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a b s t r a c t

In this paper, we consider a modified two-component Camassa–Holm (MCH2) system
which arises in shallow water theory. We analyze the wave breaking mechanism by
establishing some new blow-up criteria for this system formulated either on the line or
with space-periodic initial condition.
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1. Introduction

The two-component Camassa–Holm (CH2) system reads:
ut − uxxt + 3uux − 2uxuxx − uuxxx + gρρx = 0, x ∈ R, t > 0;
ρt + (ρu)x = 0, x ∈ R, t > 0.

This system appears initially in [1], and recently Constantin and Ivanov in [2] gave a demonstration about its derivation
in view of the fluid shallow water theory from the hydrodynamic point of view. This generalization, similarly to the
Camassa–Holm equation, possessed the peakon, multi-kink solutions and the bi-Hamiltonian structure [3,4] and is
integrable. Well-posedness and wave breaking mechanism were discussed in [5–7] and the existence of global solutions
was analyzed in [2,6,8]. Particularly, Guo in the recent paper [8] established a new blow-up criterion via the associated
potential where the global existence result leads to a better understanding for this problem.

Obviously, under the constraint of ρ(x, t) = 0, this system reduces to the Camassa–Holm equation, which was derived
physically by Camassa and Holm in [9] by approximating directly the Hamiltonian for Euler’s equation in the shallow water
region with u(x, t) representing the free surface above a flat bottom. Some satisfactory results have been obtained recently,
for instance, see Refs. [10–16]. Moreover, wave breaking criteria for a large class of initial data have been established
in [11,14–16]. In [17], Xin and Zhang showed global existence of weak solutions but uniqueness was obtained only under a
priori assumption that is known to hold only for initial data u0(x) ∈ H1 such that u0(x) − u0xx(x) is a sign-definite Random
measure. The solitary waves of the Camassa–Holm equation are peaked solitons and are orbitally stable [18]; see also [19]
for a very related Rod equation. If ρ(x, t) ≠ 0, this CH2 system which includes both velocity and density variables in the
dynamics is actually an extension of the CH equation. Although possessing peaked solutions in the velocity, the CH2 system
does not admit singular solutions in the density profile. Its mathematical properties have been studied further in many
works [2–6,20–22]. We note that some other related two-component models appeared in [23–25] were also investigated.
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However, in this paper, we consider the Cauchy problem of the following modified two-component Camassa–Holm
(MCH2) system:

ut − uxxt + 3uux − 2uxuxx − uuxxx + gρρ̄x = 0, x ∈ R, t > 0;
ρt + (ρu)x = 0, x ∈ R, t > 0, (1.1)

where u denotes the velocity field, g is the downward constant acceleration of gravity in applications to shallow water
waves, and ρ = (1− ∂2

x )(ρ̄ − ρ̄0), where ρ̄0 is taken to be a constant. This MCH2 system does admit peaked solutions in the
velocity and average density; we refer this to Ref. [26] for details. There the authors analytically identified the steepening
mechanism that allows the singular solutions to emerge from smooth spatially confined initial data. They found that wave
breaking in the fluid velocity does not imply singularity in the pointwise density ρ at the point of vertical slope. Some other
recent work can be found in [27,28]. We find that the MCH2 system is expressed in terms of an averaged or filtered density
ρ̄ in analogy to the relation between momentum and velocity by setting ρ = (1− ∂2

x )(ρ̄ − ρ̄0), but it may not be integrable
unlike the CH2 system. The characteristic is that it will amount to strengthening the norm for ρ̄ from L2 toH1 in the potential
energy term. Note that this MCH2 system is a modified version of the CH2 system to allow a dependence on the average
density ρ̄ (or depth, in the shallow water interpretation) as well as the pointwise density ρ. It is written in terms of velocity
u and locally averaged density ρ̄. From the geometric points of view, it is defined as geodesic motion on the corresponding
semidirect-product Lie group [29] with respect to a certain metric and is given as a set of Euler–Poincaré equations on the
dual of the corresponding Lie algebra. In the general case, for a Lagrangian L(u, ρ̄), the corresponding semidirect-product
Euler–Poincaré equation are written as [30]

∂

∂t
δL
δu

= −Λu
δL
δu

−
δL
δρ̄

∇ρ̄,
∂

∂t
δL
δu

= −Λu
δL
δρ̄

,

where Λu(δL/δu) is the Lie derivative of the one-form density u − uxx = δL/δu with respect to the vector field u and
Λu(δL/δu) is the corresponding Lie derivative of the scalar density δL/δρ̄. By setting y = u−uxx, ρ = v−vxx and v = ρ̄− ρ̄0,
we can rewrite the MCH2 system (1.1) as follows:

yt + uyx + 2yux = −g(v − vxx)vx, x ∈ R, t > 0;
(v − vxx)t + ((v − vxx)u)x = 0, x ∈ R, t > 0, (1.2)

which takes an equivalent form of a quasi-linear evolution equation of hyperbolic type:ut + uux = −∂x


G ∗


u2

+
1
2
u2
x +

g
2
v2

−
g
2
v2
x


, x ∈ R, t > 0;

vt + uvx = −G ∗ ((uxvx)x + uxv) , x ∈ R, t > 0,
(1.3)

where the sign ∗ denotes the spatial convolution, G is the associated Green’s function of the operator (1 − ∂2
x )

−1.
What interests us for the MCH2 system is to investigate further formation of singularities of solutions to (1.3) with the

case of g = 1, just for simplicity mathematically.
We now finish this Introduction by outlining the rest of this paper. In Section 2, we recall some preliminary results on

well-posedness and blow-up scenario. In Section 3, the detailed blow-up criteria are presented.

2. Preliminaries

In this section, for completeness, we recall some elementary results and skip their proofs. Local well-posedness for the
MCH2 system can be obtained by Kato’s semi-group theory [31]. In [28], the authors gave a detailed description on the
well-posedness theorem.

Theorem 2.1 ([28]). Given X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2, there exists a maximal T = T (‖X0‖Hs×Hs−1) > 0, and a

unique solution X = (u, v)T to system (1.3) such that

X = X(·, X0) ∈ C

[0, T );Hs

× Hs−1
∩ C1 

[0, T );Hs−1
× Hs−2 .

Moreover, the solution depends continuously on the initial data, i.e., the mapping

X → X(·, X0) : Hs
× Hs−1

→ C

[0, T );Hs

× Hs−1
∩ C1 

[0, T );Hs−1
× Hs−2 .

is continuous.

The next result describes the precise blow-up scenario for sufficiently regular solutions to system (1.3).

Theorem 2.2 ([28]). Let X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2, and let T be the maximal existence time of the solution

X = (u, v)T to system (1.3) with the initial data X0. Then the corresponding solution blows up in finite time if and only if

lim
t→T

inf
x∈R

{ux(x, t)} = −∞.



Author's personal copy

Z. Guo et al. / Nonlinear Analysis: Real World Applications 12 (2011) 3531–3540 3533

We also need to introduce the classical particle trajectory method for later use. Consider the following initial value
problem

qt = u(q, t), x ∈ R, 0 < t < T ;

q(x, 0) = x, x ∈ R,

where T is the lifespan of the solution, then q is a diffeomorphism of the line. Moreover, we know that the map q(·, t) is an
increasing diffeomorphism of R with

qx(x, t) = exp
∫ t

0
ux(q, s)ds


> 0, (x, t) ∈ R × [0, T ). (2.1)

After local well-posedness of a strong solution (see Theorem 2.1) is established, a natural question is whether this local
solution can exist globally. If the solution exists only in finite time, under what conditions does MCH2 system admit blow-
up solutions? On the other hand, to find sufficient conditions to guarantee the finite time singularity or global existence
is of great interest, especially for sufficient conditions added on certain initial data. The following results will give positive
answers.

3. Blow-up phenomena

In this section, we pay more attention to the formation of singularities for strong solutions of (1.3). In some previous
work, blow-up criteria were usually discussed under some conditions added on the slope of the initial velocity at certain
points, the negativity of the initial slope is needed. The following theorems will show that wave breaking is the one way
that singularities arise in smooth solutions, and they are different from the previous results for the MCH2 system. We start
this section with the following useful lemma.

Lemma 3.1. Let X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 2. T is assumed to be the maximal existence time of the solution X = (u, v)T

to system (1.3) corresponding to the initial data X0. Then for all t ∈ [0, T ), we have the following conservation law

E(t) =

∫
R
(u2

+ u2
x + v2

+ v2
x )dx.

Proof. We will prove that E(t) is a conserved quantity with respect to time variable. Here we use the classical energy
method. Multiplying the first equation in (1.1) by u(x, t) and integrating by parts, we obtain∫

R
uutdx +

∫
R
uxuxtdx = −

∫
R
uvvxdx +

∫
R
uvxvxxdx.

Similarly, we have the following identity for the second equation in (1.1)∫
R

vvtdx −

∫
R

vvxxtdx = −

∫
R

vd((v − vxx)u) =

∫
R
(v − vxx)uvxdx.

This implies that∫
R

vvtdx +

∫
R

vxvxtdx =

∫
R
uvvxdx −

∫
R
uvxvxxdx.

Combining the above equalities, we get

d
dt

∫
R
(u2

+ u2
x + v2

+ v2
x )dx = 2

∫
R
(uut + uxuxt + vvt + vxvxt)dx = 0.

Therefore, E(t) is conserved. �

Using this conservation law, we obtain

‖u(·, t)‖2
L∞(R) + ‖v(·, t)‖2

L∞(R) ≤
1
2
‖u‖2

H1(R)
+

1
2
‖v‖

2
H1(R)

=
1
2


‖u0‖

2
H1(R)

+ ‖v0‖
2
H1(R)


=

1
2
E0,

for all t ∈ [0, T ), where E0 is the initial value of E(t).
We state our first criterion as follows.

Theorem 3.2. Let X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2. Assume that the following inequality holds∫

R
u3
0xdx < −


30E3

0

4
.

Then the corresponding solution to (1.3) blows up in finite time.
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Proof. Differentiating the first equation of (1.3) with respect to x, we obtain

uxt + u2
x + uuxx + ∂2

x G ∗


u2

+
u2
x

2
+

v2

2
−

v2
x

2


= 0. (3.1)

Applying the relation ∂2
x (G ∗ f ) = G ∗ f − f to (3.1) yields

uxt +
1
2
u2
x + uuxx + G ∗


u2

+
u2
x

2
+

v2

2
−

v2
x

2


− u2

−
v2

2
+

v2
x

2
= 0. (3.2)

Let

M(t) =

∫
R
u3
x(x)dx, t ≥ 0.

Multiplying (3.2) with u2
x and integrating by parts subsequently, we get the equation forM(t) as

1
3
dM(t)
dt

= −
1
2

∫
R
u4
xdx +

1
3

∫
R
u4
xdx −

∫
R
u2
xG ∗


u2

+
u2
x

2
+

v2

2
−

v2
x

2


dx +

∫
R
u2
x


u2

+
v2

2
−

v2
x

2


dx

≤ −
1
6

∫
R
u4
xdx +

1
2

∫
R
u2u2

xdx +
1
2

∫
R
u2
xG ∗ v2

xdx +
1
2

∫
R
u2
xv

2dx

≤ −
1
6

∫
R
u4
xdx +

1
2

∫
R
u2
x(u

2
+ v2)dx +

1
4
‖v2

x‖L1

∫
R
u2
xdx,

where the last step used

‖G ∗ v2
x‖L∞ ≤ ‖G‖L∞‖v2

x‖L1 ≤
1
2
‖v2

x‖L1 .

In view of the invariant property of E(t), we find that

3
2

∫
R
u2
x(u

2
+ v2)dx +

3
4
‖vx‖

2
L1

∫
R
u2
xdx ≤

3E2
0

4
+

3E2
0

16
=

15E2
0

16
.

On the other hand, the Cauchy–Schwarz inequality implies that∫
R
u3
xdx

 ≤

∫
R
u4
xdx

1/2 ∫
R
u2
xdx

1/2

,

hence∫
R
u4
xdx ≥

1
E0

∫
R
u3
xdx

2

.

Thus we can deduce from the above that

dM(t)
dt

≤ −
M2

2E0
+

15E2
0

16
.

The hypothesis of this theorem and the standard argument on the Riccati type equation ensure that there exists a time T
such that

lim
t→T

∫
R
u3
xdx = −∞.

Since ∫
R
u3
xdx ≥ inf ux(x, t)

∫
R
u2
xdx ≥ inf ux(x, t)E0,

which shows that

lim
t→T

inf
x∈R

ux(x, t) = −∞.

We complete the proof. �

Motivated by Zhou’s recent work [15], we give our second criterion via the associated initial potential.
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Theorem 3.3. Suppose X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2, ρ0(x0) = v0(x0) − v0xx(x0) and y0(x0) = u0(x0) − u0xx(x0)

satisfy ρ0(x0) = 0 and y0(x0) = 0 respectively. Furthermore,∫ x0

−∞

eξy0(ξ)dξ >

√
6E0
2

and
∫

∞

x0
e−ξy0(ξ)dξ < −

√
6E0
2

,

for some point x0 ∈ R. Then the solution to system (1.3) with the initial value X0 blows up in finite time.

Proof. Eq. (3.2) in combination with (2.1) gives

d
dt

ux (q(x0, t), t) = (uxt + uuxx) (q(x0, t), t)

≤
1
2
u2 (q(x0, t), t) −

1
2
u2
x (q(x0, t), t) +

1
2
v2 (q(x0, t), t) +

1
2


G ∗ v2

x


(q(x0, t), t)

≤
1
2
u2 (q(x0, t), t) −

1
2
u2
x (q(x0, t), t) +

1
4
‖v‖

2
H1 +

1
4
‖v2

x‖L1

≤
1
2
u2 (q(x0, t), t) −

1
2
u2
x (q(x0, t), t) +

1
2
E0,

where we used the fact

G ∗


u2

+
1
2
u2
x


≥

1
2
u2(x).

In order to arrive at our result, we need the following two claims.
Claim 1. y (q(x0, t), t) = 0 for all t in its lifespan.

It is worth noting the equivalent form of the first equation in (1.2) in what follows

yt + 2yux + yxu + ρvx = 0. (3.3)

Applying the particle trajectory method to (3.3) and the second equation in (1.1), we obtain

d
dt


y (q(x, t), t) q2x(x, t)


= (yt + 2yux + yxu) (q(x, t), t) q2x(x, t)

= −ρ (q(x, t), t) vx (q(x, t), t) q2x(x, t),

and
d
dt

(ρ (q(x, t), t) qx(x, t)) = 0,

which implies that

ρ (q(x, t), t) qx(x, t) = ρ0(x).

Obviously, ρ (q(x0, t), t) = 0 since ρ0 (x0) = 0 and

d
dt


y (q(x0, t), t) q2x(x0, t)


= 0.

Thus, y (q(x0, t), t) q2x(x0, t) is independent on time t . We get by taking t = 0 without loss of generality

y (q(x0, t), t) q2x(x0, t) = y0(x0) = 0.

Therefore, thanks to (2.1) we obtain y (q(x0, t), t) = 0, for all t in its lifespan.
Claim 2. u2 (q(x0, t), t) − u2

x (q(x0, t), t) + E0 < 0, on [0, T ). Furthermore, ux (q(x0, t), t) < 0 and is strictly decreasing with
respect to time, where T is the maximal existence time of the solution.

We will prove it by the method of contradiction. Suppose not, there exists a t0 such that u2 (q(x0, t), t) + 3E0/2 <
u2
x (q(x0, t), t) on [0, t0) but u2 (q(x0, t0), t0) + 3E0/2 ≥ u2

x (q(x0, t0), t0).
Since y = u − uxx, then u(x, t) can be given by the convolution u = G ∗ y with G =

1
2 e

−|x|, for x ∈ R, and therefore

u(x, t) =
1
2
e−x

∫ x

−∞

eξy(ξ , t)dξ +
1
2
ex

∫
∞

x
e−ξy(ξ , t)dξ,

from which we get

ux(x, t) = −
1
2
e−x

∫ x

−∞

eξy(ξ , t)dξ +
1
2
ex

∫
∞

x
e−ξy(ξ , t)dξ .



Author's personal copy

3536 Z. Guo et al. / Nonlinear Analysis: Real World Applications 12 (2011) 3531–3540

Now we consider the problem at point (q(x0, t), t), for simplicity let

I =
1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξy(ξ , t)dξ .

Then

dI
dt

= −
1
2
u (q(x0, t), t) e−q(x0,t)

∫ q(x0,t)

−∞

eξy(ξ , t)dξ +
1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξyt(ξ , t)dξ . (3.4)

The first term of (3.4) on the right-hand side yields

−
1
2
u (q(x0, t), t) e−q(x0,t)

∫ q(x0,t)

−∞

eξy(ξ , t)dξ

= −
1
2
u (q(x0, t), t) e−q(x0,t)

[∫ q(x0,t)

−∞

eξ (u + ux)dξ − eq(x0,t)ux (q(x0, t), t)
]

= −
1
2
u2 (q(x0, t), t) +

1
2
u (q(x0, t), t) ux (q(x0, t), t) .

The second term of (3.4) on the right-hand side in combination with the first equation in (1.2) gives

1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξyt(ξ , t)dξ

= −
1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξ (yux + (yu)x + ρvx) (ξ , t)dξ

= −
1
2
u (q(x0, t), t) ux (q(x0, t), t) +

1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξ


u2

+
1
2
u2
x


dξ

+
1
4
u2
x (q(x0, t), t) −

1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξρvxdξ

= −
1
2
u (q(x0, t), t) ux (q(x0, t), t) +

1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξ


u2

+
1
2
u2
x


dξ

+
1
4
u2
x (q(x0, t), t) −

1
4
v2(q(x0, t), t) +

1
4
v2
x (q(x0, t), t)

+
1
4
e−q(x0,t)

∫ q(x0,t)

−∞

eξv2(ξ , t)dξ −
1
4
e−q(x0,t)

∫ q(x0,t)

−∞

eξv2
x (ξ , t)dξ .

Therefore,
dI
dt

≥
1
4
u2
x (q(x0, t), t) −

1
4
u2 (q(x0, t), t) −

3E0
8

,

where we have used the fact∫ q(x0,t)

−∞

eξ

u2

+ u2
x


dξ ≥

∫ q(x0,t)

−∞

eξdu2
= eq(x0,t)u2

−

∫ q(x0,t)

−∞

eξu2dξ,∫ q(x0,t)

−∞

eξ


u2

+
1
2
u2
x


dξ ≥

1
2
eq(x0,t)u2 (q(x0, t), t) .

Hence combining these inequalities and our hypothesis together, (3.4) reads

dI
dt

≥
1
4
u2
x (q(x0, t), t) −

1
4
u2 (q(x0, t), t) −

3E0
8

> 0, on [0, t0),

which implies that I is strictly increasing on time on [0, t0), we will easily get from the continuity property that

e−q(x0,t0)
∫ q(x0,t0)

−∞

eξy(ξ , t0)dξ > e−x0

∫ x0

−∞

eξy0(ξ)dξ > e−x0

√
6E0
2

. (3.5)

In the following, Let

II =
1
2
eq(x0,t)

∫
∞

q(x0,t)
e−ξy(ξ , t)dξ,
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a very similar way as I for II , it follows that

dII
dt

≤
1
4
u2 (q(x0, t), t) −

1
4
u2
x (q(x0, t), t) +

3E0
8

< 0, on [0, t0).

Therefore, continuity property yields

eq(x0,t0)
∫

∞

q(x0,t0)
e−ξy(ξ , t0)dξ < ex0

∫
∞

x0
e−ξy0(ξ)dξ < −ex0

√
6E0
2

. (3.6)

Summarizing (3.5) and (3.6), we obtain

u2
x (q(x0, t0), t0) − u2 (q(x0, t0), t0) =


e−q(x0,t)

∫ q(x0,t0)

−∞

eξy(ξ , t0)dξ
 

−eq(x0,t)
∫

∞

q(x0,t0)
e−ξy(ξ , t0)dξ


>


e−x0

∫ x0

−∞

eξy0(ξ)dξ
 

−ex0
∫

∞

x0
e−ξy0(ξ)dξ


= u2

x (x0, 0) − u2 (x0, 0) >
3E0
2

.

This is an obvious contradiction. Therefore, we have

u2 (q(x0, t), t) − u2
x (q(x0, t), t) + E0 < u2 (q(x0, t), t) − u2

x (q(x0, t), t) + 3E0/2 < 0, for all t ∈ [0, T ).

Thus, ux (q(x0, t), t) is strictly decreasing. On the other hand

ux(q(x0, t), t) = −
1
2
e−q(x0,t)

∫ q(x0,t)

−∞

eξy(ξ , t)dξ +
1
2
eq(x0,t)

∫
∞

q(x0,t)
e−ξy(ξ , t)dξ

< −
1
2
e−x0

∫ x0

−∞

eξy0(ξ)dξ +
1
2
ex0

∫
∞

x0
e−ξy0(ξ)dξ .

Then the initial assumption makes ux (q(x0, t), t) < 0 to be obvious. So our claim is proved.
Now let us denoteW (t) = ux (q(x0, t), t) for t ≥ 0, then

dW (t)
dt

≤
1
2
u2 (q(x0, t), t) −

1
2
u2
x (q(x0, t), t) +

E0
2

≤
1
2


u2
0(x0) − u2

0x(x0) + E0


< 0. (3.7)

Suppose the corresponding solution exists globally in time. Since W (t) is strictly decreasing with the initial assumption
W (0) < 0, there exists a t1 such that for all t > t1, we haveW (t) < −

√
3E0 < 0. Thus, (3.7) becomes

dW (t)
dt

≤ −
1
2
W 2(t) +

1
2
u2 (q(x0, t), t) +

E0
2

≤ −
1
2
W 2(t) +

3E0
4

≤ −
1
4
W 2(t), for t ∈ (t1, ∞).

Solving the above inequality directly, one gets

W (t) ≤
4

4
W (t1)

+ (t − t1)
.

It is easy to observe that W (t) → −∞ as t goes to t1 −
4

W (t1)
. This fact implies that the solution does not exist globally,

i.e., wave breaking occurs.
Finally, as for time t1, we have the following choice. Let us go back to (3.7),

dW (t)
dt

≤ −
1
2
W 2(t) +

3E0
2

.

IfW (0) < −
√
3E0, we take t1 = 0. Otherwise, supposeW (0) > −

√
3E0, andW (t1) = −

√
3E0 weobtain by integrating (3.7)

from 0 to t1,

−


3E0 − W (0) ≤

1
2


u2
0(x0) − u2

0x(x0) + E0

t1.



Author's personal copy

3538 Z. Guo et al. / Nonlinear Analysis: Real World Applications 12 (2011) 3531–3540

Consequently, t1 ≤
−2(

√
3E0+W (0))

u20(x0)−u20x(x0)+E0
. Therefore, we can choose

t1 =
−2

√
3E0 + W (0)


u2
0(x0) − u2

0x(x0) + E0
.

This completes the proof of the theorem. �

Throughout this paper, let S := R/Z be the unit circle. Now our attention is drew to show wave breaking may occur
for the periodic case. The definition of periodicity is the same to the Camassa–Holm equation; here we ignore its detailed
description.We investigate sufficient conditionswhich guarantee the existence of finite time singularities of strong solutions
for the periodic case.

Theorem 3.4. Suppose X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2 is the initial data. Suppose that there exists x0 ∈ S, such that

u′

0(x0) < −
√
2 ((2 − C0)C1E0)1/2 ,

where

C0 =
1
2

+
arctan (sinh(1/2))

2 sinh(1/2) + 2 arctan (sinh(1/2)) sinh2(1/2)
,

C1 =
cosh(1/2)
2 sinh(1/2)

.

Then the corresponding solution to system (1.3)with the initial data X0 blows up in finite time, while the solution itself still remains
uniformly bounded in its lifespan.

Proof. Let

m(t) := inf
x∈S

ux(x, t) = ux (ξ(t), t) , t ∈ [0, T ).

Clearly, uxx (ξ(t), t) = 0, and from (3.2) we find

dm(t)
dt

= −
1
2
m2(t) + u2 (ξ(t), t) −


G ∗


u2

+
u2
x

2


(ξ(t), t) −

1
2


G ∗ v2 (ξ(t), t)

+
1
2


G ∗ v2

x


(ξ(t), t) +

1
2
v2 (ξ(t), t) −

1
2
v2
x (ξ(t), t) , a.e.(0, T ).

First, we have the Sobolev inequality due to [32]

G ∗


u2

+
u2
x

2


≥ C0u2(x),

where C0 is the optimal constant and the function G(x) is given by

G(x) =
cosh(x − [x] − 1/2)

2 sinh(1/2)
.

Furthermore, in [16], Zhou has proved that

‖u‖2
L∞(S) ≤ C1‖u‖2

H1(S)
.

Combining the above inequalities, we obtain

dm(t)
dt

≤ −
1
2
m2(t) + (1 − C0)u2 (ξ(t), t) +

1
2


G ∗ v2

x


(ξ(t), t) +

1
2
v2 (ξ(t), t)

≤ −
1
2
m2(t) + (1 − C0)C1‖u‖2

H1(S)
+

1
2
‖G‖L∞(S)‖vx‖

2
L1(S)

+
1
2
‖v‖

2
L∞(S)

≤ −
1
2
m2(t) + (1 − C0)C1‖u‖2

H1(S)
+

1
2
C1E0 +

1
2
C1E0

≤ −
1
2
m2(t) + ((2 − C0)C1) E0, (3.8)

where we have used the fact
1

2 sinh(1/2)
≤ G(x) ≤

cosh(1/2)
2 sinh(1/2)

.
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Using the notation

C2 = 2 ((2 − C0)C1) E0,

we have
dm(t)
dt

≤ −
1
2


m2(t) − C2


.

In view of the initial condition, it is not difficult to obtain dm(t)
dt ≤

δ−1
2 m2(t), with 0 < δ < 1 determined by δm2(0) = C2.

Then, by using standard arguments for this type of equations, it is easy to conclude that the lifespan of the solution is finite.
Furthermore, the lifespan T can be estimated as

T ≤
2

m(0)(δ − 1)
.

Therefore, we complete the proof. �

Theorem 3.5. Assume that X0 = (u0, v0)
T

∈ Hs
× Hs−1, s ≥ 5/2 is the initial data. Suppose that there exists x0 ∈ S, such that

u′

0(x0) < −
√
2


3
2

+
C1

2
− C0


K0

1/2

,

where the constants C0 and C1 are the same as above and

K0 =

∫
S
u0(x)dx

2

+ E0.

Then the corresponding solution to system (1.3) only exists in finite time, i.e., wave breaking occurs.

Proof. It is easy to know that


S u(x, t)dx and


S v(x, t)dx are also invariants with respect to time t . We apply the known
results in [16] to the estimates for u(x, t) and v(x, t). There it was proved that

‖f (x)‖2
L∞(S) ≤

∫
S
f (x)dx

2

+ ‖f (x)‖2
H1(S)

,

for any function f ∈ H2(S). Then we have

‖u(x, t)‖2
L∞(S) ≤

∫
S
u(x, t)dx

2

+ ‖u(x)‖2
H1(S)

<

∫
S
u0(x)dx

2

+ E0 = K0 (3.9)

and

‖v(x, t)‖2
L∞(S) < K0 (3.10)

Therefore, Theorem3.5 can be easily proved by using (3.9) and (3.10) in the first inequality of (3.8) instead of ‖u(x, t)‖2
L∞(S) ≤

C1 ‖u(x, t)‖2
H1(S)

< C1E0. �

Remark 3.6. We applied the different estimates to u(x, t) and v(x, t) in Theorems 3.4 and 3.5. Very similar to [8], we can
also take some interesting examples to show the application of the above two theorems, the ultimate purpose is to show
that they make sense and are also different. In order to make this paper concision, we are not going to repeat them, the
readers who are interested in it are referred to [8] for details.

Recently, Henry [20] proved the infinite propagation speed by establishing a detailed description on the profile of the
corresponding solution with compactly supported initial datum for the CH2 system. However, for the MCH2 system, this
modification can’t allow us to apply the method in [13] to show the propagation speed, and we also do not know whether
or not the solutions can exist globally in time. Therefore, these problems are still open and worthy of being investigated in
the future.
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