
i calculated

with (16) propagates this error through the entire learning process.
The simulation results in Section 5 show that errors can be accumu-
lated and amplified during this process. With the derivative of the
stochastic errors being added to each bidding time step, the game
based on basic CV learning based methods cannot converge to a sta-
ble state. The reason is that the stochastic errors have no particular
behavior pattern. Hence, the learning algorithm itself cannot cap-
ture this uncertainty effectively. Consequently the learnt CV value
cannot reflect the real behavior variation of competitors, which can-
not provide precise and effective conjectural information for the
bidding decision anymore. The game becomes unstable, because
each learner is unable to deal with the uncertainty if only using
(11) and (10) to update the CV value and bidding quantity. In the
simulation part in Section 5.1 and 5.2, it can be seen that in such
case the market prices, CV values and quantities oscillate around
a value.

In order to get rid of the model deviation caused by inaccurate
information, we propose a CV-based bidding algorithm with infor-
mation filtering technology.

4.3. CV-based learning bidding with the data filter

In this section, in order to alleviate the disadvantage resulting
from the uncertainty caused by the demand estimation model
deviation, an information filtering technology is introduced.

Firstly, a sliding window model is used here to discount the old
data. The implication of a sliding window is that the most recent w
(size of the window) CV values in the CV data stream are consid-
ered most relevant for the newest update of CV data. Furthermore
in each time step the employed data stream is renewed with the
data window moving onwards with one unit (e.g. one time step).
Each time step, the active data in the window, i.e. the most recent
w data, are used to evaluate the CV value.

Secondly, with iterative steps, the CV values are calculated in a
cumulative way. With time going on, the old CV values gain more
weight than the newest CV values. The details of the proposed
algorithm are as follows:

Let w denote the size of window, and t denotes the time step,
and then CVt

i is inferred:

CVt
i ¼

z�h
z

� �
� qt�2
�i
�qt�1
�i

qt�2
i
�qt�3

i
þ h

z � CVt�1
i ; jqt�2

i � qt�3
i j > h

CVt�1
i ; jqt�2

i � qt�3
i j 6 h

8<
: ð18Þ
If t P w, then z = w which means that the available data stream is
large enough to form a sliding window with size w.

If t < w, then z = t, when data size is not enough to form a sliding
window, then all available data is processed.

h is the adjustment factor, which is able to regulate the weight
between the old data and the new data. Typically, the larger h is,
the slower the algorithm (18) converges, and vice versa. The errors
introduced by the demand modeling deviation are alleviated dur-
ing the process of weighing old and new information.

The meaningful logic behind the proposed algorithm can be
interpreted from another perspective. The market information is
far from complete and perfect. GENCOs might exhibit partial con-
fidence on their new conjectural variation belief and put some reli-
ance on the old status. That means their uncertainty about the
other competitor’s behavior make GENCO to adjust their bidding
strategy with partial trust in the best response. Another interesting
thing is that with the learning going on, the influence of small de-
mand evaluation bias can be largely smoothed out. Correspond-
ingly, the calculated CV values will gradually match the real
market model.

5. Numerical simulations

The proposed learning algorithm is firstly studied in a duopoly
system with three nodes: two GENCOs and one load for illustration
purposes. The performance of the proposed algorithms in the sce-
narios with and without inaccurate market information will be
illustrated. Afterwards, a complex system with more market play-
ers, i.e. 6 GENCOs and one load will be given to show the bidding
process in a more competitive market.

5.1. Cases with 2 players

The cost function data of 2 GENCOs are shown in Table 1. The
reference system demand function has a form as in (5), whose de-
tails are shown in Table 2.

In all four next cases, the simulation runs for 250 rounds. It is
supposed that all GENCOs in the simulations are able to learn.
The initial CV values for four cases are set equally, say �0.8 for
both GENCOs. The initial bidding quantities of both GENCOs are
pre-assigned as 446.99 (MWh) and 709.98 (MWh) for four cases.

The focus is put on validation of the analyses about the
modeling deviation described in Section 4 and on comparing the
algorithm with and without data filters. The equilibrium and
market outcome are analyzed as well.

5.1.1. Case A: Basic CV-based bidding in an accurate market
information environment for 2-player system

In this case, the performance of the basic CV-based bidding
algorithm (CVBA) is examined and set as the benchmark case.
One uniform and accurate market model is shared by two GENCOs.
The simulation results are shown in Figs. 2a and 2b.

As can be seen from Fig. 2a, after 4 rounds with the necessary
accumulated historical data, both GENCOs begin to learn from his-
torical data. Then, we can see the fluctuation of both CV values and
bidding quantities as both GENCOs try to estimate their competi-
tor’s behavior. After about 11 rounds, the system reaches a stable
state. The stable CV for Gen 1 is �0.39 and �0.33 for Gen 2. The



Table 2
Reference demand function data.

Max capacity (MWh) A k

Reference demand 1500 35 0.018

Fig. 2a. CV values in Case A.

Fig. 2b. Bidding quantities and profits for Gen1 and Gen2 in Case A.
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stable bidding quantity for Gen 1 is 410 (MWh) and 546 (MWh) for
Gen 2. As proved in Ref. [18], this state is a Nash equilibrium. The
evolved strategy after the learning converges is Nash strategy. Any
deviation from the convergent bidding quantity and the related CV
value for any GENCO will cause loss of profit. The profits for Gen 1
and Gen 2 are 3961 (€/h) and 6148 (€/h) respectively. The market
price after convergence is 17.80 (€/MWh).

Moreover, considering the fact that other GENCOs adjust their
behavior simultaneously, the results show that the basic CVBA in
this duopoly game reaches the equilibrium state rather fast. It
can be interpreted as follows: if we describe the CV-based bidding
process as a process in which a GENCO searches the optimal solu-
tion, given a state space consisting of the factors e.g. market states
and other players’ behaviors, then the duopoly game with the
accurate demand function means that the number of states in this
process is less than the multiple player system in certain demand
environment.
Fig. 3a. CV values in Case B-1.
5.1.2. Case B-1: Basic CV-based bidding in constant model deviation
environment for 2-player system

In this case, we investigate the impact of model deviations on
the market demand function held by different GENCOs. Firstly,
we study the constant deviation which does not change over time.
The model deviation from the reference demand function is arbi-
trarily set to 1.5 and �1.5 for Gen1 and Gen2 respectively. The sim-
ulation results of the market bidding process are shown in Figs. 3a
and 3b.

It can be seen from the figure that the market reaches an equi-
librium state even when model deviations exist among GENCOs.
The convergence of the bidding behaviors and CV values for both
GENCOs is quite similar to Case A. The learning process converges
very fast. After about 14 rounds, the system reaches a stable state.
The stable CV for Gen 1 is �0.38 and �0.34 for Gen 2. These CV val-
ues are quite close to those in Case A. Fig. 3b shows that the profits
for Gen 1 and Gen 2 are 4174 (€/h) and 5863 (€/h) respectively
when the system enter a stable state. The market price after con-
vergence is 17.87 (€/MW h). These values have small deviations
from those in Case A. This deviation is introduced by the constant
model deviations held by two GENCOs.

The simulation results verify the analyses in Section 4 for the
scenario where the model deviations are constant. Each GENCO
implicitly takes this deviation into its bidding evaluation and
adapts to the constant deviation via the repeated learning.
5.1.3. Case B-2: Basic CV-based bidding in stochastic model deviation
environment for 2-player system

In this case, it is supposed that the various GENCOs interpret the
historical demand data in different ways and the induced errors are
related with the bidding quantities in a stochastic manner. Small
stochastic noise is added to the reference demand function data.
Then the two GENCOs perceive the new demand functions as
follows:

fiðD; tÞ ¼ 35� 0:018 � Dþ 0:25� 0:5 � Pð0;1Þ

where P(0, 1) is a standard uniform distribution. The related market
simulation is shown in Figs. 4a and 4b.

We can see from Fig. 4a that even with these small deviations
(�0.25–0.25 compared to A = 35), the CV values of each GENCO
do not converge to a certain value, but oscillate. Instead, it changes
significantly even in two consecutive bidding time steps. Conse-
quently, bidding quantity of each GENCO cannot converge to a cer-
tain value either (see Fig. 4b). This significant change between two
adjacent time steps makes the system quite unstable. This means
that the basic CVBA cannot work efficiently in the uncertainty
environment where model deviations exist.

The source of these big changes is that the model deviations
influence the computation of CV values which in turn changes
the bidding quantities of GENCOs. Even small model deviations
will be amplified during the learning process. In next section, the



Fig. 3b. Bidding quantities and profits for Gen1 and Gen2 in Case B-1.

Fig. 4a. CV values in Case B-2.

Fig. 4b. Bidding quantities and profits for Gen1 and Gen2 in Case B-2.

Fig. 5a. CV values in Case C.

Fig. 5b. Bidding quantities and profits for Gen1 and Gen2 in Case C.
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bidding algorithm with data filters will be examined, to cope with
this problem.
Generator data for 6 GENCOs.

b c Min capacity (MWh) Max capacity (MWh)

GENCO 1 2 0.025 0 480
GENCO 2 1.75 0.0175 0 480
GENCO 3 3 0.025 0 300
GENCO 4 3 0.025 0 300
GENCO 5 1 0.0625 0 300
GENCO 6 3.25 0.00834 0 480
5.1.4. Case C: CV-based bidding with data filters in stochastic model
deviation environment for 2-player system

In this case, the CV-based learning bidding with data filtering is
employed for the same noise setting as in Case B-2. The length of
sliding window, w, is set to be 50. The adjustment factor h is taken
to be 3. The related market information is shown in Figs. 5a and 5b.
As can be seen in Fig. 5a, the trend of the bidding curve becomes
more flat and stable compared with Case B-2. After around 50
rounds, the learning algorithms tend to come to a stable state with
minor oscillations as the model deviations remain always present.
This quite differs from the simulation results shown in Case B-2 in
which the big oscillations can be easily identified. Moreover, the
convergence value in this case differs from the one in Case A and
B-1 because of the existence of the data filter.

It shows that the stable CV value for Gen 1 is �0.11 and �0.17
for Gen 2. The stable profit for Gen 1 is around 4172 (€/h) and
around 6464 (€/h) for Gen2. The convergent market price is
18.68 (€/MWh). Both the CV value and the market price become
higher than the equilibrium state in benchmark Case A. This
change is due to the fact that the data filtering removes not only
the noise from model deviations but also the useful information
of other GENCOs’ reaction in the learning process. Then it leads a
GENCO to believe that the market competition level is not very
high, which is reflected by the higher CV estimation values and it
influences the bidding decision in turn.



Table 4
Reference demand function data in 6 GENCO system.

Max capacity (MWh) A k

Reference demand 2500 50 0.02

Fig. 6b. Bidding quantities for 6 Gens in Case D.

Fig. 7a. CV values in Case E.
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5.2. Case with 6 players

In this section, the proposed algorithms are tested in a more
competitive market, i.e. 6 GENCOs system. In such multi-player
market, the competition is tougher than that in the duopoly case
studied in Section 5.1. As a result of the increased number of play-
ers a GENCO faces more varying behavior changes. The cost func-
tion data of the GENCOs and the reference demand function are
shown in Tables 3 and 4 respectively. Two cases with basic CV bid-
ding strategy and CV-based bidding with filter are shown in the
subsection 5.2.1 and 5.2.2.

5.2.1. Case D: Basic CV-based bidding in stochastic model deviation
environment for 6-player system

The same stochastic noise used in Case B-2 is adopted. However
the amplitude of noise added to the demand function in this case is
smaller compared to that in Section 5.1 since the demand curve
has a larger intersection. The simulated market information is
shown in Figs. 6a and 6b.

It can be seen in Fig. 6a that in this stochastic noise case market
cannot reach a stable state even after 150 bidding rounds. Partially
due to the demand errors, the CV value of each GENCO oscillates
between several values. The facts that all CV values are below zero
validate the hypothesis that the competition in the multi-player
market is sharper compared to the duopoly case. Moreover each
GENCO in this case has smaller market shares. These two charac-
teristics make the instable situation less chaotic and explains
why the bidding quantities of GENCOs in Fig. 6b evolve following
a particular pattern (if small noises are ignored). In this multi-
player case, the bidding quantities of the GENCOs in some time
slots reach their maximal capacities. That shows that GENCOs al-
ways seek to output as much as possible.

5.2.2. Case E: CV-based bidding with data filters in stochastic model
deviation environment for 6-player system

In this case, the CV-based learning bidding with the data filter-
ing is employed. The length of the sliding window, w, is set to 10.
The adjustment factor h is taken to be 1. The considerations are
that more uncertainties require players, on one hand, to be flexible
enough to adapt to the new system change but, on the other hand,
Fig. 6a. CV values in Case D.

Fig. 7b. Bidding quantities for 6 Gens in Case E.
still use reservation on this new information. The simulation re-
sults are shown in Figs. 7a and 7b.

Fig. 7a shows that the proposed method alleviates the instability
indicated in Case D. Fig. 7b shows that the system converges
after more than 70 rounds. The interesting thing from Fig. 7b is
that the convergent values for several GENCOs (Gen 2, 3, 4 and
6) are their maximal capacity. The reason is that they are the
cheapest producers. With the same logic, the most expensive GEN-
CO, i.e. Gen 5, outputs least. This evidence shows that, even if GEN-
COs have strategic bidding abilities, their bidding behavior is still
constrained by their own characteristics. The CV values of all GEN-
COs in Fig. 7a are negative. It validates that more players imply
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more competition, which matches the economic definition of a
competitive market.

6. Conclusion

This paper starts from a practical concern: due to the complexity
of the market and the lack of complete market information, various
GENCOs formulate different market models even if based on the
same historical market data. As a consequence, such model
deviations can impact the GENCOs’ bidding behavior as well as
the market performance. It is shown that the basic CV-based
bidding process cannot work effectively and might bring the
system into an unstable state when the market model variations
exist. Analyses have been done to illustrate the impact of such
variation on the bidding decision process. A set of simulations
verified the conclusions from the theoretical analyses. A CV-based
dynamic learning algorithm with data filtering is proposed to
alleviate the influence of the diversities of the evaluated demand
model. The simulation results show that the proposed algorithms
achieve better performance of convergence and stability compared
with the basic CV-based bidding without data filtering. Although
this paper limits the effects of the model deviations to equilibrium-
oriented bidding method, the analyses developed in this paper
can provide an important guidance to other bidding methods.

The model deviation discussed here is a simple one (i.e. linear
form), hence the proposed algorithm, with simple filtering func-
tions, achieves good performance. However, this algorithm can
be further improved. As discussed in the simulation of Case C, this
algorithm filters out not only noise but also useful information rep-
resenting GENCOs’ behavioral reactions. Further work can be done
to analyze more complex model deviation forms and to develop a
more efficient bidding algorithm with a proper filter that can filter
out model noise while keeping useful information. Another per-
spective of the future work is to extend the uniform pricing model
used in this paper to a system with the locational market price
(LMP) where the effect of congestion of transmission lines has to
be taken into account, which introduces another source of model
deviation.
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