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ABSTRACT 
 
This paper studies the management of transshipment flows in a container terminal which 
consists of designing a visiting schedule template for feeder vessels and determining 
storage locations for transshipment containers. A mixed integer programming formulation 
is developed with an objective of minimizing the total distance travelled by transshipment 
flows between quayside and storage yard as well as the workload imbalance in time. To 
solve the problem we devise an algorithm based on Lagrangian relaxation to find near-
optimal solutions within short computational times. Numerical experiments are conducted 
to assess the effectiveness and efficiency of the algorithm and the benefit from adjusting 
feeder visiting schedule. 

Keywords: Schedule template, Storage allocation, Container terminal, Transshipment 
flow 
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1. INTRODUCTION 1 

Maritime freight transport is an important part of the global logistic system. With over 80 2 
percent of world merchandize trade by volume being carried by sea, maritime transport 3 
remains the backbone supporting international trade and globalization (1). 4 
Containerization is an evolutionary change for maritime freight transport, and has 5 
increased the efficiency to a large extent. Benefiting from the economics of scale, the 6 
maritime shipping network has employed larger container vessels and introduced the hub-7 
and-spoke system in which large container vessels (mother vessels) visit large 8 
transshipment terminals (hubs) while small vessels (feeders) connect the hubs with other 9 
ports (spokes). The need for an efficient management of logistic activities at modern 10 
container terminals, and especially at the major hubs, is well recognized (2). The 11 
operational efficiency of ports not only affects the efficiency of the whole container 12 
shipping network, but also determines the port operational costs. 13 
 As a key node of the maritime shipping network, a container transshipment hub 14 
provides container loading and discharging services to both mother vessels and feeders, 15 
and offers yard space for container temporary storage. Yard storage allocation is one of 16 
the typical decision problems faced by port operators, especially for large transshipment 17 
hubs with scarce-land issues.  In a transshipment terminal, container batches are 18 
exchanged between mother vessels and feeders. Such transshipment flows are firstly 19 
discharged from their inbound vessels, placed in certain blocks of the storage yard 20 
temporarily and finally loaded to their corresponding outbound vessels. The container 21 
movements between the quayside and the storage yard are conducted by yard trucks. 22 
Longer distance travelled by yard trucks for moving a transshipment flow not only results 23 
in larger travel cost but also causes an unfavorable circumstance in terms of fast loading 24 
and discharging operations at the quayside. Thus, it is essential for port operators to 25 
develop a storage allocation plan in a broad view with consideration of all the 26 
transshipment flows. 27 
 Feeder scheduling is the specific motivation of this study: to support decisions at 28 
the tactical level for port operators of negotiating with shipping liners on their vessel 29 
arrival times. Vacca et al. (3) mentioned that the efficiency of yard operations in a 30 
transshipment hub can be improved by taking into account the peculiarities of 31 
transshipment flows when the arrival times of feeders are not known in advance but can 32 
be decided by the terminal. This idea adjusts the calling schedule of feeders in such a way 33 
that the quayside workload (loading and discharging) varies as little as possible over the 34 
time. The current convention is that shipping liners have dominance of the arrival times 35 
of container vessels (e.g., Monday morning shift), and container ports satisfies the 36 
requests in order to gain attractiveness. However, this practice often results in a 37 
concentration of the quayside workload over the time and it is unfavorable for quay crane 38 
operations. That’s why port operators intend to gain benefits from adjusting feeder calling 39 
times. 40 
 This paper deals with modeling the integration of the feeder scheduling problem 41 
and the storage allocation problem for the transshipment flows between mother vessels 42 
and feeders. The feeder scheduling decision determines the arrival and departure times of 43 
transshipment flows while the storage allocation decides where to put the flows in the 44 
yard. In other words, the two types of decisions affect the transshipment flows 45 
temporarily and spatially. Thus, we intend to organize the transshipment flows in an 46 
optimal manner by incorporating both the temporal and spatial considerations. We remark 47 
that the contribution of this study lies on the following two aspects:  48 

• The concept of feeder scheduling is studied in detail and modeled as a mixed 49 
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integer program. 1 
• The storage allocation problem is integrated with feeder scheduling problem to 2 

improve the overall operational efficiency for transshipment flows. 3 
This paper is organized as follows. Section 2 reviews relevant papers in the literature 4 

and Section 3 presents the detailed problem description as well as a mixed integer 5 
program. A Lagrangian relaxation algorithm is developed in Section 4 followed by 6 
computational experiments in Section 5. Finally, Section 6 draws the conclusion. 7 

2. LITERATURE REVIEW 8 

In this section we review some recent research outcomes which are most relevant to the 9 
storage allocation problem and the feeder scheduling problem. For a comprehensive 10 
review on container port operations, readers may refer to Steenken et al. (4) and 11 
Stahlbock and Voss (5). Yard storage space allocation is one of the typical decision 12 
problems faced by port operators. It is a common practice that the storage policies are 13 
container type dependent and the yard is partitioned into different areas according to their 14 
operational needs (6). Kim and Kim (7) considered how to allocate storage space for 15 
import containers under the segregation strategy. Relationship between stack height and 16 
number of re-handles was analyzed in order to minimize the expected total number of re-17 
handles for outside trucks to pick up containers in the yard. Three arrival patterns were 18 
considered: constant, cyclic and dynamic arrival rate. Ng et al. (6) studied the export yard 19 
template designing problem for vessel services with a cyclical calling pattern. Given the 20 
daily arrival information of the export containers associated with each vessel service, the 21 
authors tried to determine the storage locations for the export container clusters with an 22 
objective of balancing the workload over the yard. The yard template designing problem 23 
was modeled as an integer program. Zhang et al. (8) applied a hierarchical approach to 24 
the storage allocation problem where import, export and transshipment containers are 25 
mixed together. The higher level balances the workload among all the blocks such that the 26 
berthing time can be minimized. The lower level minimizes the total distance between 27 
storage blocks and vessel berthing locations by allocating containers corresponding to 28 
each vessel to the storage space determined in the first level. Chen et al. (9) modeled the 29 
storage allocation as a special 2-dimensional packing problem and applied several 30 
heuristic approaches. Moccia and Astorino (10) proposed a Group Allocation Problem 31 
which is to study the transshipment container flows through the storage yard. A 32 
mathematical model was formulated considering all the costs of handling work occurring 33 
at discharging, loading and reallocation of container groups. Moccia et al. (11) developed 34 
column generation algorithms for the group allocation problem. From the previous 35 
literature, we can see that most works on storage space allocation focus on the storage 36 
yard side and assume the quayside operations (e.g., berth allocation, quay crane 37 
scheduling/assignment and feeder scheduling) have been already determined. However, to 38 
achieve better efficiency it is necessary to integrate related operations, like storage 39 
allocation and feeder scheduling, instead of solving them hierarchically. 40 
 Regarding the feeder scheduling problem, this concept was first introduced by 41 
Vacca et al. (3). However, the authors only proposed the idea and did not provide any 42 
mathematical formulation. In real-world maritime shipping, it is common that container 43 
vessels maintain cyclical arrival patterns, mostly weekly pattern.  The feeder scheduling 44 
problem is a new tactical planning problem that allows port operators to control the 45 
quayside congestion and traffic issues by designing a good schedule template for feeders. 46 
With a determined schedule template, feeders visit the terminal accordingly on a weekly 47 
basis. In the literature, Moorthy and Teo (12) first studied the berth template problem 48 
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which consists of assigning a home berth to cyclically visiting vessels. It is also a tactical 1 
planning problem and its output is subsequently used as a key input for operational 2 
planning problems. Vacca et al. (3) stated that feeder scheduling can reduce the 3 
congestion (loading and discharging operations) at the quayside by adjusting the feeder 4 
arrival times. Such a schedule template problem resembles the berth template problem as 5 
both of them manage the feeder operations. However, the former focuses on the temporal 6 
control while the latter deals with spatial management. 7 

3. MODEL FORMULATION 8 

In this section we first provide a detailed description of the problem of schedule template 9 
design and storage allocation for cyclically visiting feeders. Then, a mixed integer 10 
programming formulation is developed. 11 

3.1. Problem Description 12 
The studied problem is to simultaneously consider two decisions from the viewpoint of 13 
port operators: one is to allocate storage space to transshipment flows and the other is to 14 
determine the calling schedule for feeders. Transshipment container flows between 15 
mother vessels and feeders need yard space resource for temporary storage and handling 16 
equipment (e.g., quay cranes, yard cranes and yard trucks) for container loading and 17 
discharging. The two decisions manage the transshipment flows and determine the 18 
operational cost directly. In this paper, we intend to tackle this problem from two aspects: 19 

feeder 1 feeder 2 feeder 3mother vessel 1 mother vessel 2

transshipment flows from mother vessels to feeders

transshipment flows from feeders to mother vessels

B01

B02

B03

B04

B05

B06

B07

B08

B09

B10

B11

B12

B13

B14

B15

B16

Quayside

Storage Yardyard blocks

 20 
FIGURE 1: Transshipment flows between mother vessels and feeders. 21 

a) Spatial planning: 22 
 Spatial planning aims at reducing the total distance of the transshipment flows 23 
from the quayside to the storage yard and vice versa. Determined by the assigned storage 24 
space for transshipment flows, the transportation distance has an impact on the 25 
operational efficiency as large distance is not in favor of fast loading and discharging. 26 
Figure 1 presents the flows in a geographical manner with 2 mother vessels, 3 feeders and 27 
16 yard blocks. A transshipment flow is firstly discharged from its inbound vessel and 28 
then moved to a yard block for temporary storage. Finally, when the corresponding 29 
outbound vessel arrives, it is transported back to the quayside by yard trucks for loading.  30 
The storage positions of transshipment flows should be assigned in such a way that the 31 
total distance of container movements could be minimized. Note that in this study we 32 
focus on deciding the block locations for container storage, and simplify the detailed 33 
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considerations of container stacking and re-handles within a block. Besides, we consider 1 
the movements of container batches instead of individual containers. This is because the 2 
integrated feeder scheduling and storage allocation problem is at the tactical planning 3 
level, and the detailed stacking and re-handling decisions for individual containers should 4 
be determined at the operational level.  5 

b) Temporal planning: 6 
 Temporal planning is to assign a service time slot (working shift) to container 7 
vessels in a proactive way from the terminal's perspective, unlike the convention that 8 
shipping liners establish the port staying time window and port operators have to provide 9 
service reactively according to the time window. In this paper, we assume that the service 10 
requests from mother vessels are always satisfied while the port operator has the authority 11 
on deciding the service times of feeders. We remark that this assumption is reasonable 12 
when there is an alliance between the port and shipping liners. With assigned service 13 
times by port operators, feeders follow the schedule and maintain a weekly arrival 14 
pattern. Such a proactive operational strategy provides port operators an opportunity of 15 
reducing the workload (container loading and discharging) congestion by adjusting feeder 16 
calling schedules. 17 
 The calling schedules of container vessels determine the arrival and departure 18 
times of transshipment flows, as well as the workload distribution in time for handling 19 
equipment. Figure 2 shows an illustrative example of the workload distribution over two 20 
planning horizons each of which has seven time periods. There are three transshipment 21 
flows each of which has three statuses: unloading, in storage and loading. During loading 22 
and unloading time periods port operators have to allocate handling equipment to conduct 23 
the operations, while allocated blocks are occupied when flows are in storage and during 24 
loading and unloading. In this example, Flow 1 arrives at the first time period and is 25 
loaded onto its outbound vessels at time period 5. Regarding Flow 2, as its outbound 26 
vessel arrives before its inbound vessel in the current planning horizon, the containers 27 
will stay in the terminal until the arrival of its outbound vessel in the next planning 28 
horizon. As can be seen from Figure 2, the three transshipment flows lead to an 29 
imbalanced workload distribution in time. From the operational point of view, an evenly 30 
distributed workload circumstance is preferred in that large workload imbalance would 31 
make handling equipment sometimes busy and sometimes idle. As the schedule of 32 
unloading and loading operations is determined by the vessel calling times, the workload 33 
imbalance can be reduced by adjusting the calling schedule of vessels. 34 

1t = 2t = 3t = 4t = 5t = 6t = 7t =

1 2 0 0 3 0 0

Flow 1:

Flow 2:

Flow 3:

workload:

unloading in storage loading

8t = 9t = 10t = 11t = 12t = 13t = 14t =

1 2 0 0 3 0 0

planning horizon next horizon

Time

 35 
FIGURE 2: An illustrative example of workload distribution. 36 

  37 
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3.2. Assumptions 1 
To simplify the problem, the following assumptions are made. 2 

(1) The berth template for mother vessels and feeders is known. 3 
(2) The container loading and unloading of a feeder can be done within one working 4 

shift. 5 
 The berth template design (assigning the home berth position for each vessel) is 6 
another important decision problem which also has an impact on the total travel distance 7 
of transshipment flows within the terminal. In order to achieve more advantageous flow 8 
movements, the schedule template design problem studied in this paper and the berth 9 
template design problem need to be solved iteratively. However, in this paper we only 10 
tackle the feeder schedule template design problem with a given berth template. 11 
Assumption (2) is reasonable as it is in line with the practice. 12 

3.3. Formulation 13 
Given the length of the cyclical planning horizon, e.g., a week, it is discretized into a 14 
series of working shifts. We consider two types of transshipment flows: flows from 15 
mother vessels to feeders and flows from feeders to mother vessels. For each flow, the 16 
service time related with its mother vessel is given while the service time of the 17 
corresponding feeder should be determined. Given a yard layout and a set of yard blocks, 18 
storage space should be allocated to the transshipment flows. Note that the assigned 19 
service times for feeders have to respect the allowable time windows, and storage 20 
capacity constraint of each block must be hold. The notation of the mathematical 21 
formulation is defined in Table 1. 22 

Table 1: Formulation Notation 23 

Sets: 
𝑀  : set of mother vessels 
𝑁 : set of feeders 
𝐾  : set of yard blocks 
𝑇  : set of working shifts, 𝑇 = {1,2,⋯ , 𝑡̅} 
𝐼1 : set of transshipment flows from mother vessels to feeders 
𝐼2 : set of transshipment flows from feeders to mother vessels 
𝐼 : set of all transshipment flows, 𝐼 = 𝐼1 ∪ 𝐼2 
𝑆 : set of quay positions 

Parameters: 
𝜃𝑖𝑁 : the corresponding feeder of flow 𝑖 ∈ 𝐼 
𝑜𝑖 : ∈ 𝑆, the arrival quay position of flow 𝑖 ∈ 𝐼 
𝑑𝑖 : ∈ 𝑆, the departure quay position of flow 𝑖 ∈ 𝐼 
𝑞𝑖 : the amount of containers in flow 𝑖 ∈ 𝐼, measured in Twenty-foot Equivalent 

Units (TEUs) 
𝑡𝑖𝑎 : the arrival working shift of flow 𝑖 ∈ 𝐼1 

�𝑇𝑖𝑑,𝑇𝑖
𝑑
� : [earliest, latest] feasible departure time of flow 𝑖 ∈ 𝐼1 

�𝑇𝑖𝑎,𝑇𝑖
𝑎
� : [earliest, latest] feasible arrival time of flow 𝑖 ∈ 𝐼2 

𝑡𝑖𝑑  : the departure working shift of flow 𝑖 ∈ 𝐼2 
𝑙𝑘𝑠 : the travel distance between block 𝑘 ∈ 𝐾 and quay position 𝑠 ∈ 𝑆 
𝑄𝑘 : the storage capacity of block 𝑘 ∈ 𝐾 

Decision variables: 
𝑥𝑖𝑘 : binary, equal to 1 if flow 𝑖 ∈ 𝐼 is put in block 𝑘 ∈ 𝐾 for temporary storage, 0 

otherwise 
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𝑦𝑖𝑡𝑎  : binary, equal to 1 if flow 𝑖 ∈ 𝐼2 arrives at working shift 𝑡 ∈ 𝑇, 0 otherwise 
𝑦𝑖𝑡𝑑  : binary, equal to 1 if flow 𝑖 ∈ 𝐼1 departs at working shift 𝑡 ∈ 𝑇, 0 otherwise 
𝑧𝑖 : binary, equal to 1 if the departure working shift of flow 𝑖 is later than its 

arrival working shift in one planning horizon, 0 otherwise 
𝑢𝑖𝑡 : binary, equal to 1 if flow 𝑖 ∈ 𝐼 is within the terminal (unloading, in storage 

and loading statuses), 0 otherwise 
𝑤ℎ : the highest workload per working shift 
𝑤𝑙 : the lowest workload per working shift 

 Note that the arrival and departure quay positions of transshipment flows 𝑜𝑖 and 𝑑𝑖 1 
can be obtained from the berth template for container vessels which is assumed to be 2 
known. 𝑡𝑖𝑎  and 𝑡𝑖𝑑  are related to the service times of mother vessels. Regarding the 3 

feasible arrival/departure time windows, 𝑇𝑖
𝑑

 (𝑇𝑖
𝑎

) are allowed to be smaller than 𝑇𝑖𝑑 (𝑇𝑖𝑎) 4 
since the vessels visit the port cyclically. With the notation defined in Table 1, the 5 
problem is formulated as follows: 6 

 

Objective function: 7 

Min       𝜆���𝑙𝑘𝑜𝑖 + 𝑙𝑘𝑑𝑖�𝑞𝑖𝑥𝑖𝑘
𝑘∈𝐾𝑖∈𝐼

+ (1 − 𝜆)(𝑤ℎ − 𝑤𝑙) (1) 

 The objective function is a convex combination of two parts: spatial objective of 8 
minimizing the total travel distance of all flows between the quayside and storage yard, 9 
and temporal objective of minimizing the gap between the highest and lowest workload 10 
per working shift. The spatial objective reflects the transportation cost of yard trucks for 11 
carrying out all the container movements during the loading and unloading operations 12 
while the temporal objective indicates the quay crane workload imbalance in time. The 13 
two objectives are weighted by the parameter 𝜆 ∈ [0,1]. Note that 𝜆 is predetermined by 14 
port operators which takes into account the relative preferences and their monetary costs. 15 

 

Constraints: 16 

�𝑥𝑖𝑘
𝑘∈𝐾

 = 1    ∀ 𝑖 ∈ 𝐼 (2) 

 �𝑦𝑖𝑡𝑑

𝑡∈𝑇

= 1    ∀𝑖 ∈ 𝐼1 (3) 

 � 𝑦𝑖𝑡𝑑

𝑡∈𝑇|𝑇𝑖
𝑑≤𝑡≤𝑇𝑖

𝑑

=  1    ∀𝑖 ∈ 𝐼1|𝑇𝑖𝑑 < 𝑇𝑖
𝑑

 (4) 

 � 𝑦𝑖𝑡𝑑

𝑡∈𝑇|𝑡≤𝑇𝑖
𝑑

+ � 𝑦𝑖𝑡𝑑

𝑡∈𝑇|𝑡≥𝑇𝑖
𝑑

=  1    ∀𝑖 ∈ 𝐼1|𝑇𝑖𝑑 > 𝑇𝑖
𝑑

 (5) 

 �𝑦𝑖𝑡𝑎

𝑡∈𝑇

= 1    ∀𝑖 ∈ 𝐼2 (6) 

 � 𝑦𝑖𝑡𝑎

𝑡∈𝑇|𝑇𝑖
𝑎≤𝑡≤𝑇𝑖

𝑎

=  1    ∀𝑖 ∈ 𝐼2|𝑇𝑖𝑎 < 𝑇𝑖
𝑎
 (7) 

 � 𝑦𝑖𝑡𝑎

𝑡∈𝑇|𝑡≤𝑇𝑖
𝑎

+ � 𝑦𝑖𝑡𝑎

𝑡∈𝑇|𝑡≥𝑇𝑖
𝑎

=  1    ∀𝑖 ∈ 𝐼2|𝑇𝑖𝑎 > 𝑇𝑖
𝑎
 (8) 

 0 ≤ 𝑧𝑖  + �𝑡𝑖𝑎 −� 𝑡𝑦𝑖𝑡𝑑

𝑡∈ 𝑇

� 𝑡� <  1   ∀ 𝑖 ∈ 𝐼1 (9) 
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 1 − 𝑡𝑖𝑎 ≤ 𝑡(𝑢𝑖𝑡 + 𝑧𝑖 − 1) ≤ � 𝑡′𝑦𝑖𝑡′
𝑑

𝑡′∈𝑇

    ∀𝑖 ∈ 𝐼1,∀𝑡 ∈ 𝑇 (10) 

 
� 𝑡′𝑦𝑖𝑡′

𝑑

𝑡′∈𝑇

− 𝑡 ≤ �𝑡 + 1 − 𝑡�(𝑢𝑖𝑡  + 𝑧𝑖 − 1 ) ≤ 𝑡 + 1 − 𝑡𝑖𝑎 

∀𝑖 ∈ 𝐼1,∀𝑡 ∈ 𝑇 
(11) 

 �(𝑢𝑖𝑡 + 𝑧𝑖 − 1)
𝑡∈𝑇

=  �𝑡𝑦𝑖𝑡𝑑

𝑡∈𝑇

− 𝑡𝑖𝑎 + 1    ∀𝑖 ∈ 𝐼1 (12) 

 0 ≤  𝑧𝑖  + ��𝑡𝑦𝑖𝑡𝑎

𝑡∈𝑇

− 𝑡𝑖𝑑� 𝑡� < 1   ∀𝑖 ∈ 𝐼2 (13) 

 1 − � 𝑡′𝑦𝑖𝑡′
𝑎

𝑡′∈𝑇

≤ 𝑡(𝑢𝑖𝑡 + 𝑧𝑖 − 1) ≤  𝑡𝑖𝑑     ∀𝑖 ∈ 𝐼2,∀𝑡 ∈ 𝑇 (14) 

 
𝑡𝑖𝑑 − 𝑡 ≤ �𝑡 + 1 − 𝑡�(𝑢𝑖𝑡 + 𝑧𝑖 − 1) ≤ 𝑡 + 1 − � 𝑡′𝑦𝑖𝑡′

𝑎

𝑡′∈𝑇

 

∀𝑖 ∈ 𝐼2,∀𝑡 ∈ 𝑇 
(15) 

 �(𝑢𝑖𝑡 + 𝑧𝑖 − 1)
𝑡∈𝑇

=  𝑡𝑖𝑑 −�𝑡𝑦𝑖𝑡𝑎

𝑡∈𝑇

+ 1    ∀𝑖 ∈ 𝐼2 (16) 

 𝑤ℎ ≥ � 𝑞𝑖
𝑖∈𝐼1|𝑡𝑖

𝑎=𝑡

+ �𝑞𝑖𝑦𝑖𝑡𝑑

𝑖∈𝐼1

 +  �𝑞𝑖𝑦𝑖𝑡𝑎

𝑖∈𝐼2

+ � 𝑞𝑖
𝑖∈𝐼2|𝑡𝑖

𝑑=𝑡

    ∀𝑡 ∈ 𝑇 (17) 

 𝑤𝑙 ≤ � 𝑞𝑖
𝑖∈𝐼1|𝑡𝑖

𝑎=𝑡

+ �𝑞𝑖𝑦𝑖𝑡𝑑

𝑖∈𝐼1

 + �𝑞𝑖𝑦𝑖𝑡𝑎

𝑖∈𝐼2

+ � 𝑞𝑖
𝑖∈𝐼2|𝑡𝑖

𝑑=𝑡

    ∀𝑡 ∈ 𝑇 (18) 

 �𝑞𝑖𝑥𝑖𝑘𝑢𝑖𝑡
𝑖∈𝐼

≤ 𝑄𝑘    ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (19) 

 𝑦𝑖𝑡𝑎 = 𝑦𝑗𝑡𝑎      ∀𝑖, 𝑗 ∈ 𝐼2,∀𝑡 ∈ 𝑇|𝜃𝑖𝑁  = 𝜃𝑗𝑁 (20) 
 𝑦𝑖𝑡𝑑 =   𝑦𝑗𝑡𝑑     ∀𝑖, 𝑗 ∈ 𝐼1,∀𝑡 ∈ 𝑇|𝜃𝑖𝑁 = 𝜃𝑗𝑁 (21) 
 𝑦𝑖𝑡𝑎 =  𝑦𝑗𝑡𝑑     ∀𝑖 ∈ 𝐼2,∀𝑗 ∈ 𝐼1,∀𝑡 ∈ 𝑇|𝜃𝑖𝑁 = 𝜃𝑗𝑁 (22) 
 𝑥𝑖𝑘 ∈ {0,1}    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 (23) 
 𝑦𝑖𝑡𝑎 ∈ {0,1}     ∀𝑖 ∈ 𝐼2 (24) 
 𝑦𝑖𝑡𝑏 ∈ {0,1}    ∀𝑖 ∈ 𝐼1 (25) 
 𝑧𝑖 ∈ {0,1}    ∀𝑖 ∈ 𝐼 (26) 
 𝑢𝑖𝑡 ∈ {0,1}    ∀𝑖 ∈ 𝐼,∀𝑡 ∈ 𝑇 (27) 
 𝑤ℎ,𝑤𝑙 ≥  0 (28) 

 Constraints (2) assign each transshipment flow to a certain yard block for 1 
temporary storage. Constraints (3) assure that one and only one working shift during the 2 
planning horizon is selected as the departure time for each transshipment flow 𝑖 ∈ 𝐼1 . 3 
Constraint (4) and (5) guarantee that the assigned times of transshipment flows 𝐼1fall 4 
within their corresponding feasible time windows. Similarly, the arrival times of 5 
transshipment flows 𝐼2 are specified by Constraints (6)-(8). Imposed by Constraints (9), 6 
the binary variable 𝑧𝑖  is set to 1 if and only if the departure working shift ∑ 𝑡𝑦𝑖𝑡𝑑𝑡∈𝑇  of 7 
transshipment flow 𝑖 ∈ 𝐼1 is later than its arrival working shift 𝑡𝑖𝑎. Similarly, Constraints 8 
(13) assign values to 𝑧𝑖  for transshipment flows 𝐼2. Constraints (10)-(12) and (14)-(16) 9 
define the variable 𝑢𝑖𝑡 by enforcing its relationship with variable 𝑧𝑖, 𝑦𝑖𝑡𝑎  and 𝑦𝑖𝑡𝑑 . Figure 3 10 

TRB 2012 Annual Meeting Paper revised from original submittal.



10 
 

shows two scenarios of different arrival and departure schedules of transshipment flow 1 
𝑖 ∈ 𝐼1  and the values of the corresponding variables. Take Figure 3(a) as an example, 2 
Constraints (10) set 𝑢𝑖6 and 𝑢𝑖7 to 0. Similarly, 𝑢𝑖1 takes 1 as ensured by Constraints (11). 3 
Constraints (12), along with (10) and (11), assign 1 to the rest of 𝑢𝑖𝑡. Constraints (17)-4 
(18) assign the highest and lowest workload per working shift to variables 𝑤ℎ  and 𝑤𝑙 , 5 
respectively. The total amount of containers within a block should not exceed the storage 6 
capacity at each working shift, as guaranteed by Constraints (19). Ensured by Constraints 7 
(20), any two transshipment flows in 𝐼2 with the same inbound feeder should arrive at the 8 
same working shift. Constraints (21) and (22) impose similar restrictions. Finally, the 9 
domain of decision variables is defined by Constraints (23)-(28). 10 

1t = 2t = 3t = 4t = 5t = 6t = 7t =

2a
it = 5 1d

iy =

(a) 1iz =

0 1 1 1 1 0 0

0 1 1 1 1 0 0

1t = 2t = 3t = 4t = 5t = 6t = 7t =

6a
it =2 1d

iy =

(b) 0iz =

itu 1 1 0 0 0 1 1

1it iu z+ − 0 0 -1 -1 -1 0 0

time horizon

storage status

within the terminal (unloading, in storage or loading)
 11 

FIGURE 3: Two scenarios with different arrival and departure schedules for transshipment 12 
flow 𝒊 ∈ 𝑰𝟏 13 

 Note that Constraints (19) related with block storage capacity is quadratic. Thus, 14 
we linearize it by defining an additional decision variable 𝛿𝑖𝑘𝑡 ∈ {0,1}, which is set to 1 if 15 
𝑥𝑖𝑘 = 𝑢𝑖𝑡 = 1 and 0 otherwise. The related additional constraints are defined as follows: 16 

 𝛿𝑖𝑘𝑡 ≥ 𝑥𝑖𝑘 + 𝑢𝑖𝑡 − 1    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (29) 
 𝛿𝑖𝑘𝑡 ≤ 𝑥𝑖𝑘    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (30) 
 𝛿𝑖𝑘𝑡 ≤ 𝑢𝑖𝑡      ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (31) 
 𝛿𝑖𝑘𝑡 ∈ {0,1}    ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (32) 

 �𝑞𝑖𝛿𝑖𝑘𝑡
𝑖∈𝐼

≤ 𝑄𝑘    ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (33) 

 Therefore, the problem of schedule template design and storage allocation for 17 
cyclically visiting feeders can be formulated as a mixed integer linear program as follows: 18 

[P]    Min    𝜆���𝑙𝑘𝑜𝑖 + 𝑙𝑘𝑑𝑖�𝑞𝑖𝑥𝑖𝑘
𝑘∈𝐾𝑖∈𝐼

+ (1 − 𝜆)(𝑤ℎ − 𝑤𝑙) 

𝑠. 𝑡. (2) − (18) and (20) − (33) 

4. LAGRANGIAN RELAXATION ALGORITHM 19 

In this section, we propose a Lagrangian relaxation solution method for the proposed 20 
mixed integer program [P]. Since the introduction of Lagrangian approach by Held and 21 
Karp (13, 14), it has gained significant applications in many research fields. In the 22 
literature on container port operations, Zhang et al. (15) employed Lagrangian relaxation 23 
methods to solve the dynamic crane deployment problem in container storage yards, and 24 
Monaco and Sammarra (16) developed a Lagrangian algorithm for a strong formulation of 25 
the berth allocation problem. The merit of the Lagrangian relaxation method lies in the 26 
relaxation of complicated constraints by penalizing the violated constraints in the 27 
objective function. As the complicated constraints have been relaxed, the original 28 
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problem becomes easier to solve. 1 
 In our problem, based on the observation that the block capacity constraints (33) 2 
are the only constraints linking storage allocation decision and feeder scheduling 3 
decision, we apply the Lagrangian relaxation method to the original formulation [P] by 4 
relaxing Constraints (33). For given Lagrangian multipliers 𝝁 = {𝜇𝑘𝑡} ≥ 𝟎  associated 5 
with Constraints (33), the Lagrangian relaxation of the original problem [P] is defined as 6 
follows: 7 

[P-LR(𝝁)]      LR(𝝁)=min    𝜆���𝑙𝑘𝑜𝑖 + 𝑙𝑘𝑑𝑖�𝑞𝑖𝑥𝑖𝑘
𝑘∈𝐾𝑖∈𝐼

+  (1 − 𝜆)(𝑤ℎ − 𝑤𝑙)  

+  ��𝜇𝑘𝑡 ��𝑞𝑖𝛿𝑖𝑘𝑡
𝑖∈𝐼

− 𝑄𝑘�
𝑡∈𝑇𝑘∈𝐾

 

𝑠. 𝑡.    (2) − (18) and (20)-(32)  
 Therefore, the Lagrangian dual problem is: 8 

 [P-Dual]    𝑍𝐷 = max
𝝁≥𝟎

LR(𝝁) (34) 
 As the Lagrangian relaxation problems [P-LR(𝝁)] are relatively easier to solve 9 
compared with the original problem [P], we take advantage of MIP solvers to solve them 10 
to optimum or to find out near-optimal solutions if the computational time exceeds a pre-11 
determined time limit. Lower bounds to the original problem [P] can be obtained from the 12 
Lagrangian relaxation problems. The subgradient method is employed to update the 13 
Lagrangian multipliers and the Lagrangian problems are iteratively solved with the 14 
updated multipliers. 15 
 In order to get primal bounds of the original problem [P], we develop a heuristic 16 
based on the solutions to the Lagrangian relaxation problems. Given a solution to [P-17 
LR(𝝁)], the decisions related with feeder scheduling (𝒚, 𝒛,𝒖,𝒘) = {𝑦𝑖𝑡𝑎 ,𝑦𝑖𝑡𝑑 , 𝑧𝑖,𝑢𝑖𝑡 ,𝑤ℎ,𝑤𝑙} 18 
are selected. With the known feeder scheduling decisions, the remaining problem is to 19 
solve the storage allocation problem. The formulation of the resulting storage allocation 20 
problem is as follows: 21 

[P-Sub]    𝐶𝑠𝑢𝑏 = min    ���𝑙𝑘𝑜𝑖 + 𝑙𝑘𝑑𝑖�𝑞𝑖𝑥𝑖𝑘
𝑘∈𝐾𝑖∈𝐼

 

𝑠. 𝑡.        �𝑥𝑖𝑘
𝑘∈𝐾

= 1    ∀𝑖 ∈ 𝐼 

�𝑞𝑖𝛿𝑖𝑘𝑡
𝑖∈𝐼

≤ 𝑄𝑘    ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 

𝛿𝑖𝑘𝑡 ≥ 𝑥𝑖𝑘 + 𝑢𝑖𝑡 − 1    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 
𝛿𝑖𝑘𝑡 ≤ 𝑥𝑖𝑘    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 
𝛿𝑖𝑘𝑡 ≤ 𝑢𝑖𝑡      ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 

𝑥𝑖𝑘 ∈ {0,1}    ∀𝑖 ∈ 𝐼,∀𝑘 ∈ 𝐾 
𝛿𝑖𝑘𝑡 ∈ {0,1}    ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 

 Note that in [P-Sub], only 𝑥𝑖𝑘 and 𝛿𝑖𝑘𝑡 are the decision variables while variables 22 
𝑢𝑖𝑡, 𝑤ℎ and 𝑤𝑙 are known. With both storage allocation and feeder scheduling decisions 23 
determined, a primal feasible solution can be obtained. 24 
 The subgradient procedure of the Lagrangian relaxation method is summarized in 25 
Table 1. The Lagrangian multipliers are initially set to 0. We solve the linear relaxation of 26 
the original problem [P] to get an initial lower bound 𝐿𝐵 while the initial upper bound 𝑈𝐵 27 
is set to infinity. During each iteration of the subgradient procedure, firstly problem [P-28 
LR(𝝁)] is solved and 𝐿𝐵 is updated accordingly. After that, the feeder scheduling related 29 
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decisions are selected for the remaining problem [P-Sub]. 𝑈𝐵 and 𝐵𝑒𝑠𝑡 can be updated 1 
once [P-Sub] is solved. Then, the standard subgradient method is applied to get 𝝁 2 
updated as equation (35). In the updating scheme, the step size 𝑡𝑛  is computed by 3 
equation (36) where the parameter 𝜏𝑛  is initialized to 2 and halved once 𝐿𝐵  is not 4 
improved for three consecutive iterations. 5 

 𝜇𝑘𝑡𝑛+1 = 𝜇𝑘𝑡𝑛 + 𝑡𝑛 ��𝑞𝑖𝛿𝑖𝑘𝑡
𝑖∈𝐼

− 𝑄𝑘�     ∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 (35) 

 𝑡𝑛 =
𝜏𝑛(𝑈𝐵 − LR(𝝁𝑛))

∑ ∑ (∑ 𝑞𝑖𝛿𝑖𝑘𝑡𝑖∈𝐼 − 𝑄𝑘)2𝑡∈𝑇𝑘∈𝐾
 (36) 

 At the end of each iteration, three stopping criteria are checked to determine 6 
whether or not the subgradient procedure should be terminated: the maximum number of 7 
iterations 𝑁1 is reached; 𝑈𝐵 does not get improved for 𝑁2 consecutive iterations; the gap 8 
between 𝑈𝐵 and 𝐿𝐵 is less than 𝑈𝑏𝐺𝑎𝑝. In order to accelerate the solving process of the 9 
subproblems [P-LR(𝝁)] and [P-Sub] by MIP solvers, instead of solving them to optimum 10 
we truncated the solving process according to the following two conditions: a time limit 11 
𝑇𝑖𝐿𝑖𝑚 and an optimality gap 𝐸𝑝𝐺𝑎𝑝. 12 

Table 1: Subgradient Procedure of the Lagrangian Relaxation Algorithm 13 

1: Input: an instance 
2: Output: a lower bound 𝐿𝐵, an upper bound 𝑈𝐵 and the best feasible solution 𝐵𝑒𝑠𝑡  

  
3: Initialize multipliers 𝝁 ← 𝟎, best lower bound 𝐿𝐵 ← 0, best upper bound 𝑈𝐵 ← +∞; 
4: Solve the linear relaxation of [P], and update 𝐿𝐵; 
5: Repeat 
6: Solve the Lagrangian relaxation formulation [P-LR(𝝁)]; 
7: if LR(𝝁)>𝐿𝐵 
8: 𝐿𝐵 ← LR(𝝁); 
9: end if 

10: Obtain the feeder scheduling related decisions (𝒚, 𝒛,𝒖,𝒘); 
11: Solve the sub-problem [P-Sub] given (𝒚, 𝒛,𝒖,𝒘); 
12: if 𝜆𝐶𝑠𝑢𝑏 + (1 − 𝜆)(𝑤ℎ − 𝑤𝑙) < 𝑈𝐵 
13: 𝑈𝐵 ←  𝜆𝐶𝑠𝑢𝑏 + (1 − 𝜆)(𝑤ℎ − 𝑤𝑙)  
14: Update 𝐵𝑒𝑠𝑡; 
15: end if 
16: Update multipliers 𝝁; 
17: Until any one of the stopping criteria is met 

5. COMPUTATIONAL EXPERIMENTS 14 

In this section we first illustrate the generation of test instances and the settings of the 15 
Lagrangian relaxation algorithm. Then, we assess the efficiency and effectiveness of the 16 
developed algorithm by comparing its results with the optimal ones obtained by the MIP 17 
model [P]. Finally, the effectiveness of adjusting the feeder calling schedules is 18 
evaluated. The optimization model and the Lagrangian relaxation algorithm are coded in 19 
C++ and CPLEX 12.1 is used as the underlying MIP solver. All the numerical 20 
experiments are conducted on a PC with 3 GHz CPU and 4GB RAM. 21 

5.1. Instance generation and algorithm settings 22 
In order to validate our model and the Lagrangian algorithm, six sets of test instances are 23 
randomly generated each of which has 10 instances with the same parameters. The 24 
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amount of containers in each flow 𝑞𝑖 is uniformly distributed within [500, 800] and the 1 
storage capacity of each block 𝑄𝑘 is set to 2,000. For each instance set, six parameters are 2 
pre-determined as listed in Table 2: number of mother vessels, number of feeders, number 3 
of transshipment flows, number of blocks, number of working shifts within one planning 4 
horizon and the length of the allowable time windows. For each instance, the 5 
corresponding mother vessel and feeder of each transshipment flow are randomly 6 
assigned. The service times of mother vessels and the allowable time windows of feeders 7 
are uniformly distributed within the horizon. The berth positions of all vessels are also 8 
randomly allocated at the quayside. Take Set 4 as an example, the terminal is visited by 9 
10 mother vessels and 30 feeders each week (21 working shifts) and there are 60 10 
transshipment flows. The length of the allowable time windows of feeders is 2 days (6 11 
working shifts) and the storage yard has 24 yard blocks. 12 

Table 2: Instance parameters 13 

 |𝑀| |𝑁| |𝐼| |𝐾| |𝑇| 𝐿 
Set 1 5 10 20 8 9 3 
Set 2 6 15 30 12 12 6 
Set 3 8 20 40 15 15 6 
Set 4 10 30 60 24 21 6 
Set 5 12 40 80 30 21 6 
Set 6 15 50 100 36 21 6 
𝐿: the length of the allowable time windows 

 Several parameters of the Lagrangian algorithm are selected by trials and listed as 14 
follows: 15 

• Maximum number of subgradient iterations: 𝑁1 = 50.  16 
• Maximum number of consecutive subgradient iterations with non-improved upper 17 

bound: 𝑁2 = ⌈log|𝐼| ⋅ |𝐾| ⋅ |𝑇|⌉. 18 
• The gap between 𝑈𝐵 and 𝐿𝐵: 𝑈𝑏𝐺𝑎𝑝 =0.01. 19 
• Time limit for solving the subproblems by CPLEX: 𝑇𝑖𝐿𝑖𝑚 = ��|𝐼| ⋅ |𝐾| ⋅ |𝑇|/10�. 20 
• Optimality gap for solving the subproblems by CPLEX: 𝐸𝑝𝐺𝑎𝑝 =0.003. 21 

5.2. Results of Lagrangian relaxation algorithm 22 
In order to assess the efficiency and effectiveness of the Lagrangian relaxation algorithm, 23 
the results are compared with the best solutions found by CPLEX. Table 3 lists the 24 
computational results of instance sets 1&2. A time limit of 43,200 seconds is set for 25 
CPLEX. In case the MIP model cannot be solved by the time limit, the best value of the 26 
objective function and the best lower bound are returned, as listed in the second and third 27 
columns. Four types of information of the Lagrangian algorithm are reported in columns 28 
(5)-(8): the number of subgradient iterations, the gap between lower and upper bounds, 29 
the best solution found by the algorithm and the computational time consumed. As can be 30 
seen, CPLEX is able to find optimal solutions in 18 out of 20 instances, and the 31 
computational time grows exponentially as the instance scale increases. The last two 32 
columns provide the gap between the solutions of the algorithm and the optimal ones and 33 
the lower bounds. The Lagrangian relaxation performs very well as the average of Gap1 is 34 
less than 1% and Gap2

 Table 4 compares the performance of the algorithm with CPLEX for instance sets 37 
3&4. As can be seen, the instances become more computationally intractable as the 38 
instance scale increases. CPLEX can find optimal solutions in 7 out of 10 instances for 39 
Set 3 and none of the instances in Set 4 can be solved to optimum by CPLEX. The result 40 

 is also small. In terms of efficiency, Lagrangian algorithm does 35 
not show much advantage over CPLEX for such relatively small-scale instances. 36 
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Table 3: Computational Results of Instance Sets 1&2 

Instance CPLEX Lagrangian Gap 
 Optimal LB Time(sec) NoIter GapLR(%) Result Time(sec) Gap1(%) Gap2(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Set1-I01 9071.0  1.9 10 7.17 9129.9 2.8 0.65  
Set1-I02 8241.4  0.3 12 7.51 8249.2 2.1 0.09  
Set1-I03 7209.3  0.7 10 7.74 7211.3 2.2 0.03  
Set1-I04 7867.9  0.9 10 7.52 7884.6 2.3 0.21  
Set1-I05 7616.0  0.7 14 5.66 7616.0 3.3 0.00  
Set1-I06 8189.4  0.9 12 11.83 8189.4 2.6 0.00  
Set1-I07 9332.3  1.5 12 4.00 9332.3 3.2 0.00  
Set1-I08 6139.3  0.3 10 7.32 6154.9 1.8 0.25  
Set1-I09 7781.6  1.3 14 6.11 7793.2 4.0 0.15  
Set1-I10 5556.9  0.5 11 6.70 5559.9 2.2 0.05  
Set2-I01 8834.7  701.0 11 13.07 8913.3 75.9 0.89  
Set2-I02 11852.6  240.0 12 10.18 11861.9 59.7 0.08  
Set2-I03 10534.8  4710.8 20 7.31 10534.8 147.0 0.00  
Set2-I04 9810.3  272.0 16 6.89 9877.5 59.8 0.68  
Set2-I05 10795.3  14.6 14 6.41 10838.5 89.6 0.40  
Set2-I06 9360.1  3236.0 11 13.94 9441.3 76.7 0.87  
Set2-I07 14795.0 14422.5 >43200 31 6.98 14796.0 244.9 0.01 2.59 
Set2-I08 10275.6 10023.1 >43200 18 12.40 10424.2 160.2 1.45 4.00 
Set2-I09 11358.2  242.9 19 8.88 11358.2 123.5 0.00  
Set2-I10 9649.8  164.5 13 9.40 9649.8 49.4 0.00  
Average     8.38   0.29 3.30 

Gap1 = [(7)-(2)]/(2)×100% 
Gap2 = [(7)-(3)]/(3)×100% 
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Table 4: Computational Results of Instance Sets 3&4 

Instance CPLEX Lagrangian Gap 
 Optimal LB Time(sec) NoIter GapLR(%) Result Time(sec) Gap1(%) Gap2(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Set3-I01 14345.9 14222.6 >43200 34 7.24 14345.9 471.2 0.00 0.87 
Set3-I02 12505.1 12388.2 >43200 13 6.58 12631.4 132.6 1.01 1.96 
Set3-I03 19227.7 18577.8 >43200 14 14.53 19226.7 252.6 -0.01 3.49 
Set3-I04 16568.0  512.3 14 8.41 16605.6 141.4 0.23  
Set3-I05 14241.2  8882.0 25 7.51 14472.2 336.8 1.62  
Set3-I06 19147.0  29437.5 12 8.22 19191.7 155.8 0.23  
Set3-I07 15517.0  8602.6 18 7.23 15600.6 191.6 0.54  
Set3-I08 12681.0  1435.4 18 5.54 12681.0 185.7 0.00  
Set3-I09 15963.0  285.5 19 6.49 16111.1 111.3 0.93  
Set3-I10 13902.8  10289.2 17 8.67 13970.1 165.9 0.48  
Set4-I01 21577.7 21440.2 >43200 16 9.98 21676.2 338.8 0.46 1.10 
Set4-I02 27680.9 26062.9 >43200 32 6.63 27462.7 1157.7 -0.79 5.37 
Set4-I03 26637.0 25643.5 >43200 18 9.89 26554.3 627.8 -0.31 3.55 
Set4-I04 26220.9 24126.2 >43200 16 12.64 25785.5 581.0 -1.66 6.88 
Set4-I05 26301.8 26035.9 >43200 26 8.67 26465.7 942.3 0.62 1.65 
Set4-I06 22491.8 21380.2 >43200 26 9.23 22324.2 896.0 -0.75 4.42 
Set4-I07 23882.6 23268.9 >43200 22 7.99 23953.5 588.6 0.30 2.94 
Set4-I08 27476.1 27067.6 >43200 15 9.76 27548.6 298.9 0.26 1.78 
Set4-I09 25444.4 25264.0 >43200 37 6.74 25604.7 746.3 0.63 1.35 
Set4-I10 22662.3 21467.1 >43200 18 11.47 22867.3 652.0 0.90 6.52 
Average     8.67   0.24 3.22 

Gap1 = [(7)-(2)]/(2)×100% 
Gap2 = [(7)-(3)]/(3)×100% 
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Table 5: Computational Results of Instance Sets 5&6 

Instance CPLEX Lagrangian Gap 
 Optimal LB Time(sec) NoIter GapLR(%) Result Time(sec) Gap1(%) Gap2(%) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Set5-I01 37163.4 33617.6 >43200 14 16.61 37050.9 661.3 -0.30 10.21 
Set5-I02 40879.2 36254.0 >43200 13 19.87 40462.2 601.6 -1.02 11.61 
Set5-I03 35759.7 32891.5 >43200 16 14.72 35308.9 754.7 -1.26 7.35 
Set5-I04 44015.3 42023.0 >43200 18 12.26 43595.3 847.3 -0.95 3.74 
Set5-I05 36403.6 33682.7 >43200 13 14.18 35674.5 619.0 -2.00 5.91 
Set5-I06 31257.6 30050.2 >43200 19 8.79 31211.1 897.7 -0.15 3.86 
Set5-I07 35925.8 32968.3 >43200 15 9.61 35588.0 709.2 -0.94 7.95 
Set5-I08 35832.0 32509.7 >43200 14 8.26 34431.4 660.4 -3.91 5.91 
Set5-I09 42922.7 40047.8 >43200 23 9.08 41842.5 1081.4 -2.52 4.48 
Set5-I10 38916.4 34573.1 >43200 22 9.31 37800.5 1032.5 -2.87 9.34 
Set6-I01 51196.9 44639.0 >43200 17 13.28 48908.8 986.6 -4.47 9.57 
Set6-I02 56330.8 46521.7 >43200 16 10.58 53418.9 930.3 -5.17 14.83 
Set6-I03 54713.6 45723.2 >43200 25 9.58 51348.4 1439.3 -6.15 12.30 
Set6-I04 47195.3 43072.8 >43200 14 16.78 46917.1 819.6 -0.59 8.93 
Set6-I05 53031.8 43810.8 >43200 18 16.53 50171.2 1044.3 -5.39 14.52 
Set6-I06 56208.7 49381.8 >43200 16 10.35 54750.8 922.6 -2.59 10.87 
Set6-I07 50945.1 45434.6 >43200 19 11.74 50482.3 1103.7 -0.91 11.11 
Set6-I08 44993.5 41136.0 >43200 19 9.48 44657.5 1103.9 -0.75 8.56 
Set6-I09 50716.1 46085.6 >43200 15 13.67 50172.5 865.6 -1.07 8.87 
Set6-I10 58358.8 51530.5 >43200 15 17.85 56598.5 874.2 -3.02 9.83 
Average     12.63   -2.30 8.99 

Gap1 = [(7)-(2)]/(2)×100% 
Gap2 = [(7)-(3)]/(3)×100% 
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in column Gap1 indicate that the algorithm can find very good near-optimal solutions and 1 
can even find better solutions than CPLEX in 5 out of 20 instances. For these medium-2 
scale instances, the computational times demonstrate the algorithm’s advantage in 3 
efficiency. The results of the instance sets 5&6 are reported in Table 5. As can be seen, 4 
for all of the twenty instances the Lagrangian relaxation algorithm outperforms CPLEX 5 
both in efficiency and solution quality. However, as shown in column Gap2

 From the above numerical experiments we observe that 𝑈𝐵 converges towards the 9 
optimal objective value faster than 𝐿𝐵 during the subgradient procedure of the Lagrangian 10 
relaxation algorithm. That’s why the procedure is terminated after a small number of 11 
iterations and Gap

 the gap 6 
between the solution found by the algorithm and the best lower bound 𝐿𝐵 is large. We 7 
remark that this is probably because CPLEX fails in providing tight lower bounds. 8 

LR is large. With more iterations, better 𝐿𝐵  from the Lagrangian 12 
relaxation algorithm is expected to be found and thus GapLR

5.3. Improvement from feeder scheduling 18 

 can be improved. Another 13 
observation is that as the instance scale increases the solution quality of the Lagrangian 14 
relaxation algorithm becomes better compared with CPLEX. Besides, the Lagrangian 15 
relaxation algorithm is also relatively more efficient in obtaining near-optimal solutions 16 
for larger-scale instances than CPLEX. 17 

Computational experiments are also conducted to see how much benefit can be gained by 19 
adjusting the calling schedule of feeders. Two scenarios are compared: one allowing 20 
adjusting feeder schedule and another with fixed calling schedule. For the latter scenario, 21 
ten schedule templates are generated by randomly assigning feeders’ service times within 22 
their allowable time windows. With determined calling schedule, the workload imbalance 23 
can be easily calculated and the minimum of total distance of container movements can 24 
be obtained by solving the resulting storage allocation problem. The mean objective value 25 
of the latter scenario serves as a benchmark and the improvement from feeder scheduling 26 
can be obtained as the gap to the benchmark. Table 6 shows the improvement in 27 
percentage for all the instances. As can be seen, there is a significant improvement if the 28 
feeder calling schedule is allowed to be adjusted. 29 

Table 6: Improvement from Feeder Scheduling (%) 30 

 I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 Average 
Set1 20.5 23.9 29.1 26.6 32.4 25.5 23.9 27.2 28.5 36.9 27.4 
Set2 36.7 34.0 32.1 35.7 35.4 34.0 19.2 33.2 30.9 37.8 32.9 
Set3 30.0 29.0 23.2 29.3 27.1 19.7 27.2 34.5 25.6 30.7 27.6 
Set4 25.8 21.7 21.1 18.7 19.3 26.9 24.4 24.1 19.1 24.9 22.6 
Set5 21.3 18.1 20.6 21.3 21.6 28.0 21.0 21.5 13.8 21.8 20.9 
Set6 19.5 21.1 20.3 23.1 22.8 17.5 22.7 23.3 21.4 17.2 20.9 

Average           25.4 
 31 
6. CONCLUSION 32 

In this paper we have studied the management of transshipment flows in a container 33 
terminal which consists of designing a visiting schedule template for feeder vessels and 34 
determining storage locations for transshipment containers. Unlike the previous literature, 35 
we adjust the calling schedule of feeders from the container ports’ perspective so as to 36 
reduce the workload imbalance in time. This feeder scheduling problem is integrated with 37 
storage allocation problem in order to organize the transshipment flows in an optimal 38 
manner with both temporal and spatial considerations. A mixed integer programming 39 
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formulation is presented and a Lagrangian relaxation algorithm is developed. 1 
Computational experiments have shown that the Lagrangian algorithm can find near-2 
optimal solutions with very small gaps within short computational times, and significant 3 
improvement can be gained by adjusting the calling schedule of feeders. 4 
 As a next step, berth template for feeders can be included in the developed model 5 
as it is assumed to be an input in this paper. We expect a lower spatial cost with the 6 
inclusion of the berth template. 7 
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