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a b s t r a c t

In this study, the deformation behaviour of polycrystalline austenitic 316H stainless steel under uniaxial
loading is investigated by means of in-situ neutron diffraction (ND) measurement and crystal plasticity-
based finite element (FE) modelling. Data have been obtained for the macroscopic stressestrain response
and the lattice strain evolution in the longitudinal and transverse direction relative to the uniaxial
loading axis. Comparison between the model predictions and the ND measurements suggests that in
most cases the FE model can predict the lattice strain evolution at the microscale and capture the general
trends observed in the experiments. Both ND measurements and FE modelling simulations identify little
effect of micromorphology effect on the longitudinal lattice strain evolution, while the transverse lattice
strain response appears to be sensitive to the microstructure, in particular the initial crystallographic
orientation of the material.

� 2011 Elsevier Masson SAS. All rights reserved.
1. Introduction

The macroscopic response of materials is controlled to a large
extent by deformation and damage mechanisms operating at the
microscaledfor polycrystalline engineering alloys the relevant
length scale is the grain (crystallite) size. Thus, simulations and
experiments conducted at the microscale can provide important
insight into the macroscale behaviour of engineering materials or
components.

As a non-destructive technique, neutron diffraction (ND) has
been employed to explore in-situ themicromechanical deformation
behaviour in terms of the evolution of lattice strains for differently
oriented grain within a polycrystal under mechanical loading (see,
e.g., Clausen et al., 1998, 1999; Daymond et al., 2000; Pang et al.,
2000; Lorentzen et al., 2002; Daymond and Bouchard, 2006;
Huang et al., 2008a,b; Marin et al., 2008). A description of tech-
niques for strainmeasurement using ND is found in Hutchings et al.
(2005). In general, neutron sources may be classed as mono-
chromatic, in which a neutron beam of fixed wavelength is used, or
polychromatic, inwhich a neutron beamwith a continuous range of
wavelengths is used. For the latter case, the lattice strain is obtained
by measuring the time-of-flight (TOF) of diffracted neutrons. For
fax: þ353 (0)61 23 3766.
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a crystalline material the TOF will depend on the lattice spacing
through Bragg’s law and the de Broglie relation, (e.g., Hutchings
et al., 2005). A polycrystal subjected to a polychromatic neutron
beam provides a range of TOFs, as differently orientated grains
diffract neutrons of different wavelength (i.e. different speed). As
only grain orientations, which satisfy the kinematic condition allow
diffraction to occur (see Hutchings et al., 2005), discrete spectra of
TOF are obtained from an ND measurement. These TOF spectra can
be replotted in terms of lattice spacing, providing a measure of the
elastic strain on specific families of lattice planes.

The in-situ lattice strain monitored by diffraction techniques can
provide information about microscale heterogeneous stress or
strain experienced in polycrystalline aggregates and about the
elastic and inelastic anisotropy arising from the crystal structure
and other nonlinear physical kinematics, e.g., dislocation slip,
phase or microstructure transformation and damaging. Here,
the atomic lattice plays the role of an atomic strain gauge to
measure the variations of lattice plane spacing represented by
the shift of diffraction pattern due to the external loads exposed.
Using the TOF in-situ neutron diffraction, the sub-sets of grains
(rather than individual grains) are sampled and consequently
the mean lattice strains are monitored over a family of grains.
The lattice strain evolution in an in-situ test is typically
presented against the macroscopic stress applied. When the
material deforms plastically, a nonlinear lattice strain response
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Table 1
Chemical composition in wt% for the 316H stainless steel.

Fe Cr Ni Mo Mn Si Co C S P B

Balance 17.18 10.92 2 1.5 0.32 0.08 0.055 0.014 0.021 0.003
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can occur. It is thus expected that polycrystalline models can
interpret lattice strain observations and on the other hand such
data may be used to calibrate or validate the plasticity models as
pointed out by Karato (2009).

Micromechanical modelling techniques have been developed to
represent the nonlinear anisotropic deformation at the microscale
and the interaction of grains in polycrystalline aggregates. Gener-
ally, two approaches have been adopted: self-consistent techniques
and finite element (FE) methods. In the elastoplastic self-consistent
approach developed by Hill (1965) and extended by Hutchinson
(1970), it is assumed that within a polycrystal each grain has an
ellipsoidal shape and is embedded in a homogeneous effective
medium, such that the solution of Eshelby (1957) can be used to
determine the grain response as a function of macroscopic applied
loads. The mechanical behaviour of an individual grain is generally
represented using the Schmid concept (see, Schmid and Siebel,
1931), with dislocation slip controlled by the shear stress,
resolved on an active slip system, comprising close packed planes
and slip directions. In the self-consistent modelling approach
relatively simple strain hardening approximations must be used in
order to obtain a closed form solution.

The self-consistent approach treats the intergranular interac-
tions as long-range interactions tomaintain the compatibility of the
polycrystals. However, grain interactions may also exhibit strong
short-range characteristics, such that the individual grain response
can be strongly altered by the surrounding grains. To incorporate
both long- and short-range grain interactions, FE modelling strat-
egies have been developed, where the morphology of the poly-
crystalline material is represented by a two- or three-dimensional
representative volume element (RVE) with individual grains
explicitly modelled essentially within this RVE (see, e.g., Barbe
et al., 2001; Delannay et al., 2006; Dunne et al., 2007; Nakamachi
et al., 2007). The deformation of individual grains is then typi-
cally represented by crystal plasticity theory, based on Schmid’s
law. In contrast to the self-consistent approach, which assumes
a uniform stress or strain distributed within a grain, such mico-
mechanical FE models provide an explicit evaluation of intergran-
ular (as well as intragranular) interactions and the type of
hardening model used is not restricted to simple models as is the
case for self-consistent models. In addition, as finite element
models provide an accurate measure of local (microscale) stress/
strain distributions, they are also capable of accounting for fracture
initiation and intergranular damage evolution due to stress/strain
gradients near grain boundaries, which again is not available from
self-consistent studies.

To date, self-consistent models have generally been preferred as
a technique to predict the lattice strain evolution for comparison
with in-situ NDmeasurements, as FE micromechanical modelling is
less computationally efficient, particularly, when modelling a large
number of grains within the RVE (e.g., Barbe et al., 2001; Delannay
et al., 2006; Dunne et al., 2007; Nakamachi et al., 2007). However,
with the development of modern computing technologies (high-
performance architectures and algorithms), nonlinear FE modelling
of a sufficient number of grains has become more practicable.
Recently, Wong and Dawson (2010) examined numerically the
influence of single crystal elastic anisotropy on the evolution of the
lattice strain using a three-dimensional crystal plasticity-based FE
model where the grains of interest are assumed to be virtually
rhombic dodecahedral crystals. In their simulations, no compari-
sons with in-situ ND measurements are presented as their exami-
nations are targeted to virtual materials with different single crystal
elastic anisotropy. There are some FE-based studies comparing ND
measurementswith FE predictions for BCCmaterials (ferritic steels)
(see, Dawson et al., 2000; Quinta da Fonseca et al., 2006). However,
these have employed rather simple models of the grain shape (e.g.
cubic shape) and low mesh resolution (e.g. a finite single element
per grain). To our knowledge this is the first comparison of in-situ
ND measurements with high resolution FE models for an FCC
material.

The remainder of this paper is laid out as follows: Section 2
describes the experimental procedure (in-situ neutron diffrac-
tion). Section 3 outlines the implementation of the FE modelling
scheme. In Section 4, the results are presented and the ND
measurements and FE modelling predictions are compared. The
results are discussed in more detail in Section 5 and concluding
remarks are provided in Section 6.

2. Experimental studies

2.1. Material preparation and characterisation

The material of interest is 316H austenitic stainless steel,
extracted from an ex-service header component supplied by British
Energy Group PLC, UK. Table 1 gives the chemical composition of
thematerial. Two tensile specimenswith diameter 8mm and gauge
length 25 mm were machined from the header for the in-situ ND
experiments. As the initial texture may affect both the macroscopic
response and microscale deformation, a texture characterisation
was carried out prior to the in-situ ND measurement. Electron
backscatter diffraction (EBSD) measurements were carried out at
Imperial College London, UK to characterise the morphology of the
material. The microstructure and the corresponding crystal orien-
tation distribution shown in Li et al. (2010) indicates a random
texture with an average grain size of 45.4 mm.

2.2. In-situ neutron diffraction experiment

The experimental work was conducted on the ENGIN-X
instrument at ISIS, UK. For a full description of the ENGIN-X
instrument see, e.g., Dann et al. (2004); Santisteban et al. (2006).
Fig. 1(a) illustrates schematically the arrangement of the in-situ ND
measurement at ENGIN-X. The machine operates in polychromatic
diffraction mode with a fixed diffraction angle of 45�. The vector
difference between the incident and the diffracted beam vectors
defines scattering vectors (‘L’ and ‘T’ in Fig. 1(a)), which determine
the direction of the measured lattice strain. The use of two detec-
tors for the ND data acquisition at ENGIN-X allows a simultaneous
measurement of diffraction patterns relating to longitudinal (L) and
transverse (T) scattering vectors, thus providing both longitudinal
(parallel to the loading axis) and transverse (perpendicular to the
loading axis) lattice strains from a single measurement. The
uniaxial tensile test was carried out at room temperature under
mixed load and displacement control wheremachine displacement
was controlled to achieve a given strain measured from a standard
clip gage extensometer. To investigate the sensitivity to grain
morphology, two specimens were measured. The specimens were
first loaded within the linear elastic regime to 100 MPa using load
control with a total of 10 increments. The specimens were then
deformed under displacement control with defined increments
(approx. 0.1% strain) up to a total strain of approx. 10% strain. The
total time taken to complete the in-situ test for a single specimen,
allowing time for ND data acquisition for each data point was
approx. 21 h (approx. 9 min for each data point). Some relaxation of
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Fig. 1. (a) Schematic illustration of ENGIN-X at ISIS, UK. ‘T’ and ‘L’ indicate transverse
and longitudinal scattering vectors, respectively. (b) Typical spectra recorded from
ENGIN-X during uniaxial loading.
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stress was observed during the ND measurement period
(maximum of 10% in the plastic region). Following the in-situ ND
measurements, the EX-SBA software (see, Oliver et al., 2004) was
employed to extract the lattice plane spacing data. Fig. 1(b) shows
a typical diffraction pattern containing a number of diffraction
peaks with respect to lattice spacing, d. With descending order of
d-spacing, the Miller indices of lattice planes corresponding to the
reflection peaks in Fig. 1(b) are {111}, {200}, {220}, {311}, {222},
{400}, {331}, {420}, {422}, {333} and {511}. All the reflection peaks
have unmixed (all even or all odd) Miller indices, which are as
expected for an FCC crystal (see, e.g., Hutchings et al., 2005).
Furthermore, note that high order reflection peaks ({222} and
{400}) can be identified in the diffraction pattern. The peak with
the smallest d-spacing corresponds to the two reflection planes
({333} and {511}). Thus, except for this particular peak, each peak in
Fig.1(b) represents a family of grains with a certain crystallographic
orientation. In the present work, only the first four peaks, {111},
{200}, {220} and {311} are examined, because of their relatively
high peak intensities and low peak-to-peak noises.

Under macroscopic tension, elastic lattice strain occurs as
a result of stretching or compressing of the {hkl} lattice plane and
the lattice strain is given by

ehkl ¼
dhkl � d0hkl

d0hkl
; (1)
where ehkl and dhkl are the elastic lattice strain and the spacing of
the {hkl} lattice plane, respectively; dhkl

0 is the reference
(unstretched) {hkl} lattice spacing. Ideally, dhkl

0 should be
measured from an unstrained cubic crystal. However, internal
stress resulting from the fabrication/maching process and strain
history cannot generally be avoided, so that at grain level theremay
be non-zero lattice strains even under macroscopic stress-free
conditions. An alternative approach adopted here is to use a refer-
ence value of dhkl0 measured from a load-free specimen. Thus, all
strains are measured relative to this initial point. Typically
a minimum stress (5e10 MPa) is required to hold the specimen in
place for ND data acquisition, so it is not trivial to measure directly
the load-free dhkl

0. Some researchers use the lattice plane spacing
measured at the minimum load as an approximation of the load-
free dhkl

0 (see, e.g., Clausen et al., 1999; Quinta da Fonseca et al.,
2006). In the present study, the load-free dhkl

0 was estimated
from a linear least-squares fit to the measured data with applied
stress less than 100 MPa, as in Pang et al. (2000).

As shown in Fig. 1(a), the diffraction peak information recorded
by the right and left detectors reflects the lattice plane stretches
along longitudinal and transverse scattering vectors, respectively.
Thus, lattice strain responses in the longitudinal and transverse
directions can be obtained directly from Eq. (1) during unaxial
tensile loading. In the current work, the neutron irradiation gauge
volume (7 mm � 4 mm � 4 mm) is located at the center of the
specimen. Note that the average grain size of the as-received
material is 45.4 mm. Thus, a large number of grains (approx. one
million) can be monitored by ND using the above gauge volume. As
mentioned earlier, each reflection peak of interest corresponds to
a specific family of grains and incorporates the contributions from
all grains within this grain family in the irradiation gauge volume,
such that the measured lattice strain reflects the ‘average’ lattice
plane stretches of the specific grain populations.

3. Finite element modelling

3.1. Constitutive law and material properties of single crystal

Inelastic deformation within grains is assumed to occur due to
dislocation slip according to the Schmid concept (Schmid and
Siebel, 1931), with deformation on individual slip systems
controlled by the resolved shear stress on that system.

The finite element (FE) framework of crystal plasticity devel-
oped by Meissonnier et al. (2001) is employed to represent the
response of FCC stainless steel crystals with twelve octahedral slip
systems, h100i{111}, indicating the family of slip directions to slip
plane, respectively. The constitutive law associated with stress rate,
_s and strain rate, _e is given by

_s ¼ C
�
_e� _ep

�
; (2)

where C and _ep indicate the elastic stiffness tensor and inelastic
strain rate, respectively. Based on the kinematics of slip motion in
Asaro and Rice (1977), the time rate of inelastic strain is given by

_ep ¼ 1
2

X12
a¼1

_gaðma5na þ na5maÞ; (3)

where _ga, ma and na are the slip rate, the slip direction and the
normal direction to the slip plane of the slip system a, respectively
and 5 denotes the tensor product. The flow rule to determine the
slip rate is give by

_ga¼ _g0exp
�
�Q

�
1�

D���~sa����~S
a
Ep

�q�
sgn

�
~s
a
�
;a¼1;.;12; (4)



Table 3
Flow rule and slip resistance parameters at room temperature.

_g0, s
�1 p q Q ŝ0, MPa S0, MPa Ssat, MPa hs, MPa

450 1.0 1.9 117.4 144 2.22 220.3 1087
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where Q is a material constant; p, q and _g0 are the exponents
and pre-exponential constants; the brackets <.> imply that hxihx
for x > 0 and hxih0 for x � 0. In Eq. (4), ~S

a
is the dimensionless

slip resistance and ~s
a
, the dimensionless resolved shear stress

given by

~s
a ¼ s : ðma5naÞ

ŝ0m=m0
; (5)

with ŝ0 the lattice friction stress at 0 K and m and m0 the shear
modulus at the current temperature and 0 K, respectively and :
denotes the double contraction. Note that in Eq. (4) only one
internal variable, ~S

a
is used to account for the slip resistance (strain

hardening), which differs from the approach in Meissonnier et al.
(2001), where both isotropic and kinematic variables were used.
As monotonic loading is examined here, a single internal variable is
sufficient to represent the strain hardening response of a slip
system. Future studies will examine cyclic response of the material.
The evolution of ~S

a
is given by

_~S
a
¼ ~hs

�
~Ssat � ~S

a
���� _ga���;a ¼ 1;.;12; (6)

where the dimensionless static recovery coefficient, ~hs and the
dimensionless saturation slip resistance, ~Ssat are defined as

~hs ¼ hs
Ssat � S0

; (7a)

~Ssat ¼ Ssat
ŝ0

; (7b)

with S0 and Ssat the initial and saturation values of slip resistance,
respectively.

The material of interest, 316H stainless steel, is a polycrystalline
FCC austenitic FeeCreNi alloy. Its single crystalline counterpart has
shown significant elastic anisotropy (see Ledbetter,1981). The three
independent elastic constants, C11, C22, C44 for 316H were obtained
by Daymond and Bouchard (2006) from NDmeasurements and are
adopted in the current study as shown in Table 2. The shear
modulus, m0 at 0 K needed for the flow rule (Eq. (4)), was obtained
by extrapolating the modulus data of Daymond and Bouchard
(2006) and is also given in the table. The fitted flow rule and slip
resistance evolution (isotropic hardening) parameters, used to
predict the post yield tensile response of the polycrystalline
material at room temperature, are given in Table 3. A total of eight
flow parameters in addition to m0 are required to fully describe the
material response. We calibrate the eight flow parameters by
comparisonwith themonotonic tensile curve, as experimental data
of the single crystalline austenitic stainless steel are rare. Additional
validation of the model is obtained from the neutron diffraction
data to be discussed in Section 4.
3.2. Representative volume element construction and discretisation

For sufficient accuracy, the FE model requires an accurate
representation of the material micromorphology, which may be
obtained from experimental techniques, e.g., X-ray tomography,
electron backscatter diffraction (EBSD), or focused ion beam (FIB)
Table 2
Elastic properties of 316H stainless steel at room temperature.

C11, GPa C12, GPa C44, GPa m0, GPa

2321 1541 1181 127.6

1 Data from Daymond and Bouchard (2006).
serial sectioning. However, it is difficult for these experimental
techniques to acquire both grain topologies and crystallographic
orientation of grains particularly of a large number (i.e., several
thousands) of grains. To date, Voronoi tessellation techniques have
been used to approximate the micromorphology of polycrystals
due to its efficiency in particular for aggregates with large number
of grains (see, e.g., Barbe et al., 2001; Fritzen et al., 2009). From
amodelling point of view, there is relatively little information in the
literature regarding the effect of grain shape and crystallographic
orientation on lattice strain response, although grain boundary
morphology may significantly influence the deformation response
at the microscale by introducing considerable local gradients of
stress and strain near grain boundaries.

In the present work, two RVE configurations, one composed of
1088 identical, hexagonal grains and the other with grains of
random shape and size, are used to represent a polycrystal of 316H
stainless steel. Preliminary results for the hexagonal model were
presented in Li et al. (2010). Fig. 2(a) shows the RVE containing
1200 randomly shaped grains. For a mean grain size of 45.4 mm, the
RVE has a dimension of 1.57mm� 1.57mm (two grains are labelled
G1 and G2 in Fig. 2(a) and results from these particular grains are
presented for illustrative purposes in Section 4). Voronoi tessella-
tion has been employed to construct the RVE. The centroidal Vor-
onoi tessellation algorithm (see, Du et al., 1999) has been adopted
to avoid grain shape deviationwhichmay result from the use of the
standard Voronoi algorithm (see, e.g., Gervois et al., 1992; Fritzen
et al., 2009).

Mesh generation of the RVE is performed using the software,
(see, Geuzaine and Remacle, 2009). In the present work, the RVE
has approx. 70,000 generalised plane strain elements and ABAQUS
(2009) is used to carry out the nonlinear FE modelling analysis in
a high-performance computing environment. Fig. 2(b) shows the
typical finite element mesh at the right corner of RVE (see,
Fig. 2(a)). The dark solid lines represent grain boundaries. Typically
60 linear four-node quadrilateral elements per grain are used in the
simulations.

To be consistent with the random texture characterised by EBSD
measurement in Li et al. (2010), the RVE grains are assigned with
uniformly randomised crystallographic orientations in terms of
three Euler angles. Fig. 3 shows the inverse pole figure of the FE
model in the loading direction. To examine the effect of crystallo-
graphic orientations, in addition to the orientation map of Fig. 3,
two further orientation maps have been randomly generated.
3.3. Boundary conditions and post-processing

To simulate the macro- and microscopic deformations of the
polycrystal, the RVE is subjected to tensile loading along the x2
direction (see, Fig. 2(a)) under load control. Periodic boundary
conditions are applied to the RVE to constrain the edges for spatial
periodicity of deformation, which also requires that corresponding
RVE edges have identical discrete nodal arrangements. No special
interface algorithms are employed to represent the grain boundary
response during deformationdthe interfaces between grains are
assumed to be perfect mechanical bonds.

The lattice strain values extracted from the ND measurements
represent an average measure of the elastic strain over all grains
within the irradiated gauge volume with suitable crystallographic
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Fig. 2. Representative volume element (RVE) with random grain shape and finite element mesh: (a) RVE topology and (b) finite element mesh of right-bottom corner (the grains
labelled G1 and G2 in (a) will be discussed in Section 4.3).
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orientations. Therefore, the elastic strain results from the corre-
sponding grains in the FE model are also averaged for comparison
with theND results, allowing for a 4� tolerance for the plane normal.
In other words, the elastic strains of grains orientated within 4� to
the relevant reflection position are averaged. The chosen grain
members are indicated on the inverse pole map of Fig. 3 with a ‘þ’

sign for the four reflectionplanes, {200}, {220}, {111} and {311}. Note
that for the randomorientation shown in thefigure, typicallyonly10
grains contribute to each lattice plane result.

The current study is limited to a small strain analysis and does
not account for grain geometry changes. Thus, the coupling
between local texture evolution and deformation in terms of lattice
rotation within crystals to form grain substructures is not taken
into account. In addition, our study considers two-dimensional
grains (see Fig. 2) ignoring three-dimensional effects. Extension to
Fig. 3. Inverse pole figure in loading direction: the crosses represent individual grains
which are averaged to represent the response of each grain family.
three-dimensional grain geometries and finite strain kinematics
will be considered in further work (see, Li and O’Dowd, 2011).
4. Results

4.1. Macroscopic mechanical response

Fig. 4 shows macroscopic engineering stressestrain curves
obtained from the in-situ ND experiment using the force from the
machine load cell and the extensometer strain data. Each experi-
mental data point represents the average stress/strain recorded
during the ND acquisition period (9 min per data point) such that
the uncertainties of measurements arise from the deviations during
averaging. The current work examined two specimens and no
Fig. 4. Macroscopic stressestrain curve.



D.-F. Li et al. / European Journal of Mechanics A/Solids 30 (2011) 748e760 753
significant difference in the tensile response was observed for the
two specimens. Therefore, the tensile data for only one specimen
are given here.

The lines in Fig. 4 represent the result from the FE model. There
are six sets of FE results in the figure, though individual lines are
difficult to distinguish. Three solid lines represent the results of the
RVE made up of polygonal grains for three distinct random orien-
tation distributions. The three dash lines indicate the results from
the regular RVE (hexagonal grains) with three random orientation
distributions. The model parameters in Eqs. (4) and (6) have been
chosen to provide the best fit over the deformation range for both
RVE descriptions (Note that no fitting was required to match
the linear elastic response and the overall modulus obtained from
the FEanalysis iswithin2%of themeasuredmacroscopic value.). The
numerical predictions show good consistency at the macroscopic
scale regarding the influence of grain shapes and crystallographic
orientation distributions.

4.2. In-situ lattice strain response during tensile deformation

4.2.1. Results from ND measurements
Fig. 5 provides the response from the NDmeasurements for the

{200} and {220} lattice planes. These planes experience the largest
Fig. 5. Lattice strain versus stress applied from experimental data: (a) longitudinal {200} lat
transverse {220} lattice plane.
and smallest lattice (elastic) strain levels, respectively, in the
longitudinal direction (these planes also exhibit the most
nonlinearity in the response). The data shown in the figure are
from the two specimens measured in this study (triangles and
circles). Also included in Fig. 5(a) and (c) are the data of Daymond
and Bouchard (2006) for a similar material (squares). For clarity,
error bars are not included for the data of Daymond and Bouchard
(2006)dtheir magnitude is similar to that of the current
measurement. The data in Daymond and Bouchard (2006) extends
only to a maximum lattice strain level of approx. 2500 micro-
strains (corresponding to approx. 3% global strain). In the current
study, lattice strains of up to approx. 4000 microstrains have been
considered (corresponding to approx. 10% global strain) to provide
a more complete description of the plastic response of the poly-
crystal. No data were reported in Daymond and Bouchard (2006)
for the {220} reflection.

In Fig. 5, the applied stress (obtained from the applied load and
representing an average over all grains in the polycrystal) is plotted
against the local elastic (lattice) strain (an average over all reflecting
grains of the relevant grain family). The experimental lattice strains
are obtained from Eq. (1) and the experimental uncertainties arise
from the standard deviations determined by the Rietveld fit (see,
Rietveld, 1969) to data of the type shown in Fig. 1(b).
tice plane, (b) longitudinal {220} lattice plane, (c) transverse {200} lattice plane and (d)
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The present data are in good agreement with that of Daymond
and Bouchard (2006) d the small variations observed may be
due to differences in thematerial between the two studies (the data
of Daymond and Bouchard (2006) are from a different batch of
316H material). Fig. 5(a) and (b) also shows a good consistency in
the measurements between the two specimens which suggests no
microstructural effects on the longitudinal lattice strain response,
for a typical randomly textured material. However, some variation
is noted in Fig. 5(c), indicates some variability between specimens
for the transverse strain, with the data of Daymond and Bouchard
(2006) closest to the results from specimen 2. This issue will be
discussed in more detail in the Discussion section.

The lattice strain response in Fig. 5 can be partitioned into
a linear regime with applied stress below approx. 200 MPa and
a nonlinear regime with applied stress exceeding 200 MPa. If local
stress against local elastic strain were plotted, a linear plot would
be produced over the full extent of strain (see Eq. (2)). In the linear
elastic regime, it can also be shown that the local stress is linearly
related to the global (applied) stress. As the applied stress is
increased, however, inelastic strain is generated within the poly-
crystal leading to a nonlinear relationship between global stress
and global strain and thus a nonlinear relationship between global
stress and local strain. For a particular grain family, the magnitude
Fig. 6. Longitudinal lattice strain versus applied stress from measurements and modelling p
{311} lattice plane. (ND ¼ Neutron Diffraction).
of nonlinearity represented by the deviation from the linear
extrapolation of the elastic regime will depend on the grain family
orientation (through the Schmid factors for the individual slip
systems within the grain family), the inelastic constitutive response
(strain hardening) and, to a lesser extent, interactions with neigh-
bouring grains. Such measured trends can provide useful validation
data for comparison with an FE model, as discussed in the next
section.

4.2.2. Comparison between ND measurements and FE predictions
Figs. 6 and 7 provide a comparison between the ND measure-

ments and FE predictions for stress vs. lattice strain for the four
strongest reflections. Fig. 6 provides the results for the longitudinal
strain and Fig. 7 the result for the transverse strain. The results of
six sets of FE analyses are shown in each figure, corresponding to
three random lattice orientations and two RVE geometries.

The predictions of longitudinal lattice strain from the FE analysis,
shown by the solid and dash lines in Fig. 6 are seen to be in excellent
agreement with the ND predictions in the linear regime. Table 4
provides a direct comparison of the measured lattice plane moduli
(representing the linear relationship between applied stress and
lattice strain) and the FE predictions. The uncertainties of the
measurements arise from the variability between the two specimens
redictions: (a) {111} lattice plane, (b) {200} lattice plane, (c) {220} lattice plane and (d)



Fig. 7. Transverse lattice strain versus stress applied from measurements and modelling predictions: (a) {111} lattice plane, (b) {200} lattice plane, (c) {220} lattice plane and (d)
{311} lattice plane (‘A’, ‘B’ and ‘C’ indicate modelling results for three distinctive orientation maps).
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measured. The FE model’s uncertainties arise from the deviation
between the six sets of simulations (The square brackets for the {220}
and {311} transverse moduli data indicate the range of all six sets of
modelling results and will be discussed later in the paper.). Also
included inTable 4 are the lattice planemoduli for the case of a single
Table 4
Lattice plane modulus under uniaxial loading.

Lattice strain {hkl} Measurements,
GPa

Predictions,
GPa

Single crystal 1, GPa

Longitudinal {200} 163 � 4 153 � 1 110
{111} 251 � 6 251 � 11 289
{220} 206 � 1 219 � 15 205
{311} 196 � 6 168 � 7 155

Transverse {200} �488 � 34 �381 � 29 �275
{111} �1004 � 57 �974 � 130 �1255
{220} �770 � 25 [�1283, �490]2 ½�N;�275�W½1618;þN�
{311} �493 � 45 [�575, �494] [�577, 350]

1 Theoretical predictions are derived in the Appendix, based on experimental data
from Daymond and Bouchard (2006).

2 Square brackets indicate ranges over 6 simulations.
crystal under uniaxial loading along the relevant local crystallo-
graphic orientation (Details of the calculation procedure is given in
theAppendix). The difference between the single crystal longitudinal
moduli and the polycrystalline results, provides a measure of the
elastic grain interactions, i.e. for the {200} grain family longitudinal
modulus is increased, while themodulus for the {111} grain family is
decreased, relative to the single crystal value.

In the nonlinear regime (applied stress > 200 MPa), the longi-
tudinal ND results in Fig. 6 show that the {200} and {220} grain
families exhibit a strong nonlinearity compared to the {111} and
{311} grain families. These results are consistent with that reported
by Clausen et al. (1998). In these figures, the FE model captures the
major trends in the ND measurement data for the longitudinal
strain, e.g. largest lattice strains experienced by the {200} family,
lower strains experienced by the {111} and {220} families and
a reasonably good estimate of the strain levels are provided by the
model. The small amount of variation in the six sets of modelling
results for each grain family indicates a relatively weak effect of
micromorphologyon the average lattice strain responses, consistent
with the experimental observations (low variability in measured
longitudinal lattice strain between specimen 1 and specimen 2).
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Fig. 7 provides the transverse response from the ND measure-
ments for the four lattice planes examined. Under uniaxial condi-
tions the transverse strain is negative (Poisson effect). The lines
labelled A, B and C correspond to the predictions from the three
distinct random orientation distributions generated within the
RVE, and the solid and dash lines correspond to the polygonal and
hexagonal grain shapes, respectively.

It may be seen in Fig. 7 that the model follows the trends of the
data, for example the decrease inmagnitude of the transverse lattice
strain for the {200} grain family with increasing applied stress near
200 MPa, (see Fig. 7(a)). It may also be noted in Fig. 7(a) that in the
nonlinear regime there is a measurable difference between the
transverse response of the two specimens for the {200} reflection.
This trend is also seen in the FEmodel predictions, where the results
from the three random orientation distributions (A, B and C) are
considerably different. Good agreement is obtained between the
model and measurement for orientation B and C, but poor agree-
ment for orientation A. This suggests that the transverse lattice
response for the {200} reflection is sensitive to themicrostructure of
as-received material, particularly when the deformation is in the
inelastic regime. Note that grain shape (i.e. polygonal vs. hexagonal,
solid line vs. dash line, respectively) has a weak effect on the pre-
dicted strains compared to the difference between the different
‘random’ orientation distributions. Some variability between the
two specimens is also seen for the {220} reflection,withorientations
A and C giving the best agreement for the {220} reflection. For the
{111} and {311} reflections, good agreements can be observed in
Fig. 7(c) and (d), between the experiment and the model with the
deformation essentially remaining within the linear regime, with
some variation observed for the two specimens in the case of the
{111} reflection in Fig. 7(c).

The measured and predicted transverse lattice plane moduli are
given in Table 4. It can be seen that for the {200}, {111} and {311}
reflections the predictions are in reasonable agreement with the
corresponding measurements. The theoretical single crystal
calculations are also presented in Table 4 (the detailed calculation
procedures are described in the Appendix). Note that the {220} and
{311} transverse moduli have multiple values, since the transverse
lattice plane modulus depends on the Miller indices of both the
reflection and the local (crystallographic) loading direction. This is
consistent with the fact that a large variability was obtained for the
transverse modulus from the measurement and the FE model. The
single crystal analysis allows for a positive transverse modulus for
a {220} oriented crystal (see Table 4). Although no positive trans-
verse moduli were measured or predicted for the {220} grain
family, individual grains in the FE model did demonstrate positive
transverse moduli (the model results are an average over all
reflecting grains for a particular grain family). The results for the
{111} grain family are also shown in the table, with the FE model
predicting a considerable variation in transverse modulus for the 6
simulations (>10% variation), while both the experiment data and
single crystal analyses indicate a low variability for this orientation.

4.3. Predicted inter- and intragranular stresses within polycrystals

As discussed in Section 2, the in-situ ND measurements record
the average lattice strain response of a grain family as a function of
applied stress. In reality, each individual grain in a family may
experience a different response due to the interaction with its
individually distinct grain neighbourhood. Fig. 8 provides the
stressestrain response averaged over each individual grain for the
four longitudinal grain families of interest from the FE analysis (in
these figures orientation ‘A’ has been chosen to illustrate the
trendsdsimilar results are seen for the other orientations). The
labels G1 and G2 on Fig. 8(b) represent the results for two grains
identified in Fig. 2(a), which correspond to the lowest and highest
stress, respectively for the {220} grain family. For each grain family,
the variations among individual grains arise mainly from the
intergranular stresses introduced during deformation, in particular
plastic deformation. The modulus of the grain family representing
the linear relationship between the local stress and strain of grain
individuals is also given in the figure (note that the scatter in this
figure represents the variation in modulus between individual
grains, the scatter in Table 4 represents the variation between
simulations of different overall micromorphology). Fig. 8 shows
that in the nonlinear region the {200} grain family generally
sustains the lowest level of tensile stress, while the {220} and {111}
grain families experience the highest level of tensile stress. More-
over, strong local strain hardening behaviour can be identified for
the {220} and {111} grain families. The scatter observed in the
results suggests that strong short-range grain interaction may
occur in polycrystals under plastic deformation.

Fig. 9 plots the stress contours of the longitudinal {200} grains
showing the nonuniform stress distribution within a grain i.e.
intragranular stress (results are for a 400 MPa macroscopic applied
stress). Here, two representative grains with low and high local
stresses (G1 and G2 as shown in Fig. 2(a), respectively) are shown.
The extreme values of tensile stress (the lowest and highest) tend to
occur at grain boundaries and the high stress gradients take place
near the grain boundaries.

5. Discussion and interpretations of the results

To examine the lattice strain evolution, the present investigation
used an RVE-based FE modelling approach, in conjunction with ND
measurements. The proposed FEmodelling scheme takes the short-
range interaction between grains into account and allows for
realistic microstructural morphologies and nonuniform deforma-
tion within grains. The overall predictions from the modelling
study show reasonable agreement with the ND measurements.

5.1. Effect of microstructural morphology on observed response

In this study we examined two nominally identical specimens
with random crystal orientation using ND. As expected, there was
no observable influence of micromorphology on the macroscopic
response for the two specimens. At the microscale, the longitudinal
lattice strain response was almost identical for the two specimens,
but the transverse lattice strain response, particularly for the {200}
and {111} reflections, appears to be sensitive to material micro-
structure. In the numerical analysis, six sets of modelling results
were examined (varying grain shape and orientation distributions).
Again, at the macroscopic scale the stressestrain response was not
sensitive to changes in the grain shape and orientation. In terms of
lattice strain evolution at the microscale, the modelling predictions
are insensitive to local microstructure, except for the transverse
strain for the {200} grain family (with significant deviations only in
plastic region) and the {220} grain family. The strongest effect seen
is from orientation rather than grain shape. The identified sensi-
tivity to the micromorphology can be explained as follows: as
shown by the predictions for a single crystal material in Table 4, the
transverse elastic lattice response depends strongly on the crys-
tallographic loading direction, particularly for the transverse {220}
lattice plane (the transverse lattice plane modulus can be negative
or positive and can vary widely, depending on the local orientation
with respect to the loading axis). Therefore the average transverse
response obtained from an FE simulation with a finite number of
grainsmay exhibit significant scatter, (Table 4). It is expected that as
the number of grains in the FE model is increased, approaching
a true random grain distribution, the predicted variation would
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Fig. 8. Longitudinal stressestrain curves within different grain families for orientation map ‘A’: (a) {111} lattice plane, (b) {200} lattice plane, (c) {220} lattice plane and (d) {311}
lattice plane.

D.-F. Li et al. / European Journal of Mechanics A/Solids 30 (2011) 748e760 757
become weaker. However, we note that for the experimental
results, with a large gauge volume and thus large number of grains
(approx. one million grains) the uncertainties in the modulus for
the transverse lattice planes are measurably greater than for the
longitudinal lattice planes (Table 4).
Fig. 9. Intragranular stress distribution of {200} longitudinal grain family (random orientati
5.2. Comparison between modelling and ND results

The general trends of the measured nonlinearity in the longi-
tudinal {200} grain family can be captured by the current crystal
plasticity model, as shown in Fig. 6(a). However, the nonlinear
on set ‘A’) at 400 MPa of applied stress. Grains are identified by G1 and G2 in Fig. 2(a).
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response of the longitudinal {220} grain family is not well pre-
dicted, as shown by Fig. 6(b). The reasons for this are believed to be
multifold.

Firstly, in the current FE model the RVE is assumed to be free of
initial residual stress/strain at the grain level. In reality, internal
stress/strain introduced by the deformation history cannot be
avoided. It is likely that these initial internal stress/strain, while
having negligible effect at the macroscale, will affect the subse-
quent lattice strain evolution during uniaxial loading. Further
modelling and experimental work is required to examine this issue.

Secondly, in the current work, the crystal plasticity formulation
is employed based on a small strain assumption. In reality, however,
when tensile elongation is sufficiently large, lattice reorientation
may occur due to grain interactions at the grain boundaries and
plastic anisotropy. Therefore, mechanisms associated with finite
strain formulation may introduce considerable effects on the
microscale response. For example, during tensile deformation,
grains in the {220} grain family tend to reorient towards the {111}
or {200} orientation, introducing texture into the specimen even
for an initially texture-random specimen. This trend is illustrated in
Fig. 10, which shows the changes in peak intensity during defor-
mation. Note that the peak intensity for the {220} grain family
decreases by about 30% while the peak intensity for the {111} or
{200} grain families increases, (similar trends are seen in Pang et al.
(2000)). Thus, the texture development may affect the lattice strain
evolution at large strains. Work is ongoing to take these effects into
account (see, Li and O’Dowd, 2011).

Thirdly, as pointed out by Clausen et al. (1999) and Pang et al.
(2000), inelastic deformation within austenitic steel may involve
not only dislocation slipddeformation twinning may also occur
due to the low stacking fault energy. The present FE model does not
incorporate deformation twinning, though in principle such
a mechanism can be introduced (see, e.g., Kalidindi, 1999; Choi
et al., 2010).

Finally, the results presented assume a 2D crystal geometry
under generalised plane strain conditions. Inaccuracies in the
prediction may be introduced by the assumption of a 2D defor-
mation state as it assumes a uniform distribution of stress and
strain along the normal direction and zero out-of-plane shear stress
Fig. 10. Peak intensity evolution during uniaxial tensile deformation from ND data of
the right detector.
and strain components. When material deforms elastically, near
linear relationships between lattice strain and macroscopic stress
are measured and well predicted by the present model. However,
when plastic flow dominates, considerable nonlinear response
develops for some reflections due to crystallographic slip which is
not precisely captured by the current 2D models. It is expected that
the agreement may be improved through the use of a full 3D
representation of the local strain state. This is being examined in
the ongoing work (see, Li and O’Dowd, 2011).
6. Conclusions

Deformation at the macroscopic and microscopic scale for 316H
stainless steel under uniaxial loading has been examined using FE
modelling and in-situ neutron diffraction. Strongly nonlinear lattice
strain response under uniaxial loading has been identified for {200}
and {220} grains in the longitudinal direction and transverse {200}
grains in the transverse direction. These trends have been seen in
the ND investigation and the FE model. The ND measurements and
FE model confirm that no micromorphology effects are identified
for the macroscopic stressestrain response and the longitudinal
lattice strain response. The ND measurement reports a micromor-
phology effect on the transverse {200} and {111} reflections,
particularly in the nonlinear region. The FE model predicts
a stronger micromorphology effect on the transverse lattice strain
response, in particular for the {220} and {200} grain families. It is
expected that with increasing the number of grains in the FEmodel,
approaching a true random grain distribution, the micromor-
phology effect of transverse lattice strain would become weaker.
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Appendix. Lattice plane modulus of single crystal under
uniaxial loading

Here, we follow the approach of Norris (2006) to investigate the
transverse and longitudinal moduli in a cubic single crystal. The
longitudinal modulus is the modulus along the loading direction
and the transverse modulus is the modulus normal to the loading
direction. The elastic stressestrain relationship for a cubic material
can be written in the material frame as

2
6666664

s11
s22
s33
s12
s13
s23

3
7777775

¼

2
6666664

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

3
7777775

2
6666664

e11
e22
e33
g12
g13
g23

3
7777775
; (A-1)

where C11, C12 and C44 are the elastic stiffness constants of the
crystal. Alternatively, the stressestrain relationship can be written
in terms of the compliance matrix as

http://people.sc.fsu.edu/~burkardt/cpp_src/cvt/cvt.html
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2
6666664

e11
e22
e33
g12
g13
g23

3
7777775

¼

2
6666664

1=E �n=E �n=E 0 0 0
�n=E 1=E �n=E 0 0 0
�n=E �n=E 1=E 0 0 0
0 0 0 1=G 0 0
0 0 0 0 1=G 0
0 0 0 0 0 1=G

3
7777775

2
6666664

s11
s22
s33
s12
s13
s23

3
7777775
;

(A-2)

where E, n and G are the cubic plane modulus, Poisson ratio and
shear modulus, respectively. These constants are functions of the
elastic stiffness constants as given by

E ¼ ðC11 þ 2C12ÞðC11 � C12Þ=ðC11 þ C12Þ; (A-3a)

n ¼ C12=ðC11 þ C12Þ; (A-3b)

G ¼ C44: (A-3c)
Defining the uniaxial load as being applied parallel to the
normal of a particular (hkl) lattice plane (see Fig. A1), the applied
stress, s, can be written as

s ¼ s0ehkl5ehkl; (A-4)

where s0 is the stress magnitude and ehkl indicates the unit normal
vector to the (hkl) lattice plane, which can be expressed in terms of
a cubic frame basis (e1, e2, and e3) as

ehkl ¼ ðhe1 þ ke2 þ le3Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2

p
: (A-5)
Fig. A1. Illustration of the lattice planes of a single cubic crystal where ehkl is the
uniaxial loading direction. Here the plane (hkl) is the (110) plane and (h1k1l1) is the
Thus the stress components in the cubic frame can be calculated
by substituting Eq. (A-7) into Eq. (A-6). The cubic frame compo-
nents of the elastic strain tensor, e, are then determined by the
linear stressestrain relationship, Eq. (A-2).

To evaluate the lattice stretch of an arbitrary (h1k1l1) lattice
plane, eh1k1l1 , a tensor transformation leads to

eh1k1l1 ¼ e :


eh1k1 l15eh1k1l1

�
: (A-6)

(110) plane.
f Tmax;min ¼

�
h21k

2
1 þ k21l

2
1 þ h21l

2
1

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
h21k

2
1 þ k21l

2
1 þ h21l

2
1

�2�3h21k
2
1l

2
1

�
h21 þ k21 þ l21

�r
�
h21 þ k21 þ l21

�2 ; (A-11)
Eq. (A-6) indicates that the (h1k1l1) lattice plane stretch
is a linear function of the applied stress magnitude, s0.

For the interpretation of the ND results, it is of interest to
examine the specific cases of longitudinal and transverse lattice
stretches (see Fig. 1(a)). The longitudinal lattice strain is the strain
in the direction of loading, h1 ¼ h, k1 ¼ k and l1 ¼ l in Eq. (A-6) and
the transverse strain is the strain in the orthogonal direction (strain
normal to the plane (h1k1l1) in Fig. A1 for the loading direction
indicated). Note also that in an ND measurement, results are
obtained as averages for grain families, i.e. the ND technique does
not distinguish between, e.g. a [220] orientated grain and a ½220�
orientated grain.

For the longitudinal strain, h1 ¼ h, k1 ¼ k and l1 ¼ l, Eq. (A-6)
leads to

eLhkl ¼ s0=E
L
hkl; (A-7a)

ELhkl ¼ E
h
1� ð2þ 2nÞð1� aÞf L

i�1
; (A-7b)

f L ¼
�
h2k2 þ h2l2 þ k2l2

�.�
h2 þ k2 þ l2

�2
; (A-7c)

where ehkl
L and Ehkl

L indicate (hkl) longitudinal lattice strain and
longitudinal modulus, respectively, and a defines the material
anisotropy ratio given by

a ¼ ðC11 � C12Þ=ð2C44Þ: (A-8)

Using Eq. (A-7) the values of longitudinal lattice plane modulus
shown in Table 4 are readily obtained.

For the transverse lattice strain, the (hkl) and (h1k1l1) lattice
planes are orthogonal (see Fig. A1). So the following constraint
condition holds

h1hþ k1kþ l1l ¼ 0: (A-9)

Thus, from Eq. (A-6) and applying the constraint condition, Eq.
(A-9), the transverse (h1k1l1) lattice strain, eTh1k1 l1

, is given by

eTh1k1l1 ¼ s0=E
T
h1k1l1 ; (A-10a)

ETh1k1l1 ¼ �E
h
n� ð1þ nÞð1� aÞf T

i�1
; (A-10b)

f T ¼
�
h2h21 þ k2k21 þ l2l21

�.�
h2 þ k2 þ l2

�.�
h21 þ k21 þ l21

�
;

(A-10c)

where ETh1k1 l1
is the {h1k1l1} transverse lattice modulus. The factor,

fT depends on the loading direction ehkl and its orthogonal direc-
tion eh1k1 l1 and thus a range of values are possible for ETh1k1l1

from

Eq. (A-10b). However, the constraint conditions, Eq. (A-9), put
limits on the possible values of ETh1k1 l1

. These limits can be

expressed through the extreme values of fT following the approach
of Norris (2006). Based on the result in Norris (2006) the extreme
values of f T are,
Note that a unique value of fT is obtained if the term under the
square root is zero. Examples of extreme values are given for the
(h1k1l1) planes as follows

ðh1k1l1Þ ¼ ð220Þ00 � f T � 1=2; (A-12a)
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ðh1k1l1Þ ¼ ð311Þ01=11 � f T � 27=121: (A-12b)

For all other relevant cases, fT is unique.
By substituting the values of fT obtained from Eq. (A-11) into

Eq. (A-10b), the values of the transverse lattice plane modulus
shown in Table 4 are obtained. Note that this result is analogous to
the result of Norris (2006) which showed that the Poisson ratio of
a single cubic crystal is not unique but depends on the crystal
orientation relative to the loading axis.

The discussion here relates to a single crystal of arbitrary
orientation relative to an applied uniaxial loading direction. The
significance of the result for a polycrystal is that when determine
the transverse strains for a grain family, the transverse modulus of
individual grains may fall anywhere within the range provided in
Table 4 (ignoring the effect of local grain interaction). Thus, the
transverse strain is expected to be sensitive to the orientation
distribution (texture) of the polycrystal, and may vary from spec-
imen to specimen, while the longitudinal strain is not expected to
show such sensitivity.
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