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Abstract—The use of redundant binary (RB) arithmetic in the
design of high-speed digital multipliers is beneficial due to its high
modularity and carry-free addition. To reduce the number of par-
tial products, a high-radix-modified Booth encoding algorithm is
desired. However, its use is hampered by the complexity of gener-
ating the hard multiples and the overheads resulting from negative
multiples and normal binary (NB) to RB number conversion. This
paper proposes a new RB Booth encoding scheme to circumvent
these problems. The idea is to polarize two adjacent Booth encoded
digits to directly form an RB partial product to avoid the hard mul-
tiple of high-radix Booth encoding without incurring any correc-
tion vector. The proposed method leads to lower encoding and de-
coding complexity than the recently proposed RB Booth encoder.
Synthesis results using Artisan TSMC 0.18- m standard-cell li-
brary show that the RB multipliers designed with our proposed
Booth encoding algorithm exhibit on average 14% higher speed
and 17% less energy-delay product than the existing multiplica-
tion algorithms for a gamut of power-of-two word lengths from 8
to 64 b.

Index Terms—Arithmetic circuit, Booth encoding algorithm,
digital multiplier, energy-delay product, redundant binary adder
(RBA).

I. INTRODUCTION

T HE digital multiplier is a ubiquitous arithmetic unit in
microprocessors, digital signal processors, and emerging

media processors [1]–[4]. It is also a kernel operator in appli-
cation-specific data path of video and audio codecs, digital fil-
ters, computer graphics, and embedded systems [5]–[8]. Com-
pared with many other arithmetic operations, multiplication is
time-consuming and power hungry. The critical paths domi-
nated by digital multipliers often impose a speed limit on the
entire design. Hence, VLSI design of high-speed multipliers,
with low energy dissipation, is still a popular research subject.

Redundant binary (RB) representation is one of the signed
digit representations first introduced by Avizienis [9] in 1961 for
fast parallel arithmetic. This new arithmetic was applied for fast
multiplication by Takagi et al. [10] and implemented in VLSI by
Edamatsu et al. [11]. The RB addition is carry-free, making it a
promising substitute for two’s complement multi-operand addi-
tion in a tree-structured multiplier [12]. Similar to a normal bi-
nary (NB) multiplier, an RB multiplier is anatomized into three
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stages and consists of four modules: the Booth encoder, RB
partial product generator (also known as decoder), RB partial
product accumulator, and RB-to-NB converter [11], [13]–[17].
The latter is required mainly for communicating the result to the
peripheral devices which are largely designed based on the NB
number system. The communications among RB adders across
different stages of RB partial product summing tree are sim-
pler than those of the full adders in a carry-save adder tree.
In addition, the reduction rate of the redundant binary adder
(RBA) summing tree is binary logarithmic to the number of
RB partial products, which is particular beneficial to the generic
power-of-two word size in computing.

Booth encoder and partial product generator affect the effi-
ciency of the partial product generation. The number of par-
tial products that can be saved by this stage impacts the cost,
performance, and power consumption of the RB summing tree
and the multiplier as a whole. Although the number of partial
products can be reduced with a high-radix Booth encoder, the
number of hard multiples that are expensive to generate also in-
creases simultaneously [12]. In conventional RB multiplier de-
sign, a modified Booth encoding algorithm in NB regime is em-
ployed to reduce the number of partial products, and then pairs
of NB partial products are encoded to form RB partial prod-
ucts. In this process, an additional constant binary vector is in-
troduced to compensate for the aggregate errors resulting from
both the RB and Booth encodings [13], [14], [16]. This correc-
tion vector incurs hardware overhead in the RB summing tree
and, to a certain extent, offsets the regularity of the layout and
increases switching activities.

As 8-, 16-, 32-, and 64-b operands are pervasively used in
application-specific data paths and multimedia and very long
instruction word (VLIW) processors [1], [2], [5]–[8], [18], this
paper focuses on power-of-two word-length RB multipliers to
exploit the binary logarithmic partial product reduction rate of
the RBA summing tree. By scrutinizing the overheads of ex-
isting Booth encoding algorithms, the notion of covalent redun-
dant binary Booth encoding was briefly introduced in [19]. This
paper has corrected some shortfalls of our preliminary work
[19]. The new multiplier circuits have been enhanced with a dif-
ferent RB coding and more efficient converters with in-depth
circuit derivation, analysis and experimental result comparison.
The proposed method overcomes the hard multiple generation
problem of NB Booth encoders without incurring any correc-
tion vector. Compared with the RB Booth encoder [20], our
proposed encoder generates the RB partial products more effi-
ciently by consuming two RB digits for every RB partial product
it generated. Consequently, our encoder and decoder are less
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complex for the same radix. We demonstrate that the proposed
Booth encoder and decoder make high speed RB multipliers for
power-of-two operand lengths.

The remainder of this paper is organized as follows. The ex-
isting Booth encoding algorithms and their overheads are briefly
described in Section II. Section III presents the proposed co-
valent redundant binary Booth encoding (CRBBE) algorithm.
This is followed by the realization of RB multipliers based on
the CRBBE algorithm in Section IV to elaborate the design con-
cept. The performance analysis of the proposed RB multiplier
and the comparisons with its rivals are presented in Section V.
Section VI concludes this paper.

II. ISSUES OF BOOTH ENCODING ALGORITHMS FOR RB
MULTIPLICATION

In fast digital multiplier design, modified Booth encoding al-
gorithm is an efficient way to reduce the number of partial prod-
ucts by grouping consecutive bits in one of the two operands to
form the signed multiples [21]. The operand that is Booth en-
coded is called the multiplier and the other operand is called
the multiplicand. In this section, two major issues on using the
modified Booth encoding algorithm for RB multiplication and
some existing solutions are discussed.

A. Hard Multiples Problem

When modified Booth encoding [21] is applied to two’s
complement number, it is known as normal binary Booth
Encoding (NBBE). In radix- Booth- encoding ,
a signed digit is generated from adjacent binary bits

and a borrow bit as
follows:

(1)

where is an integer, denotes the smallest integer value
larger than or equal to , is the word length of the multiplier

, and .
As the radix number of Booth- encoder increases, the

number of Booth encoded digits and hence the number of partial
products decreases to approximately of the original number.
However, as the number of multiples increases with the radix
to , the number of hard multiples also increases simul-
taneously [12]. A hard multiple refers to a multiple that is not
a power of two and thus cannot be obtained easily by simple
shifting and/or complementation. Table I illustrates the radix-8
Booth encoding. The multiplier is partitioned into 4-b groups
with an overlapping borrow bit between two adjacent groups.
Each group is encoded in parallel to generate a select signal
from the set . refers to the
select signal for the partial product , where is the multi-
plicand. The partial product is a hard multiple, which can
only be obtained by adding and by a carry propagation
adder (CPA). The existence of hard multiple increases the la-
tency of the multiplier as a whole because the generation of the

TABLE I
RADIX-8 NORMAL BINARY BOOTH ENCODING (NBBE-3)

partial products will not be accomplished until all the hard mul-
tiples are produced. Therefore, the advantage of using Booth
encoding of radix-8 and above has been greatly offset because
of the criticality of generating the hard multiples and the com-
plexity of the decoding logic.

To speed up the generation of hard multiples in high-radix
Booth encoding, a partially redundant biased Booth encoding
(PRBBE) algorithm was proposed in [22]. Fig. 1 depicts the
generation and negation of hard multiple. It is generated
in a partially redundant form by using a series of small length
adders (4-b). The carry bit of each small length adder is not
propagated but brought forward to the partial product summing
tree. However, when the multiple is negated, both the sum
and the carry vectors need to be complemented and a “1” is
added at the least significant bit (LSB) position. Therefore, the
long strings of zeros between carries become strings of ones in
the negative multiple. A properly selected biasing constant is
introduced to revert the strings of ones into strings of zeros. The
“1”s can be combined with the carry and sum bits to form a
single compensation vector. The biasing constant of each such
partial product introduces an extra compensation vector to the
partial product summing tree.

B. Negative Multiples and NB-to-RB Partial Products
Conversion Problem

Since negation in two’s complement arithmetic requires carry
propagation addition, negative partial product is more efficiently
generated by the bit inversion of the multiplicand followed by
the insertion of a “1” at its LSB position in the partial product
summing tree. Therefore, one additional partial product row is
generated to complete the two’s complement negation of partial
products for the negative multiples.

Furthermore, to accumulate the partial products in an RBA
summing tree, the NB partial products generated by NBBE and
PRBBE need to be converted to RB partial products. An NB
number can be encoded into RB representation using either
sign-magnitude [16], positive-negative [13], or positive-neg-
ative-complement [14] codings. The issue to be discussed
here is illustrated by the positive-negative-complement coding
adopted in this paper but it is also valid for other binary codings
of signed digit set since the architecture designed for one code
converter can be easily adapted to the other [23].
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Fig. 1. �� hard multiple generation and negation in partially redundant form
[22].

In RB multiplication, the summation of two -bit NB partial
products and
can be combined into a single -digit RB number by

(2)

Since , substituting it into (2) gives

(3)

As shown in Table II, an RB digit can be encoded with two
binary bits and by

(4)

where , and .
Therefore, according to (4), the terms in (3) can be

encoded as . To eliminate the hardware required
for sign extension, the most significant digit term can be simply
negated as . From (4), it is noted that

(5)

TABLE II
POSITIVE–NEGATIVE-COMPLEMENT CODING

Fig. 2. Illustration of the correction vector generation on an 8� 8-b multipli-
cation with NBBE-2.

Since the positive-negative-complement coding is symmetric,
and is commutative and . Therefore,

can be coded as follows:

(6)
From (6), it is clear that every RB partial product row thus

composed requires one correction constant to be
added by an RBA at its LSB position. All of the correction
constants generated from the RB partial products, together with
those constants from the negative multiples, can be accumulated
to form a new RB partial product, collectively called the RB cor-
rection vector.

Fig. 2 exemplifies the correction vector generation procedure.
It can be seen that NBBE-2 (radix-4 NB Booth encoding) gener-
ates three instead of two RB partial products for an 8 8-b mul-
tiplication. Owing to the absence of hard multiples, NBBE-2 is
attractive especially for the short operand length multiplication.
However, the additional delay required to add an extra partial
product row critically slows down the short operand length mul-
tiplier due to the relatively lower number of adder stages in its
partial product summing tree.

The RB correction vector incurs additional hardware for its
accumulation. It can even increase the number of stages of the
summing tree, if the word length of the multiplier is exactly

, such as the 8-b and 16-b multipliers in application-specific
data paths of multimedia and wireless applications [5], [6], and
the multipliers for single extended and double extended floating
point numbers, whose effective mantissa are 32 and 64 b, re-
spectively [1]. Consequently, the power dissipation and worst
case delay are also degraded by the inclusion of this correction
vector.
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Fig. 3. Radix-16 RBBE and its partial product generator.

C. RB Booth Encoding (RBBE)

In [20], a method was proposed to obtain the hard multi-
ples from the differences of two simple power-of-two multiples.
Table III illustrates the radix-16 RB Booth encoding, where the
multiplier bits are and each of the
original hard multiples selected by , and are
replaced by , , and , re-
spectively. The partial products generated in this way conform
to the format of the RB coding. The only exception is the hard
multiples selected by , marked with “ ” in Table III. As the

hard multiple can not be readily generated in this manner, a
simple carry-free RB adder is suggested in [20] to add and

. The advantage of this method is the correction vector due to
the two’s complement arithmetic and the RB coding has been
completely eliminated. Comparing with NBBE, the ease of gen-
erating the hard multiples by RBBE, to a certain extent has been
offset by its complex circuitry. High-radix RBBE requires high
fan-in gates in the partial product generator circuit (see Fig. 3).
Since the circuit for each digit of the RB partial product will be
duplicated in a large number, the overhead of high fan-in gates
is more prominent in long operand length multipliers. Besides,
as only one Booth encoded digit is consumed for one RB par-
tial product, half of the binary bits representing an RB partial
product generated from a simple power-of-two multiple in the
RBBE are filled with “0”s, which is rather inefficient.

D. Two’s Complementation Method (TCM)

An innovative TCM was recently proposed in [18] to resolve
the extra correction vector problem associated with the NBBE-2
algorithm. The TCM algorithm uses a divide-and-conquer ap-
proach to perform the two’s complement conversion so that five
signed partial products (0, , ) are originated for se-
lection. In this way, the correction vector due to the negative
multiples in two’s complement arithmetic can be eliminated. If
TCM is used for the design of RB multiplier, the RB coding

TABLE III
RADIX-16 REDUNDANT BINARY BOOTH ENCODING (RBBE-4)

induced compensation constants can also be similarly circum-
vented. With TCM algorithm, the RB multiplier achieves ex-
actly RB partial products as opposed to in
NBBE-2 multiplier. Besides, the multiplier is modular and more
regularly structured. However, the worst case delay of the TCM
algorithm is logarithmically proportional to the operand lengths

. Comparing with the constant delay time of con-
ventional Booth encoding algorithms, the dependency of speed
on word length of TCM algorithm is a limiting factor for large
integer multiplication.

III. COVALENT REDUNDANT BINARY BOOTH ENCODING

(CRBBE) ALGORITHM

A new Booth encoding algorithm is presented in this sec-
tion to simplify the generation of hard multiples and reduce the
number of RB partial products without introducing any form of
correction vector. The proposed algorithm binds two adjacent
Booth encoders to compose an RB partial product by exploiting
the RB coding. The common bit of the two adjacent Booth en-
coders is used as an enabler for the polarization of two equally
weighted partial product bits. As the formation of an RB partial
product digit is analogous to the charge sharing of two oppo-
sitely charged atoms in a covalent bond, we name the algorithm
the covalent redundant binary Booth encoding.

A. Radix-4 Covalent Redundant Binary Booth Encoding
(CRBBE-2)

Fig. 4 shows the simplest radix-2 Booth encoded multiplier.
From (1), the signed digit is encoded from

, where the borrow bit is bracketed. Since the borrow
bit from which is encoded is the MSB of the binary bits
from which is encoded, not all combinations of two digits



1196 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 56, NO. 6, JUNE 2009

Fig. 4. Radix-2 Booth encoded multiplier.

TABLE IV
PERMISSIBLE DUPLET �� � � � IN RADIX-2 BOOTH ENCODED NUMBER

from are permissible for any pair of adjacent digits
in an encoded number. The following properties are observed.

1) Property 1: No two consecutive nonzero digits are of the
same sign, i.e., , , where and

are two adjacent nonzero digits and is the word length of
radix-2 Booth encoded number.

Property 1 implies that the signs of the nonzero digits alter-
nate in the encoded multiplier.

2) Property 2: Any zero between a leading 1 and a trailing
is a negative zero, .
Table IV shows all permissible combinations of two con-

tiguous encoded digits and , which are grouped into four
categories based on the left digit . From the analysis of
Section II, it is evident that if two adjacent NBBEs always gen-
erate signed digits of opposite polarity, their corresponding NB
partial products can be directly combined to form a single pos-
itive-negative-complement coded RB partial product without
any correction vector. This is only possible if contiguous digits
of the Booth encoded multiplier alternate in signs. The duplets
in the middle two columns of Table IV obviously do not fulfill
this criterion.

Since the sign digit representation of a number is not canonic
and the neutral polarity zero can be expressed in both positive
and negative forms, we can map all possible duplets in Table IV
to , , such that one digit of the pair is positive and the
other digit is negative without changing the compound multiple
coefficient

(7)

where , , and .
and .

The multiple is an RB partial product composed from the
two adjacent NB partial products, and . For ease
of exposition, the digit pair, is called a dipole and the
mapping is called polarization. For
example, in the second column of Table IV,
can be mapped to a dipole of either or . Table V
shows all the dipoles. The dipole allows an RB partial product

to be composed from the difference of two multiples in the
partial product generator. Due to the symmetry, for every pos-
itive–negative dipole in the shaded column of Table V, there is
always a corresponding negative-positive dipole in the unshaded
column with their coefficients, of (7) differ only in sign. This
property can be used to reduce the hardware for the CRBBE

TABLE V
POLARIZATION OF �� � � � FOR RADIX-4 CRBBE

circuit so that only one selector logic of each distinct signed
multiple magnitude needs to be generated. The positive–nega-
tive-complement encoded RB partial product corresponding to
the dipole, is denoted by as

(8)

where , and the subscripts and are the
indexes of the multiplier and the multiplicand bits, respectively.

A multiple in the unshaded column can be generated from its
corresponding multiple in the shaded column by simply swap-
ping the values of and without generating any cor-
rection vector.

Radix-4 CRBBE produces RB partial products
without the correction vector problems of NBBE and yet the
encoder logic and RB partial product generator (RBPPG)
circuit is simpler than RBBE of the same radix. It is interesting
to note that radix-8 CRBBE can be created in a similar manner
from binding two heterogenous Booth encoders. The encoded
digits from a radix-2 and a radix-4 NBBE can be “polarized” to
avoid the generation of all the hard multiples of radix-8. With
a simple tweak, CRBBE can be easily extended to radix-16 to
achieve even higher RB partial product reduction rate, which
will be illustrated in Section III-B.

B. Radix-16 Covalent Redundant Binary Booth Encoding
(CRBBE-4)

From (1), two contiguous radix-4 NBBE encoded digits,
and share a common bit, from the multiplier and it
exhibits the following property.

1) Property 3: If the LSB that encodes is 0,
is nonnegative. Otherwise, if , is nonpositive.

The above property is actually a generalization of Property
2. It indicates that, irrespective of the radix of Booth encoding,
only restricted combinations of contiguous digit pairs from
the set are permissible in an encoded
number.

With this restriction on the legitimacy of the encoded digits,
two contiguous digits, , of radix-4 Booth encoding can be
similarly mapped from three contiguous bits
and of the multiplier as shown in Table VI, where

. In Table VI, all legitimate duplets are
mapped to the dipoles for
such that

(9)

where the multiple is an RB partial product composed from
the two adjacent NB partial products, and , and

.
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TABLE VI
POLARIZATION OF �� � � � FOR RADIX-16 CRBBE

Fig. 5. 16� 16-bit RB multiplication with CRBBE-4.

The positive–negative dipoles are listed in the shaded
columns of Table VI while their negative–positive counterparts
appear in the unshaded columns. The only exception is when

and . These two cases correspond to
the special hard multiples, , which are marked with “*”
in Table VI. This hard multiple can be generated using the
dedicated carry-free RBA of [20]. It turns out that this RBA
does not lie in the critical path of the CRBBE encoder. Thus,
the RB partial product, generated by the dipole

is expressed as follows:

(10)

A detailed work-out example for a 16 16-bit multiplication
based on CRBBE-4 algorithm is shown in Fig. 5. The generation
of the hard multiple by an RBA is shown at the top of the
figure. Except the hard multiple (1,1), the three dipoles, ,

and are used to generate the RB partial products
, and , respectively.

The RB partial products reduction rate of radix-16 CRBBE
is 1/4. A higher radix CRBBE algorithm can be similarly de-
rived without introducing additional row of correction vector.

Fig. 6. Implementation of CRBBE-4 encoder.

Although most hard multiples for radix-32 can be more readily
resolved than NBBE of the same radix, there exist some hard
multiples which can not be generated as efficiently as the
multiple in this manner. Thus, CRBBE algorithm with
will not be pursued in this paper.

IV. DESIGN OF CRBBE-4-BASED RB MULTIPLIER

A. Realization of CRBBE-4 Algorithm

As discussed in Section III-B, CRBBE-4 is composed of two
adjacent radix-4 Booth encoders. Its gate-level implementation
is shown in Fig. 6(a), where the sign and magnitude of the
radix-4 Booth encoded digit are represented with three bi-
nary bits, , , and as follows:

(11)

Fig. 6 shows the th slice of a radix-16 CRBBE-4 circuit for
the generation of the control signals, . The indexes and

are related by . The lower encoder takes three con-
secutive bits from the multi-
plier to generate the magnitude bits and of . Its
sign bit . The upper encoder takes the binary bits

, and generates the magni-
tude bits and of . Its sign bit .
All of these output signals are mapped by the polarization cir-
cuit as shown in Fig. 6(b). The control signals, it generated
are used to select the RB partial products correspond to the mul-
tiples, .
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Fig. 7. RB partial product generator (RBPPG) of CRBBE-4.

The polarization circuit performs the mapping,
. The control signals , ,

, and are computed as follows:

(12)

(13)

(14)

(15)

The special multiple is generated by

(16)

The control flag, swap is used to exchange and in the par-
tial product generator to negate the selected RB partial product.
When is 0, the sign bit of is complemented before it
is used as an active high swap flag to the RBPPG. Otherwise,
the original sign of is used as the swap flag. Therefore, the
swap signal can be generated by:

(17)

Fig. 7 shows a slice of the RBPPG circuit for the generation
of the -th digit of the -th RB partial product, and .
Comparing with Fig. 3, the RBPPG circuit of CRBBE-4 is less
complex.

B. Architecture of CRBBE-4 Based RB Multiplier

This section exemplifies the use of CRBBE-4 for the design of
a 64 64-bit RB multiplier. Fig. 8 shows the block diagram of a
64 64-bit CRBBE-4 multiplier, which consists of three stages,
Booth encoder and RBPPG, RBA summing tree and RB-to-NB
converter.

In the first stage, 16 CRBBE-4 slices are used to generate
the control signals from the multiplier. The hard multiple is
generated. The multiplicand bits are shifted and selected into 16
rows of RB partial products in 16 slices of RBPPG.

In the second stage, a 4-stage RBA summing tree is used to
sum 16 RB partial products. Only the multi-digit RBA blocks,
annotated with the number of RB partial product digits input
to each block, are shown in Fig. 8. Each RBA block contains
64 RB full adder (RBFA) cells and a varying number of RB
half adder (RBHA) cells depending on where it is located. The
RBA block in the -th level, designated ( 1 to 4) con-
tains RBHA cells in its most significant digit positions.
The RBFA and RBHA cells modified from [14] are shown in
Fig. 9. According to (10), due to the positive-negative-com-
plement coding, the second binary bit, of the RB partial
product generated from CRBBE-4 and RBPPG circuit should be
inverted before it is input to the RBA. In [13], a preprocessing
circuit is needed for each RB digit to avoid the inconsistent rep-
resentations of “0” prior to the RBA summing tree stage. An
important benefit of the coding format adopted in this design is
that these preprocessing circuits can be completely eliminated
due to its symmetry.

An RB-to-NB converter converts the final accumulation re-
sult to NB representation. Due to the unequal delay profile of
the final RB result bits, the conversion can be carried out in un-
even groups of consecutive digits according to their arrival time.
Groups of 4, 4, 8, 16 and 96 digits from the least significant digit
position are evaluated concurrently. The first three groups of 4,
4, and 8 digits can be independently converted with ripple-carry
adders to reduce the circuit complexity. The carry generation of
the next group of 16 digits can be evaluated with a carry-looka-
head adder as they do not depend on the final summation results
in the RBA tree stage. Therefore, the conversion speed of the
RB-to-NB stage depends solely on the conversion time of the
most significant 96-digit group. This group is converted with
a hybrid carry-lookahead/carry-select adder since it is widely
known as one of the most efficient structures for fast parallel
adder design [15], [24]–[26].

V. PERFORMANCE EVALUATIONS AND DISCUSSIONS

To examine the effects of using the proposed CRBBE-4 al-
gorithm in RB multiplier design, the overall performance of the
proposed radix-16 covalent redundant binary Booth encoded
(CRBBE-4) multiplier is evaluated for power-of-two operand
lengths varying from 8 to 64 b. The results are compared with
the RB multipliers designed with radix-4, radix-8, radix-16
normal binary Booth encoding (NBBE-2, NBBE-3, NBBE-4)
[12], radix-8 partially redundant biased Booth encoding
(PRBBE-3) [22], radix-16 redundant binary Booth encoding
(RBBE-4) [20], and the two’s complementation method (TCM)
[18] as reviewed in Section II. For a fair and legitimate com-
parison, the same RBA summing tree and RB-to-NB converter
circuits are used for all the multipliers.

Each design is described at gate level in VHDL. The func-
tionalities of the algorithms are verified by ModelSim for ran-
domly generated input patterns. The designs are synthesized and
mapped to Artisan TSMC 0.18- m standard-cell library [27]
using the Synopsys Design Compiler. All experiments are car-
ried out at a supply voltage of 1.8V and a room temperature of
25 C. Standard buffers of strength are used for both input
drive and output load. The option for logic structuring is turned
off to prevent the tool from changing the structure of the unit
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Fig. 8. Block diagram of 64� 64-bit RB multiplier.

Fig. 9. Schematic of redundant binary adder (RBA).

cells. Each design is optimized for speed to obtain their min-
imum achievable delay. The average power consumptions are
simulated by Synopsys Power Compiler with back annotated
switching activity files generated from random input vectors to
each design. It is clearly not feasible to estimate the power by ex-
haustive simulation of the circuit. To alleviate the pattern-depen-
dence and dimension-dependence problems, the Monte Carlo
statistical model [28] is adopted to obtain the mean power dis-
sipation of each design with more than 99.9% confidence level
that the error is bounded below 3%. The energy per operation of
each design is obtained by dividing the average power dissipa-
tion by the input rate of the test vectors, which is the maximum
frequency that each individual multiplier is capable to function.
This index is used to compare the power consumptions of two
designs working at different frequencies.

Table VII summarizes the worst case delay and energy
dissipation of the RB multipliers. It shows that the proposed

TABLE VII
SYNTHESIS RESULTS OF DIFFERENT BOOTH ENCODED RB MULTIPLIERS

CRBBE-4 multiplier is the fastest design. On average, it is
8.50%, 10.68%, 12.82%, 19.58%, and 12.60% faster than
RBBE-4, NBBE-2, TCM, NBBE-3, and PRBBE-3, respec-
tively, with a penalty of 10.83% area overhead when compared
to the most compact multiplier design.

To account for the good performance of CRBBE multiplier,
the multiplier architectures are decomposed into three key con-
stituent components and the stacked bar graphs showing the
critical path delay distributions of all the multipliers for sizes

, 16, 32, and 64 are analyzed in Fig. 10. The delays due
to the Booth encoder and partial product generator (black), the
RBA summing tree (gray) and the RB-to-NB converter (white)
are clearly demarcated on each bar of the histograms in Fig. 10.
Among these multipliers, CRBBE-4, RBBE-4, NBBE-2, and
TCM have the same reduction rate of 1/4 in terms of the number
of RB partial products. Due to the correction vector, the speed
of NBBE-2 multiplier is obviously degraded by the additional
stage in the partial product summation network. TCM is com-
parable to CRBBE-4 for small word lengths, however, its speed
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Fig. 10. Critical path delay distributions of different Booth encoded RB mul-
tiplier schemes.

slows down when the multiplier size increases due to the loga-
rithm time dependency on word length. Although RBBE-4 has
no hard multiple and correction vector issues, its far more com-
plex Booth encoder and partial product generator circuits re-
sult in an inferior performance to CRBBE-4. Compared with
CRBBE-4, NBBE-3, and PRBBE-3 are able to reduce more
RB partial products, making the effect of correction vector neg-
ligible. However, these higher radix Booth multipliers suffer
from a more severe hard multiple problem due to the inevitable
carry propagation in generating the hard multiples, which in turn
make them slower. In practice, timing errors due to manufac-
turing variability is kept from the design process by the built-in
implicit guard bands provided in the device and process models
by the foundries and the library developers. Since the designs in
comparison are synthesized with the same process model and
cell library, this relative speed improvement of the proposed
CRBBE-4 multiplier is a substantive merit despite the process
variations.

From Table VII, the RB multiplier with NBBE-2 dissipates
the least energy in 8- and 16-b multiplications due to the ab-
sence of hard multiple and its simplest Booth encoder and par-
tial product generator circuits. For larger operand length of 32
and 64 b, NBBE-3 consumes the least energy among all NBBE
multipliers in view of a better tradeoff between the complexity
of the RBA summing tree and the number of CPAs required for
the generation of hard multiples. Despite the lower complexity
of Booth encoder and partial product generator of NBBE-2, its
RBAs in the summing tree outnumber that of CRBBE-4, which
accounts for the reduced ascendancy in energy dissipation. This
is because the number of RBA stages of NBBE-2 is compar-
atively larger than that of CRBBE-4 due to its extra correction
vector. The complexity of hard multiple generation and the extra

TABLE VIII
ENERGY-DELAY PRODUCTS OF DIFFERENT BOOTH ENCODED RB MULTIPLIERS

Fig. 11. Comparison of normalized EDP of different Booth encoded RB mul-
tipliers.

partial product compensation terms of NBBE-3 and PRBBE-3
cause higher switching activities in the 8- and 16-b multipliers.
As the operand length increases to 64 b, the energy consumption
margin due to these overheads reduces and the switching activi-
ties become dominated by the complexity of the RBA summing
tree. CRBBE-4 dissipates less energy than RBBE-4 and TCM
for all word lengths. The better energy dissipation of CRBBE-4
over these two schemes is primarily due to the power reduction
over a large number of partial product generators.

For the same rate of partial product reduction, it is interesting
to note that with small length adders and additional compen-
sation vector, PRBBE-3 multiplier achieves higher speed than
NBBE-3 with a penalty of more energy dissipation. Therefore,
if both speed and battery life need to be optimized simulta-
neously, the energy per operation has to be minimized in the
same time as the delay. The energy-delay product (EDP) is a
better metric than the energy per operation for benchmarking
the energy efficiency of a circuit [29]. This metric makes the
evaluation less sensitive to the reduction of either energy or
delay by simply changing the supply voltage than optimizing
circuit topology. The EDPs of all multipliers being compared
are tabulated in Table VIII. For ease of comparison, the bar
chart of the normalized EDP is plotted in Fig. 11, where the
EDP for each operand length is normalized so that the multiplier
with the largest EDP has an EDP of one. The results show that
the proposed CRBBE-4 multiplier is the most energy efficient
one. On average, its EDP is 19.40%, 7.11%, 16.91%, 16.08%,
and 13.02% less than RBBE-4, NBBE-2, TCM, NBBE-3, and
PRBBE-3, respectively.
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VI. CONCLUSION

In this paper, a high-speed and energy-efficient RB multiplier
designed based on a new covalent RB Booth encoding algorithm
is presented. The idea is to polarize two adjacent Booth-en-
coded digits into a differential pair to restore the effective RB
partial product reduction rate without the NB-to-RB conver-
sion overhead. The proposed method fully exploits the char-
acteristics of the positive–negative complement coding of RB
number to directly generate an RB partial product from two ad-
jacent Booth-encoded digits. Consequently, it shares the same
advantages of RB Booth encoder for the ease of generating hard
multiples and avoidance of error compensation vector, the two
problems that are confronted by RB multiplier with normal bi-
nary Booth encoding. Six RB multipliers with different Booth
encoding schemes have been prototyped for evaluation. The
synthesis results show that the RB multiplier designed based
on CRBBE-4 is the fastest and the most energy-efficient one
among its rivals for the de facto power-of-two word lengths of
computing.
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